Investigation of Calcium Forms in Lichens from Travertine Sites
Abstract
1. Introduction
2. Results
Elemental Analysis (EDX) of Studied Lichen Species
3. Discussion
4. Material and Methods
4.1. Collection of Material and Study Areas
4.2. Elemental Analysis (EDX) with a Scanning Electron Microscope (SEM)
4.3. Powder X-ray Diffraction
4.4. Raman Spectroscopy
4.5. Statistics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Garty, J.; Kunin, P.; Delarea, J.; Weiner, S. Calcium oxalate and sulphate-containing structures on the thallial surface of the lichen Ramalina lacera: Response to polluted air and simulated acid rain. Plant Cell Environ. 2002, 25, 1591–1604. [Google Scholar] [CrossRef]
- Epstein, E. Mineral Nutrition of Plants: Principles and Perspectives; Wiley: New York, NY, USA, 1972. [Google Scholar]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; International Potash Institute: Worblaufen-Bern, Switzerland, 1987. [Google Scholar]
- Taiz, L.; Zeiger, E. Plant Physiology, 3rd ed.; Sinaure Associates, Inc.: Sunderland, MA, USA, 2002. [Google Scholar]
- Sanders, D.; Brownlee, C.; Harper, J.F. Communicating with Calcium. Plant Cell 1999, 11, 691–706. [Google Scholar] [CrossRef] [PubMed]
- Bačkor, M.; Bačkorová, M.; Goga, M.; Hrčka, M. Calcium Toxicity and Tolerance in Lichens: Ca Uptake and Physiological Responses. Water Air Soil Pollut. 2017, 228, 1–10. [Google Scholar] [CrossRef]
- Hepler, P.K.; O Wayne, R. Calcium and Plant Development. Annu. Rev. Plant Physiol. 1985, 36, 397–439. [Google Scholar] [CrossRef]
- Giordani, P.; Modenesi, P.; Tretiach, M. Determinant factors for the formation of the calcium oxalate minerals, weddellite and whewellite, on the surface of foliose lichens. Lichenologist 2003, 35, 255–270. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Nakata, P.A. CALCIUM OXALATE IN PLANTS: Formation and Function. Annu. Rev. Plant Biol. 2005, 56, 41–71. [Google Scholar] [CrossRef]
- Frey, W. Crystallography of the two hydrates of crystalline calcium oxalate in plants. Am. J. Bot. 1981, 68, 130–141. [Google Scholar] [CrossRef]
- Modenesi, P.; Bombardi, V.; Giordani, P.; Brunialti, G.; Corallo, A. Dissolution of Weddellite, Calcium Oxalate Dihydrate, in Pyxine Subcinerea. Lichenologist 2001, 33, 261–266. [Google Scholar] [CrossRef]
- Tomazic, B.B.; Nancollas, G.H. The kinetics of dissolution of calcium-oxalate hydrates II the dihydrate. Investig. Urol. 1980, 18, 97–101. [Google Scholar]
- Lawrey, J.D. Calcium Accumulation by Lichens and Transfer to Lichen Herbivores. Mycologia 1980, 72, 586. [Google Scholar] [CrossRef]
- Seaward, M.; Giacobini, C.; Giuliani, M.; Roccardi, A. The role of lichens in the biodeterioration of ancient monuments with particular reference to central Italy. Int. Biodeterior. 1989, 25, 49–55. [Google Scholar] [CrossRef]
- Sterling, C. Crystal structure analysis of weddellite, CaC2O4.(2+x)H2O. Acta Crystallogr. 1965, 18, 917–921. [Google Scholar] [CrossRef]
- Tazzoli, V.; Domeneghetti, C. The crystal-structures of whewellite and weddellite–reexamination and comparison. Am. Mineral. 1980, 65, 327–334. [Google Scholar]
- Wadsten, T.; Moberg, R. Calcium oxalate hydrates on the surface of lichens. Lichenologist 1985, 17, 239–245. [Google Scholar] [CrossRef]
- Izatulina, A.; Gurzhiy, V.; Frank-Kamenetskaya, O. Weddellite from renal stones: Structure refinement and dependence of crystal chemical features on H2O content. Am. Miner. 2014, 99, 2–7. [Google Scholar] [CrossRef]
- Rusakov, A.V.; Frank-Kamenetskaya, O.V.; Gurzhiy, V.V.; Zelenskaya, M.S.; Izatulina, A.R.; Sazanova, K.V. Refinement of the crystal structures of biomimetic weddellites produced by microscopic fungus Aspergillus niger. Crystallogr. Rep. 2014, 59, 362–368. [Google Scholar] [CrossRef]
- Syers, J.K.; Birnie, A.C.; Mitchell, B.D. The Calcium Oxalate Content of Some Lichens Growing on Limestone. Lichenologist 1967, 3, 409–414. [Google Scholar] [CrossRef]
- Wilson, M.J.; Jones, D.; McHardy, W.J. The Weathering of Serpentinite by Lecanora Atra. Lichenologist 1981, 13, 167–176. [Google Scholar] [CrossRef]
- Ariño, X.; Ortega-Calvo, J.; Gomez-Bolea, A.; Saiz-Jimenez, C. Lichen colonization of the Roman pavement at Baelo Claudia (Cadiz, Spain): Biodeterioration vs. bioprotection. Sci. Total Environ. 1995, 167, 353–363. [Google Scholar] [CrossRef]
- Fouke, B.W.; Farmer, J.D.; Marais, D.J.D.; Pratt, L.; Sturchio, N.C.; Burns, P.C.; Discipulo, M.K. Depositional facies and aqueous-solid geochemistry of travertine-depositing hot springs (Angel Terrace, Mammoth Hot Springs, Yellowstone National Park, U.S.A.). J. Sediment. Res. 2000, 70, 565–585. [Google Scholar] [CrossRef]
- Fouke, B.W. Hot-spring Systems Geobiology: Abiotic and biotic influences on travertine formation at Mammoth Hot Springs, Yellowstone National Park, USA. Sedimentology 2011, 58, 170–219. [Google Scholar] [CrossRef]
- Capezzuoli, E.; Gandin, A.; Pedley, M. Decoding tufa and travertine (fresh water carbonates) in the sedimentary record: The state of the art. Sedimentology 2014, 61, 1–21. [Google Scholar] [CrossRef]
- Garty, J. Biomonitoring Atmospheric Heavy Metals with Lichens: Theory and Application. Crit. Rev. Plant Sci. 2001, 20, 309–371. [Google Scholar] [CrossRef]
- Bačkor, M.; Loppi, S. Interactions of lichens with heavy metals. Biol. Plant. 2009, 53, 214–222. [Google Scholar] [CrossRef]
- Pinosova, M.; Andrejiova, M.; Liptai, P.; Lumnitzer, E. Obj ective and subjective evaluation of the physical risk factors near a conveyor system. Adv. Sci. Technol.-Res. J. 2018, 12, 188–196. [Google Scholar] [CrossRef]
- Pinosova, M.; Andrejiova, M.; Lumnitzer, E. Synergistic Effect of Risk Factors and Work Environmental Quality. Qual.-Access Success 2018, 19, 154–159. [Google Scholar]
- Paoli, L.; Guttova, A.; Grassi, A.; Lackovicova, A.; Senko, D.; Loppi, S. Biological effects of airborne pollutants released during cement production assessed with lichens (SW Slovakia). Ecol. Indic. 2014, 40, 127–135. [Google Scholar] [CrossRef]
- Nieboer, E.; Richardson, D.H.S.; Tomassini, F.D. Mineral Uptake and Release by Lichens: An Overview. Bryologist 1978, 81, 226. [Google Scholar] [CrossRef]
- Paul, A.; Hauck, M.; Leuschner, C. Iron and phosphate uptake explains the calcifuge–calcicole behavior of the terricolous lichens Cladonia furcata subsp. furcata and C. rangiformis. Plant Soil 2008, 319, 49–56. [Google Scholar] [CrossRef]
- Osyczka, P.; Rola, K.; Jankowska, K. Vertical concentration gradients of heavy metals in Cladonia lichens across different parts of thalli. Ecol. Indic. 2016, 61, 766–776. [Google Scholar] [CrossRef]
- Ahti, T.; Sipman, H.J.M. Ten new species of Cladonia (Cladoniaceae, Lichenized Fungi) from the Guianas and Venezuela, South America. Phytotaxa 2013, 93, 25–39. [Google Scholar] [CrossRef][Green Version]
- Weber, W.A. Environmental modifications and lichen taxonomy. In Lichen Ecology; Seaward, M.R.D., Ed.; Academic Press: London, UK, 1977; pp. 9–29. [Google Scholar]
- Frost, R. Raman spectroscopy of natural oxalates. Anal. Chim. Acta 2004, 517, 207–214. [Google Scholar] [CrossRef]
- Ibarrondo, I.; Martínez-Arkarazo, I.; Madariaga, J.M. Biomineralization in saxicolous lichens: Raman spectroscopic study supported with XRF and SEM-EDX analyses. J. Raman Spectrosc. 2016, 48, 161–169. [Google Scholar] [CrossRef]
- Villar, S.E.J.; Edwards, H.G.M.; Seaward, M.R.D. Raman spectroscopy of hot desert, high altitude epilithic lichens. Analyst 2005, 130, 730–737. [Google Scholar] [CrossRef]
- Pestaner, J.P.; Mullick, F.G.; Johnson, F.B.; Centeno, J.A. Calcium oxalate crystals in human pathology—Molecular analysis with the laser Raman microprobe. Arch. Pathol. Lab. Med. 1996, 120, 537–540. [Google Scholar]
- Dubernat, J.; Pezerat, H. Mistakes of piling in dihydrated oxalates of divalent metals of magnesium series (Mg,Fe,Co,Ni,Zu,Mn). J. Appl. Crystallogr. 1974, 7, 387–393. [Google Scholar] [CrossRef]
- Armstrong, R.A.; Bradwell, T. Growth of foliose lichens: A review. Symbiosis 2011, 53, 1–16. [Google Scholar] [CrossRef]
- Horner, H.T.; Wagner, B.L. Calcium oxalate formation in higher plants. In Calcium Oxalate in Biological Systems; Kahn, S.R., Ed.; CRC Press: Boca Raton, FL, USA, 1995; pp. 53–71. [Google Scholar]
- Clark, B.M.; Clair, L.L.S.; Mangelson, N.F.; Rees, L.B.; Grant, P.G.; Bench, G.S. Characterization of mycobiont adaptations in the foliose lichen Xanthoparmelia chlorochroa (Parmeliaceae). Am. J. Bot. 2001, 88, 1742–1749. [Google Scholar] [CrossRef]
- Farkas, E.; Biró, B.; Csintalan, Z.; Veres, K. Acetone rinsing tolerance of the lichen species Cladonia foliacea is considerable. Lichenologist 2020, 52, 325–327. [Google Scholar] [CrossRef]
- Team, R.S. RStudio: Integrated Development for R. 2019. Available online: http://www.rstudio.com.
- Team, R.C. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.R-project.org.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ručová, D.; Đorđević, T.; Baláž, M.; Weidinger, M.; Lang, I.; Gajdoš, A.; Goga, M. Investigation of Calcium Forms in Lichens from Travertine Sites. Plants 2022, 11, 620. https://doi.org/10.3390/plants11050620
Ručová D, Đorđević T, Baláž M, Weidinger M, Lang I, Gajdoš A, Goga M. Investigation of Calcium Forms in Lichens from Travertine Sites. Plants. 2022; 11(5):620. https://doi.org/10.3390/plants11050620
Chicago/Turabian StyleRučová, Dajana, Tamara Đorđević, Matej Baláž, Marieluise Weidinger, Ingeborg Lang, Andrej Gajdoš, and Michal Goga. 2022. "Investigation of Calcium Forms in Lichens from Travertine Sites" Plants 11, no. 5: 620. https://doi.org/10.3390/plants11050620
APA StyleRučová, D., Đorđević, T., Baláž, M., Weidinger, M., Lang, I., Gajdoš, A., & Goga, M. (2022). Investigation of Calcium Forms in Lichens from Travertine Sites. Plants, 11(5), 620. https://doi.org/10.3390/plants11050620