Plastid Phylogenomic Analysis of Tordylieae Tribe (Apiaceae, Apioideae)
Abstract
1. Introduction
2. Results and Discussion
2.1. General Overview of Plastomes
2.2. Inverted Repeat Contractions and Expansions
2.3. Phylogenetic Analysis of Tordylieae Plastomes
2.4. Distribution of Insertion in the trnV-rrn16 Spacer across Tordylieae and Its Allies
3. Materials and Methods
3.1. Plant Material and DNA Extraction
3.2. Genome Sequencing, Plastome Assembly, and psbA-trnH Insertion Survey
3.3. Phylogenetic Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mower, J.P.; Vickrey, T.L. Structural Diversity Among Plastid Genomes of Land Plants. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2018; Volume 85, pp. 263–292. ISBN 978-0-12-813457-3. [Google Scholar]
- Ruhlman, T.A.; Jansen, R.K. Plastid Genomes of Flowering Plants: Essential Principles. In Chloroplast Biotechnology; Humana: New York, NY, USA, 2021; pp. 3–47. [Google Scholar]
- Ruhlman, T.A.; Jansen, R.K. Aberration or Analogy? The Atypical Plastomes of Geraniaceae. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2018; Volume 85, pp. 223–262. ISBN 978-0-12-813457-3. [Google Scholar]
- Wicke, S.; Naumann, J. Molecular Evolution of Plastid Genomes in Parasitic Flowering Plants. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2018; Volume 85, pp. 315–347. ISBN 978-0-12-813457-3. [Google Scholar]
- Goulding, S.E.; Wolfe, K.H.; Olmstead, R.G.; Morden, C.W. Ebb and Flow of the Chloroplast Inverted Repeat. MGG Mol. Gen. Genet. 1996, 252, 195–206. [Google Scholar] [CrossRef] [PubMed]
- Logacheva, M.D.; Krinitsina, A.A.; Belenikin, M.S.; Khafizov, K.; Konorov, E.A.; Kuptsov, S.V.; Speranskaya, A.S. Comparative Analysis of Inverted Repeats of Polypod Fern (Polypodiales) Plastomes Reveals Two Hypervariable Regions. BMC Plant Biol. 2017, 17, 255. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Ruhlman, T.; Lee, S.-B.; Jansen, R.K.; Hostetler, J.B.; Tallon, L.J.; Town, C.D.; Daniell, H. Complete Plastid Genome Sequence of Daucus Carota: Implications for Biotechnology and Phylogeny of Angiosperms. BMC Genom. 2006, 7, 222. [Google Scholar] [CrossRef] [PubMed]
- Downie, S.R.; Peery, R.M.; Jansen, R.K. Another First for the Apiaceae: Evidence for Mitochondrial DNA Transfer into the Plastid Genome. J. Fac. Pharm. Istanb. Univ. 2015, 44, 131–144. [Google Scholar]
- Downie, S.R.; Jansen, R.K. A Comparative Analysis of Whole Plastid Genomes from the Apiales: Expansion and Contraction of the Inverted Repeat, Mitochondrial to Plastid Transfer of DNA, and Identification of Highly Divergent Noncoding Regions. Syst. Bot. 2015, 40, 336–351. [Google Scholar] [CrossRef]
- Samigullin, T.H.; Logacheva, M.D.; Terenteva, E.I.; Degtjareva, G.V.; Vallejo-Roman, C.M. Plastid Genome of Seseli Montanum: Complete Sequence and Comparison with Plastomes of Other Members of the Apiaceae Family. Biochem. Mosc. 2016, 81, 981–985. [Google Scholar] [CrossRef]
- Yuan, C.; Zhong, W.; Mou, F.; Gong, Y.; Pu, D.; Ji, P.; Huang, H.; Yang, Z.; Zhang, C. The Complete Chloroplast Genome Sequence and Phylogenetic Analysis of Chuanminshen (Chuanminshen Violaceum Sheh et Shan). Physiol. Mol. Biol. Plants 2017, 23, 35–41. [Google Scholar] [CrossRef]
- Yang, J.; Yue, M.; Niu, C.; Ma, X.-F.; Li, Z.-H. Comparative Analysis of the Complete Chloroplast Genome of Four Endangered Herbals of Notopterygium. Genes 2017, 8, 124. [Google Scholar] [CrossRef]
- Spooner, D.M.; Ruess, H.; Iorizzo, M.; Senalik, D.; Simon, P. Entire Plastid Phylogeny of the Carrot Genus (Daucus, Apiaceae): Concordance with Nuclear Data and Mitochondrial and Nuclear DNA Insertions to the Plastid. Am. J. Bot. 2017, 104, 296–312. [Google Scholar] [CrossRef]
- Samigullin, T.H.; Logacheva, M.D.; Degtjareva, G.V.; Terentieva, E.I.; Vallejo-Roman, C.M. Complete Plastid Genome of Critically Endangered Plant Prangos Trifida (Apiaceae: Apioideae). Conserv. Genet. Resour. 2018, 10, 847–849. [Google Scholar] [CrossRef]
- Mustafina, F.U.; Yi, D.; Choi, K.; Shin, C.H.; Tojibaev, K.S.; Downie, S.R. A Comparative Analysis of Complete Plastid Genomes from Prangos Fedtschenkoi and Prangos Lipskyi (Apiaceae). Ecol. Evol. 2018, 9, 364–377. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Yang, S.; Kim, W.J.; Noh, P.; Lee, H.O.; Moon, B.C. The Complete Chloroplast Genome of Cnidium Officinale Makino. Mitochondrial DNA Part B Resour. 2018, 3, 490–491. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Wang, X.-F.; Cao, D.; Niu, J.-F.; Wang, Z.-Z. The Complete Chloroplast Genome Sequence of Angelica Tsinlingensis (Apioideae). Mitochondrial DNA Part B Resour. 2018, 3, 480–481. [Google Scholar] [CrossRef] [PubMed]
- Park, I.; Yang, S.; Kim, W.; Song, J.-H.; Lee, H.-S.; Lee, H.; Lee, J.-H.; Ahn, S.-N.; Moon, B. Sequencing and Comparative Analysis of the Chloroplast Genome of Angelica Polymorpha and the Development of a Novel Indel Marker for Species Identification. Molecules 2019, 24, 1038. [Google Scholar] [CrossRef]
- Kang, L.; Yu, Y.; Zhou, S.-D.; He, X.-J. Sequence and Phylogenetic Analysis of Complete Plastid Genome of a Medicinal Plant Heracleum Moellendorffii. Mitochondrial DNA Part B 2019, 4, 1251–1252. [Google Scholar] [CrossRef]
- Kang, L.; Xie, D.; Xiao, Q.; Peng, C.; Yu, Y.; He, X. Sequencing and Analyses on Chloroplast Genomes of Tetrataenium Candicans and Two Allies Give New Insights on Structural Variants, DNA Barcoding and Phylogeny in Apiaceae Subfamily Apioideae. PeerJ 2019, 7, e8063. [Google Scholar] [CrossRef]
- Xiao, Q.-Y.; Feng, T.; Yu, Y.; Luo, Q.; He, X.-J. The Complete Chloroplast Genome of Semenovia Gyirongensis (Tribe Tordylieae, Apiaceae). Mitochondrial DNA Part B 2019, 4, 1863–1864. [Google Scholar] [CrossRef]
- Luo, L.; Yu, Y. The Complete Chloroplast Genome of Cryptotaenia Japonica. Mitochondrial DNA Part B 2019, 4, 1650–1651. [Google Scholar] [CrossRef]
- Gou, W.; Jia, S.-B.; Price, M.; Guo, X.-L.; Zhou, S.-D.; He, X.-J. Complete Plastid Genome Sequencing of Eight Species from Hansenia, Haplosphaera and Sinodielsia (Apiaceae): Comparative Analyses and Phylogenetic Implications. Plants 2020, 9, 1523. [Google Scholar] [CrossRef]
- Ren, T.; Li, Z.-X.; Xie, D.-F.; Gui, L.-J.; Peng, C.; Wen, J.; He, X.-J. Plastomes of Eight Ligusticum Species: Characterization, Genome Evolution, and Phylogenetic Relationships. BMC Plant Biol. 2020, 20, 519. [Google Scholar] [CrossRef]
- Wang, M.; Wang, X.; Sun, J.; Wang, Y.; Ge, Y.; Dong, W.; Yuan, Q.; Huang, L. Phylogenomic and Evolutionary Dynamics of Inverted Repeats across Angelica Plastomes. BMC Plant Biol. 2021, 21, 26. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Xie, D.-F.; Price, M.; Ren, T.; Deng, Y.-Q.; Gui, L.-J.; Guo, X.-L.; He, X.-J. Backbone Phylogeny and Evolution of Apioideae (Apiaceae): New Insights from Phylogenomic Analyses of Plastome Data. Mol. Phylogenet. Evol. 2021, 161, 107183. [Google Scholar] [CrossRef] [PubMed]
- Yuan, C.; Sha, X.; Xiong, M.; Zhong, W.; Wei, Y.; Li, M.; Tao, S.; Mou, F.; Peng, F.; Zhang, C. Uncovering Dynamic Evolution in the Plastid Genome of Seven Ligusticum Species Provides Insights into Species Discrimination and Phylogenetic Implications. Sci. Rep. 2021, 11, 8844. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Q.-Y.; Feng, T.; Luo, Q.; He, X.-J. The Complete Chloroplast Genome of Semenovia Thomsonii (Tordylieae: Apiaceae), a New Record from Xizang, China. Mitochondrial DNA Part B Resour. 2021, 6, 1911–1913. [Google Scholar] [CrossRef]
- Zhu, A.; Guo, W.; Gupta, S.; Fan, W.; Mower, J.P. Evolutionary Dynamics of the Plastid Inverted Repeat: The Effects of Expansion, Contraction, and Loss on Substitution Rates. New Phytol. 2016, 209, 1747–1756. [Google Scholar] [CrossRef]
- Plunkett, G.M.; Downie, S.R. Expansion and Contraction of the Chloroplast Inverted Repeat in Apiaceae Subfamily Apioideae. Syst. Bot. 2000, 25, 648. [Google Scholar] [CrossRef]
- Downie, S.R.; Spalik, K.; Katz-Downie, D.S.; Reduron, J.-P. Major Clades within Apiaceae Subfamily Apioideae as Inferred by Phylogenetic Analysis of nrDNA ITS Sequences. Plant Divers. Evol. 2010, 128, 111–136. [Google Scholar] [CrossRef]
- Plunkett, G.M.; Pimenov, M.G.; Reduron, J.-P.; Kljuykov, E.V.; van Wyk, B.-E.; Ostroumova, T.A.; Henwood, M.J.; Tilney, P.M.; Spalik, K.; Watson, M.F.; et al. Apiaceae. In Flowering Plants. Eudicots; Springer: Cham, Switzerland, 2018; pp. 9–206. [Google Scholar]
- Koch, W.D.J. Generum Tribuumque Plantarum Umbelliferarum Nova Dispositio. Nova Acta Acad. Caesareae Leopold. Carol. Ger. Nat. Curiosorum 1824, 12, 55–156. [Google Scholar]
- Pimenov, M.G.; Leonov, M.V. The Genera of the Umbelliferae. A Nomenclator; Royal Botanic Gardens, Kew: London, UK, 1993; ISBN 978-0-947643-58-4. [Google Scholar]
- Downie, S.R.; Katz-Downie, D.S.; Watson, M.F. A Phylogeny of the Flowering Plant Family Apiaceae Based on Chloroplast DNA rpl16 and rpoC1 Intron Sequences: Towards a Suprageneric Classification of Subfamily Apioideae. Am. J. Bot. 2000, 87, 273–292. [Google Scholar] [CrossRef]
- Downie, S.R.; Watson, M.F.; Spalik, K.; Katz-Downie, D.S. Molecular Systematics of Old World Apioideae (Apiaceae): Relationships among Some Members of Tribe Peucedaneae Sensu Lato, the Placement of Several Island-Endemic Species, and Resolution within the Apioid Superclade. Can. J. Bot. 2000, 78, 506–528. [Google Scholar] [CrossRef]
- Downie, S.R.; Plunkett, G.M.; Watson, M.F.; Spalik, K.; Katz-Downie, D.S.; Valiejo-Roman, C.M.; Terentieva, E.I.; Troitsky, A.V.; Lee, B.-Y.; Lahham, J.; et al. Tribes and Clades within Apiaceae Subfamily Apioideae: The Contribution of Molecular Data. Edinb. J. Bot. 2001, 58, 301–330. [Google Scholar] [CrossRef]
- Spalik, K.; Downie, S.R. Intercontinental Disjunctions in Cryptotaenia (Apiaceae, Oenantheae): An Appraisal Using Molecular Data. J. Biogeogr. 2007, 34, 2039–2054. [Google Scholar] [CrossRef]
- Ajani, Y.; Ajani, A.; Cordes, J.M.; Watson, M.F.; Downie, S.R. Phylogenetic Analysis of nrDNA ITS Sequences Reveals Relationships within Five Groups of Iranian Apiaceae Subfamily Apioideae. Taxon 2008, 57, 383–401. [Google Scholar] [CrossRef]
- Winter, P.J.D.; Magee, A.R.; Phephu, N.; Tilney, P.M.; Downie, S.R.; van Wyk, B.-E. A New Generic Classification for African Peucedanoid Species (Apiaceae). Taxon 2008, 57, 347–364. [Google Scholar] [CrossRef]
- Zhou, J.; Peng, H.; Downie, S.R.; Liu, Z.-W.; Gong, X. A Molecular Phylogeny of Chinese Apiaceae Subfamily Apioideae Inferred from Nuclear Ribosomal DNA Internal Transcribed Spacer Sequences. Taxon 2008, 57, 402–416. [Google Scholar] [CrossRef]
- Logacheva, M.D.; Valiejo-Roman, C.M.; Pimenov, M.G. ITS Phylogeny of West Asian Heracleum Species and Related Taxa of Umbelliferae–Tordylieae W.D.J.Koch, with Notes on Evolution of Their psbA-trnH Sequences. Plant Syst. Evol. 2008, 270, 139–157. [Google Scholar] [CrossRef]
- Magee, A.R.; van Wyk, B.-E.; Tilney, P.M.; Downie, S.R. Generic Delimitations and Relationships of the Cape Genera Capnophyllum, Dasispermum, and Sonderina, the North African Genera Krubera and Stoibrax, and a New Monotypic Genus of the Subfamily Apioideae (Apiaceae). Syst. Bot. 2009, 34, 580–594. [Google Scholar] [CrossRef]
- Logacheva, M.D.; Valiejo-Roman, C.M.; Degtjareva, G.V.; Stratton, J.M.; Downie, S.R.; Samigullin, T.H.; Pimenov, M.G. A Comparison of nrDNA ITS and ETS Loci for Phylogenetic Inference in the Umbelliferae: An Example from Tribe Tordylieae. Mol. Phylogenet. Evol. 2010, 57, 471–476. [Google Scholar] [CrossRef]
- Yu, Y.; Downie, S.R.; He, X.; Deng, X.; Yan, L. Phylogeny and Biogeography of Chinese Heracleum (Apiaceae Tribe Tordylieae) with Comments on Their Fruit Morphology. Plant Syst. Evol. 2011, 296, 179–203. [Google Scholar] [CrossRef]
- Banasiak, Ł.; Piwczyński, M.; Uliński, T.; Downie, S.R.; Watson, M.F.; Shakya, B.; Spalik, K. Dispersal Patterns in Space and Time: A Case Study of Apiaceae Subfamily Apioideae. J. Biogeogr. 2013, 40, 1324–1335. [Google Scholar] [CrossRef]
- Mousavi, S.; Mozaffarian, V.; Mummenhoff, K.; Downie, S.R.; Zarre, S. An Updated Lineage-Based Tribal Classification of Apiaceae Subfamily Apioideae with Special Focus on Iranian Genera. Syst. Biodivers. 2021, 19, 89–109. [Google Scholar] [CrossRef]
- Clarkson, J.J.; Zuntini, A.R.; Maurin, O.; Downie, S.R.; Plunkett, G.M.; Nicolas, A.N.; Smith, J.F.; Feist, M.A.E.; Gutierrez, K.; Malakasi, P.; et al. A Higher-Level Nuclear Phylogenomic Study of the Carrot Family (Apiaceae). Am. J. Bot. 2021, 108, 1252–1269. [Google Scholar] [CrossRef] [PubMed]
- Downie, S.R.; Ramanath, S.; Katz-Downie, D.S.; Llanas, E. Molecular Systematics of Apiaceae Subfamily Apioideae: Phylogenetic Analyses of Nuclear Ribosomal DNA Internal Transcribed Spacer and Plastid rpoC1 Intron Sequences. Am. J. Bot. 1998, 85, 563–591. [Google Scholar] [CrossRef] [PubMed]
- Doğru-Koca, A.; Bagheri, A.; Moradi, A. Investigations on the Phylogenetic Position of the Ditypic Genus Froriepia Reveal Yildirimlia, a New Genus of Apiaceae. Taxon 2020, 69, 1259–1272. [Google Scholar] [CrossRef]
- Wang, W.-C.; Chen, S.-Y.; Zhang, X.-Z. Chloroplast Genome Evolution in Actinidiaceae: clpP Loss, Heterogenous Divergence and Phylogenomic Practice. PLoS ONE 2016, 11, e0162324. [Google Scholar] [CrossRef]
- Sharpe, R.M.; Williamson-Benavides, B.; Edwards, G.E.; Dhingra, A. Methods of Analysis of Chloroplast Genomes of C3, Kranz Type C4 and Single Cell C4 Photosynthetic Members of Chenopodiaceae. Plant Methods 2020, 16, 119. [Google Scholar] [CrossRef]
- de Santana Lopes, A.; Pacheco, T.G.; dos Santos, K.G.; Vieira, L.d.N.; Guerra, M.P.; Nodari, R.O.; de Souza, E.M.; de Oliveira Pedrosa, F.; Rogalski, M. The Linum usitatissimum L. Plastome Reveals Atypical Structural Evolution, New Editing Sites, and the Phylogenetic Position of Linaceae within Malpighiales. Plant Cell Rep. 2018, 37, 307–328. [Google Scholar] [CrossRef]
- Chen, H.; Shao, J.; Zhang, H.; Jiang, M.; Huang, L.; Zhang, Z.; Yang, D.; He, M.; Ronaghi, M.; Luo, X.; et al. Sequencing and Analysis of Strobilanthes Cusia (Nees) Kuntze Chloroplast Genome Revealed the Rare Simultaneous Contraction and Expansion of the Inverted Repeat Region in Angiosperm. Plant Sci. 2018, 324. [Google Scholar] [CrossRef]
- Peery, R. Understanding Angiosperm Genome Interactions and Evolution: Insights from Sacred Lotus (Nelumbo Nucifera) and the Carrot Family (Apiaceae). Ph.D. Thesis, University of Illinois at Urbana-Champaign, Champaign, IL, USA, 2015. [Google Scholar]
- Jansen, R.K.; Ruhlman, T.A. Plastid Genomes of Seed Plants. In Genomics of Chloroplasts and Mitochondria; Bock, R., Knoop, V., Eds.; Springer: Dordrecht, The Netherlands, 2012; Volume 35, pp. 103–126. ISBN 978-94-007-2919-3. [Google Scholar]
- Hoot, S.; Palmer, J. Structural Rearrangements, Including Parallel Inversions, within the Chloroplast Genome of Anemone and Related Genera. J. Mol. Evol. 1994, 38, 274–281. [Google Scholar] [CrossRef][Green Version]
- Lee, H.-L.; Jansen, R.K.; Chumley, T.W.; Kim, K.-J. Gene Relocations within Chloroplast Genomes of Jasminum and Menodora (Oleaceae) Are Due to Multiple, Overlapping Inversions. Mol. Biol. Evol. 2007, 24, 1161–1180. [Google Scholar] [CrossRef]
- Kim, K.-J.; Choi, K.-S.; Jansen, R.K. Two Chloroplast DNA Inversions Originated Simultaneously During the Early Evolution of the Sunflower Family (Asteraceae). Mol. Biol. Evol. 2005, 22, 1783–1792. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.E.; Rousseau-Gueutin, M.; Cordonnier, S.; Lima, O.; Michon-Coudouel, S.; Naquin, D.; de Carvalho, J.F.; Aïnouche, M.; Salmon, A.; Aïnouche, A. The First Complete Chloroplast Genome of the Genistoid Legume Lupinus Luteus: Evidence for a Novel Major Lineage-Specific Rearrangement and New Insights Regarding Plastome Evolution in the Legume Family. Ann. Bot. 2014, 113, 1197–1210. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, E.N.; Ruhlman, T.A.; Sabir, J.S.M.; Hajrah, N.H.; Alharbi, N.S.; Al-Malki, A.L.; Bailey, C.D.; Jansen, R.K. Plastid Genome Sequences of Legumes Reveal Parallel Inversions and Multiple Losses of rps16 in Papilionoids. J. Syst. Evol. 2015, 53, 458–468. [Google Scholar] [CrossRef]
- Charboneau, J.L.M.; Cronn, R.C.; Liston, A.; Wojciechowski, M.F.; Sanderson, M.J. Plastome Structural Evolution and Homoplastic Inversions in Neo-Astragalus (Fabaceae). Genome Biol. Evol. 2021, 13, evab215. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.S.; Son, O.; Park, S. The Chloroplast Genome of Elaeagnus Macrophylla and trnH Duplication Event in Elaeagnaceae. PLoS ONE 2015, 10, e0138727. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zuo, Y.; Zhu, X.; Liao, S.; Ma, J. Complete Chloroplast Genomes and Comparative Analysis of Sequences Evolution among Seven Aristolochia (Aristolochiaceae) Medicinal Species. Int. J. Mol. Sci. 2019, 20, 1045. [Google Scholar] [CrossRef]
- Cai, Z.; Penaflor, C.; Kuehl, J.V.; Leebens-Mack, J.; Carlson, J.E.; dePamphilis, C.W.; Boore, J.L.; Jansen, R.K. Complete Plastid Genome Sequences of Drimys, Liriodendron, and Piper: Implications for the Phylogenetic Relationships of Magnoliids. BMC Evol. Biol. 2006, 6, 77. [Google Scholar] [CrossRef]
- Li, L.; Liu, G.-M.; Zhang, Z.-R.; Corlett, R.T.; Yu, W.-B. Characteristics of the Complete Chloroplast Genome Sequences of Stylidium Debile and Stylidium Petiolare (Stylidiaceae). Mitochondrial DNA Part B Resour. 2021, 6, 3134–3136. [Google Scholar] [CrossRef]
- Bai, H.-R.; Oyebanji, O.; Zhang, R.; Yi, T.-S. Plastid Phylogenomic Insights into the Evolution of Subfamily Dialioideae (Leguminosae). Plant Divers. 2021, 43, 27–34. [Google Scholar] [CrossRef]
- Graham, S.W.; Reeves, P.A.; Burns, A.C.E.; Olmstead, R.G. Microstructural Changes in Noncoding Chloroplast DNA: Interpretation, Evolution, and Utility of Indels and Inversions in Basal Angiosperm Phylogenetic Inference. Int. J. Plant Sci. 2000, 161, S83–S96. [Google Scholar] [CrossRef]
- Borsch, T.; Quandt, D. Mutational Dynamics and Phylogenetic Utility of Noncoding Chloroplast DNA. Plant Syst. Evol. 2009, 282, 169–199. [Google Scholar] [CrossRef]
- Escobari, B.; Borsch, T.; Quedensley, T.S.; Gruenstaeudl, M. Plastid Phylogenomics of the Gynoxoid Group (Senecioneae, Asteraceae) Highlights the Importance of Motif-Based Sequence Alignment amid Low Genetic Distances. Am. J. Bot. 2021, 108, 2235–2256. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.-J.; Lee, H.-L. Widespread Occurrence of Small Inversions in the Chloroplast Genomes of Land Plants. Mol. Cells 2005, 19, 104–113. [Google Scholar] [PubMed]
- Aberer, A.J.; Krompass, D.; Stamatakis, A. Pruning Rogue Taxa Improves Phylogenetic Accuracy: An Efficient Algorithm and Webservice. Syst. Biol. 2013, 62, 162–166. [Google Scholar] [CrossRef]
- Al-Eisawi, D.; Jury, S.L. A Taxonomic Revision of the Genus Tordylium L. (Apiaceae). Bot. J. Linn. Soc. 1988, 97, 357–403. [Google Scholar] [CrossRef]
- Samigullin, T.; Vallejo-Roman, C.; Degtjareva, G.; Terentieva, E. Structural Rearrangements in Plastid Genomes of Apiaceae as Phylogenetic Markers. BIO Web Conf. 2021, 38, 107. [Google Scholar] [CrossRef]
- Calviño, C.I.; Teruel, F.E.; Downie, S.R. The Role of the Southern Hemisphere in the Evolutionary History of Apiaceae, a Mostly North Temperate Plant Family. J. Biogeogr. 2016, 43, 398–409. [Google Scholar] [CrossRef]
- Zhou, J.; Gao, Y.; Wei, J.; Liu, Z.-W.; Downie, S.R. Molecular Phylogenetics of Ligusticum (Apiaceae) Based on nrDNA ITS Sequences: Rampant Polyphyly, Placement of the Chinese Endemic Species, and a Much-Reduced Circumscription of the Genus. Int. J. Plant Sci. 2019, 181, 306–323. [Google Scholar] [CrossRef]
- Wang, R.-J.; Cheng, C.-L.; Chang, C.-C.; Wu, C.-L.; Su, T.-M.; Chaw, S.-M. Dynamics and Evolution of the Inverted Repeat-Large Single Copy Junctions in the Chloroplast Genomes of Monocots. BMC Evol. Biol. 2008, 8, 36. [Google Scholar] [CrossRef]
- Maréchal, A.; Brisson, N. Recombination and the Maintenance of Plant Organelle Genome Stability. New Phytol. 2010, 186, 299–317. [Google Scholar] [CrossRef]
- Hastings, P.J.; Ira, G.; Lupski, J.R. A Microhomology-Mediated Break-Induced Replication Model for the Origin of Human Copy Number Variation. PLoS Genet. 2009, 5, e1000327. [Google Scholar] [CrossRef] [PubMed]
- Kwon, T.; Huq, E.; Herrin, D.L. Microhomology-Mediated and Nonhomologous Repair of a Double-Strand Break in the Chloroplast Genome of Arabidopsis. Proc. Natl. Acad. Sci. USA 2010, 107, 13954–13959. [Google Scholar] [CrossRef] [PubMed]
- Simmonds, S.E.; Smith, J.F.; Davidson, C.; Buerki, S. Phylogenetics and Comparative Plastome Genomics of Two of the Largest Genera of Angiosperms, Piper and Peperomia (Piperaceae). Mol. Phylogenet. Evol. 2021, 163, 107229. [Google Scholar] [CrossRef] [PubMed]
- Haberle, R.C.; Fourcade, H.M.; Boore, J.L.; Jansen, R.K. Extensive Rearrangements in the Chloroplast Genome of Trachelium Caeruleum Are Associated with Repeats and tRNA Genes. J. Mol. Evol. 2008, 66, 350–361. [Google Scholar] [CrossRef]
- Lyskov, D.; Kljuykov, E.; Terentieva, E.; Ukrainskaja, U.; Samigullin, T. The End of the Long Road: Iranian Endemic Seseli Elbursense (Apiaceae) Has Taken Its Place in the Genus Semenovia. Phytotaxa 2020, 435, 1–15. [Google Scholar] [CrossRef]
- Doyle, J.J.; Doyle, J.L. A Rapid DNA Isolation Procedure for Small Quantities of Fresh Leaf Tissue. Phytochem. Bull. 1987, 19, 11–15. [Google Scholar]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef]
- Peng, Y.; Leung, H.C.M.; Yiu, S.M.; Chin, F.Y.L. IDBA-UD: A de Novo Assembler for Single-Cell and Metagenomic Sequencing Data with Highly Uneven Depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef]
- Milne, I.; Stephen, G.; Bayer, M.; Cock, P.J.A.; Pritchard, L.; Cardle, L.; Shaw, P.D.; Marshall, D. Using Tablet for Visual Exploration of Second-Generation Sequencing Data. Brief. Bioinform. 2013, 14, 193–202. [Google Scholar] [CrossRef]
- Tillich, M.; Lehwark, P.; Pellizzer, T.; Ulbricht-Jones, E.S.; Fischer, A.; Bock, R.; Greiner, S. GeSeq—Versatile and Accurate Annotation of Organelle Genomes. Nucleic Acids Res. 2017, 45, W6–W11. [Google Scholar] [CrossRef]
- Carver, T.; Berriman, M.; Tivey, A.; Patel, C.; Böhme, U.; Barrell, B.G.; Parkhill, J.; Rajandream, M.-A. Artemis and ACT: Viewing, Annotating and Comparing Sequences Stored in a Relational Database. Bioinformatics 2008, 24, 2672–2676. [Google Scholar] [CrossRef] [PubMed]
- Greiner, S.; Lehwark, P.; Bock, R. OrganellarGenomeDRAW (OGDRAW) Version 1.3.1: Expanded Toolkit for the Graphical Visualization of Organellar Genomes. Nucleic Acids Res. 2019, 47, W59–W64. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef] [PubMed]
- Katoh, K.; Standley, D.M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 2013, 30, 772–780. [Google Scholar] [CrossRef]
- Hall, T.A. BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 1999, 41, 95–98. [Google Scholar]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Anisimova, M.; Gil, M.; Dufayard, J.-F.; Dessimoz, C.; Gascuel, O. Survey of Branch Support Methods Demonstrates Accuracy, Power, and Robustness of Fast Likelihood-Based Approximation Schemes. Syst. Biol. 2011, 60, 685–699. [Google Scholar] [CrossRef]
- Minh, B.Q.; Hahn, M.W.; Lanfear, R. New Methods to Calculate Concordance Factors for Phylogenomic Datasets. Mol. Biol. Evol. 2020, 37, 2727–2733. [Google Scholar] [CrossRef]
- Wolfe, K.H.; Li, W.H.; Sharp, P.M. Rates of Nucleotide Substitution Vary Greatly among Plant Mitochondrial, Chloroplast, and Nuclear DNAs. Proc. Natl. Acad. Sci. USA 1987, 84, 9054–9058. [Google Scholar] [CrossRef]
- Crotty, S.M.; Minh, B.Q.; Bean, N.G.; Holland, B.R.; Tuke, J.; Jermiin, L.S.; Haeseler, A.V. GHOST: Recovering Historical Signal from Heterotachously Evolved Sequence Alignments. Syst. Biol. 2019, 69, 249–264. [Google Scholar] [CrossRef] [PubMed]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Swofford, D. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4; Sinauer Associates: Sunderland, MA, USA, 2003. [Google Scholar]
- Kalyaanamoorthy, S.; Minh, B.Q.; Wong, T.K.F.; von Haeseler, A.; Jermiin, L.S. ModelFinder: Fast Model Selection for Accurate Phylogenetic Estimates. Nat. Methods 2017, 14, 587–589. [Google Scholar] [CrossRef]
- Xia, X. DAMBE5: A Comprehensive Software Package for Data Analysis in Molecular Biology and Evolution. Mol. Biol. Evol. 2013, 30, 1720–1728. [Google Scholar] [CrossRef] [PubMed]
- Wen, J.; Yu, Y.; Xie, D.-F.; Peng, C.; Liu, Q.; Zhou, S.-D.; He, X.-J. A Transcriptome-Based Study on the Phylogeny and Evolution of the Taxonomically Controversial Subfamily Apioideae (Apiaceae). Ann. Bot. 2020, 125, 937–953. [Google Scholar] [CrossRef] [PubMed]
Taxon | Size (bp) | LSC Size (bp) | SSC Size (bp) | IR Size (bp) | GC Content (%) | Total Genes | Protein-Coding Genes (Pseudogenes) | tRNA Genes | rRNA Genes | GenBank Accession Number | Mean Coverage Depth (X) |
---|---|---|---|---|---|---|---|---|---|---|---|
Dasispermum suffruticosum (P.J.Bergius) B.L.Burtt | 144,902 | 91,681 | 16,931 | 18,145 | 35.2 | 126 | 82 (2) | 36 | 8 | OL839263 | 61 |
Ducrosia anethifolia Boiss. | 141,148 | 98,931 | 17,523 | 12,347 | 37.4 | 122 | 79 (2) | 35 | 8 | OL839264 | 25.8 |
Kalakia marginata (Boiss.) Alava | 142,155 | 98,758 | 17,497 | 12,950 | 37.5 | 122 | 79 (2) | 35 | 8 | OL839265 | 23.7 |
Mandenovia komarovii (Manden.) Alava | 149,345 | 92,332 | 17,485 | 19,764 | 37.4 | 127 | 82 (2) | 37 | 8 | OL839266 | 121 |
Notobubon galbanum (L.) Magee | 147,466 | 93,641 | 17,443 | 18,191 | 37.5 | 126 | 82 (2) | 36 | 8 | OL839267 | 51.9 |
Pastinaca pimpinellifolia M.Bieb. | 149,758 | 92,242 | 17,654 | 19,931 | 37.4 | 127 | 82 (2) | 37 | 8 | NC_027450 | 82.8 |
Symphyoloma graveolens C.A.Mey. | 149,245 | 92,159 | 17,516 | 19,785 | 37.5 | 127 | 82 (2) | 37 | 8 | OL839268 | 115 |
Tordylium lanatum Boiss. | 143,402 | 94,157 | 17,521 | 15,862 | 37.2 | 124 | 81 (2) | 35 | 8 | OL839269 | 89.7 |
Tordylium maximum L. | 150,103 | 91,637 | 17,676 | 20,395 | 37.3 | 126 | 82 (2) | 36 | 8 | OL839270 | 80.6 |
Tordylium pestalozzae Boiss. | 141,830 | 99,355 | 17,488 | 12,493 | 37.1 | 122 | 79 (1) | 35 | 8 | OL839271 | 33.1 |
Zosima korovinii Pimenov | 141,644 | 99,620 | 17,498 | 12,263 | 37.4 | 122 | 79 (2) | 35 | 8 | OL839272 | 173 |
Branch | CDS, PP/aBayes | Unpartitioned, PP/aBayes | 4 Partitions, PP/aBayes | 3 Partitions, PP/aBayes | 4 Partitions + Heterotachy, aBayes/BS | sCF/sDF1/sDF2 | Putative Synapomorphies |
---|---|---|---|---|---|---|---|
1 | 1/1 | 1/1 | 1/1 | 1/1 | 1/97 | 43.5/28.6/28.9 | 9 |
2 | 0.97/0.95 | 1/0.99 | 0.99/ | 1/1 | 1/93 | 36.4/33.2/30.4 | 2 |
3 | 1/1 | 1/1 | 1/1 | 1/1 | 1/100 | 42.6/32.8/25.6 | 20 |
4 | 0.99/0.99 | 1/1 | 1/1 | 1/1 | 1/99 | 41.4/30.5/28.1 | 12 |
5 | 1/1 | 1/1 | 1/1 | 1/1 | 1/100 | 42.6/31.9/25.5 | 6 |
6 | 0.82/0.84 | 1/1 | 1/1 | 1/1 | 1/99 | 47.3/16.2/36.5 | 46 |
Species Name | Voucher Number | Locality | Collector, Date |
---|---|---|---|
Dasispermum suffruticosum | MW0589014 | Republic of South Africa, 34°21′ S, 18°55′ E | Pimenov et al., 12 January 2003 |
Ducrosia anethifolia | MW0744172 | Iran, prov. Fars, 29°41′ N, 52°45′ E | Pimenov et al., 8 June 2001 |
Kalakia marginata | E №3567 | Iran, Iranshakr | Lamond, 1 June 1971 |
Mandenovia komarovii | MW0701533 | Russia, Daghestan, left bank of the river Avarskoe Kojsu, near Tlyarata village | Pimenov et al., 15 August 1978 |
Notobubon galbanum | MW0589116 | Republic of South Africa, 34°05′ S, 18°25′ E | Pimenov et al., 13 January 2003 |
Pastinaca pimpinellifolia | * | Russia, North Caucasus | Kljuykov et al., 5 August 2005 |
Symphyoloma graveolens | MW0700962 | Russia, Daghestan, Andijski distr., Danukh village | Amirhanov, 5 August 1989 |
Tordylium lanatum | * | Turkey, Antalya, Elmali | Pimenov et al., 11 July 2007 |
Tordylium maximum | * | Turkey, prov. Kastamonu, Kure-Inebolu, Ercisler dere | Pimenov et al., 21 August 2008 |
Tordylium pestalozzae | MW0745191 | Turkey, Ephesus C1 Izmir: between Ephesus and Mariamane, 37°55′ N, 27°20′ E | Pimenov and Kljuykov, 27 May 1995 |
Zosima korovinii | MW0864736 | Kyrgyzstan, bank of river At-Bashi, Baybichetau range, tract Kara-Terek | Pimenov and Kljuykov, 1 August 1987 |
Purpose | Primer: Name and Sequence |
---|---|
Insertion in assembled genomes | trnV-rrn16_U: AGTTCGAGCCTGATTATCC |
trnV-rrn16_L: ATTACTTATAGCTTCCTTGTT | |
Survey of 16 Tordylieae species | trnV-rrn16_U: AGTTCGAGCCTGATTATCC |
trnV-trnH_L: CAATCCACTGCCTTGATCC |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samigullin, T.; Logacheva, M.; Terentieva, E.; Degtjareva, G.; Pimenov, M.; Valiejo-Roman, C. Plastid Phylogenomic Analysis of Tordylieae Tribe (Apiaceae, Apioideae). Plants 2022, 11, 709. https://doi.org/10.3390/plants11050709
Samigullin T, Logacheva M, Terentieva E, Degtjareva G, Pimenov M, Valiejo-Roman C. Plastid Phylogenomic Analysis of Tordylieae Tribe (Apiaceae, Apioideae). Plants. 2022; 11(5):709. https://doi.org/10.3390/plants11050709
Chicago/Turabian StyleSamigullin, Tahir, Maria Logacheva, Elena Terentieva, Galina Degtjareva, Michael Pimenov, and Carmen Valiejo-Roman. 2022. "Plastid Phylogenomic Analysis of Tordylieae Tribe (Apiaceae, Apioideae)" Plants 11, no. 5: 709. https://doi.org/10.3390/plants11050709
APA StyleSamigullin, T., Logacheva, M., Terentieva, E., Degtjareva, G., Pimenov, M., & Valiejo-Roman, C. (2022). Plastid Phylogenomic Analysis of Tordylieae Tribe (Apiaceae, Apioideae). Plants, 11(5), 709. https://doi.org/10.3390/plants11050709