Daytime or Edge-of-Daytime Intra-Canopy Illumination Improves the Fruit Set of Bell Pepper at Passive Conditions in the Winter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plants and Growth Conditions
2.2. Supplemental Intra-Canopy Illumination
2.3. Chlorophyll Content and Fluorescence
2.4. Gas-Exchange Measurements
2.5. Fruit Set Quantification
2.6. Daily Light Integral (DLI) Recording
2.7. Statistical Analysis
3. Results
3.1. Intra-Canopy Illumination
3.2. Supplemental Illumination Results in Increased Fruit Set in the Winter
3.3. Fruit Set and Survival Are Enhanced in Illuminated Western-Facing Plants
3.4. Daily Light Integral and Photosynthetic Activity of the Eastern- and Western-Facing Canopy
3.5. Spring Yield and Plant Biomass
4. Discussion
4.1. Intra-Canopy Illumination at Passive Conditions
4.2. Illumination during Different Times of the Day
4.3. Eastern- vs. Western-Facing Plants
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mitchell, C.A.; Dzakovich, M.P.; Gómez, C.; Lopez, R.; Burr, J.F.; Hernández, R.; Kubota, C.; Currey, C.J.; Meng, Q.; Runkle, E.S.; et al. Light-Emitting Diodes in Horticulture; John wiley & Sons, Inc.: Hoboken, NJ, USA, 2015; Volume 43, pp. 1–88. [Google Scholar]
- Bantis, F.; Smirnakou, S.; Ouzounis, T.; Koukounaras, A.; Ntagkas, N.; Radoglou, K. Current status and recent achievements in the field of horticulture with the use of light-emitting diodes (LEDs). Sci. Hortic. 2018, 235, 437–451. [Google Scholar] [CrossRef]
- Sipos, L.; Boros, I.F.; Csambalik, L.; Székely, G.; Jung, A.; Balázs, L. Horticultural lighting system optimalization: A review. Sci. Hortic. 2020, 273, 109631. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Pantaleo, M.A.; Santamaria, P. Applications and development of leds as supplementary lighting for tomato at different latitudes. Agronomy 2021, 11, 835. [Google Scholar] [CrossRef]
- Runkle, E.S.; Meng, Q.; Park, Y. LED applications in greenhouse and indoor production of horticultural crops. Acta Hortic. 2019, 1263, 17–29. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Tewolde, F.T.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. Supplemental LED inter-lighting compensates for a shortage of light for plant growth and yield under the lack of sunshine. PLoS ONE 2018, 13, e0206592. [Google Scholar] [CrossRef] [PubMed]
- Gómez, C.; Mitchell, C.A. Supplemental lighting for greenhouse-grown tomatoes: Intracanopy LED Towers vs. overhead HPS lamps. Acta Hortic. 2014, 1037, 855–862. [Google Scholar] [CrossRef]
- Hao, X.; Zheng, J.; Little, C.; Khosla, S. LED inter-lighting in year-round greenhouse mini-cucumber production. Acta Hortic. 2012, 956, 335–340. [Google Scholar] [CrossRef]
- Guo, X.; Hao, X.; Khosla, S.; Kumar, K.G.S.; Cao, R.; Bennett, N. Effect of LED interlighting combined with overhead HPS light on fruit yield and quality of year-round sweet pepper in commercial greenhouse. Acta Hortic. 2016, 1134, 71–78. [Google Scholar] [CrossRef]
- Pepin, S.; Fortier, E.; Béchard-Dubé, S.A.; Dorais, M.; Ménard, C.; Bacon, R. Beneficial effects of using a 3-D LED interlighting system for organic greenhouse tomato grown in Canada under low natural light conditions. In Proceedings of the Second International Symposium on Organic Greenhouse Horticulture, Avignon, France, 28–31 October 2013; International Society for Horticultural Science (ISHS): Leuven, Belgium, 2014; pp. 239–246. [Google Scholar]
- Joshi, N.C.; Ratner, K.; Eidelman, O.; Bednarczyk, D.; Zur, N.; Many, Y.; Shahak, Y.; Aviv-Sharon, E.; Achiam, M.; Gilad, Z.; et al. Effects of daytime intra-canopy LED illumination on photosynthesis and productivity of bell pepper grown in protected cultivation. Sci. Hortic. 2019, 250, 81–88. [Google Scholar] [CrossRef]
- De Freitas, I.S.; Roldán, G.Q.; Macedo, A.C.; Mello, S.D.C. The responses of photosynthesis, fruit yield and quality of mini-cucumber to led-interlighting and grafting. Hortic. Bras. 2021, 39, 86–93. [Google Scholar] [CrossRef]
- Paucek, I.; Appolloni, E.; Pennisi, G.; Quaini, S.; Gianquinto, G.; Orsini, F. LED lighting systems for horticulture: Business growth and global distribution. Sustainability 2020, 12, 7516. [Google Scholar] [CrossRef]
- Lemos, V.C.; Reimer, J.J.; Wormit, A. Color for life: Biosynthesis and distribution of phenolic compounds in pepper (capsicum annuum). Agriculture 2019, 9, 81. [Google Scholar] [CrossRef] [Green Version]
- Wahyuni, Y.; Ballester, A.R.; Sudarmonowati, E.; Bino, R.J.; Bovy, A.G. Secondary metabolites of Capsicum species and their importance in the human diet. J. Nat. Prod. 2013, 76, 783–793. [Google Scholar] [CrossRef]
- Jovicich, E.; Cantliffe, D.J.; Stoffella, P.J. Fruit yield and quality of greenhouse-grown Bell Pepper as influenced by density, container, and trellis System. Horttechnology 2004, 14, 507–513. [Google Scholar] [CrossRef] [Green Version]
- Dueck, T.A.; Grashoff, C.; Broekhuijsen, G.; Marcelis, L.F.M. Efficiency of light energy used by leaves situated in different levels of a sweet pepper canopy. Acta Hortic. 2006, 711, 201–205. [Google Scholar] [CrossRef] [Green Version]
- Wubs, A.M.; Heuvelink, E.; Marcelis, L.F.M. Abortion of reproductive organs in sweet pepper (Capsicum annuum L.): A review. J. Hortic. Sci. Biotechnol. 2009, 84, 467–475. [Google Scholar] [CrossRef]
- Aloni, B.; Karni, L.; Zaidman, Z.; Schaffer, A.A. Changes of carbohydrates in pepper (Capsicum annuum L.) flowers in relation to their abscission under different shading regimes. Ann. Bot. 1996, 78, 163–168. [Google Scholar] [CrossRef] [Green Version]
- Marcelis, L.F.M.; Heuvelink, E.; Baan Hofman-Eijer, L.R.; Den Bakker, J.; Xue, L.B. Flower and fruit abortion in sweet pepper in relation to source and sink strength. J. Exp. Bot. 2004, 55, 2261–2268. [Google Scholar] [CrossRef] [Green Version]
- Aloni, B.; Karni, L.; Zaidman, Z.; Schaffer, A.A. The relationship between sucrose supply, sucrose-cleaving enzymes and flower abortion in pepper. Ann. Bot. 1997, 79, 601–605. [Google Scholar] [CrossRef] [Green Version]
- González-Real, M.M.; Liu, H.Q.; Baille, A. Influence of fruit sink strength on the distribution of leaf photosynthetic traits in fruit-bearing shoots of pepper plants (Capsicum annuum L.). Environ. Exp. Bot. 2009, 66, 195–202. [Google Scholar] [CrossRef]
- Demers, D.A.; Gosselin, A.; Chris Wien, H. Effects of Supplemental Light Duration on Greenhouse Sweet Pepper Plants and Fruit Yields. J. Am. Soc. Hortic. Sci. 1998, 123, 202–207. [Google Scholar] [CrossRef] [Green Version]
- Dorais, M.; Yelle, S.; Gosselin, A. Influence of extended photoperiod on photosynthate partitioning and export in tomato and pepper plants. N. Zeal. J. Crop Hortic. Sci. 1996, 24, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Hovi-Pekkanen, T.; Näkkilä, J.; Tahvonen, R. Increasing productivity of sweet pepper with interlighting. Acta Hortic. 2006, 711, 165–170. [Google Scholar] [CrossRef]
- Jokinen, K.; Särkkä, L.E.; Näkkilä, J. Improving sweet pepper productivity by LED interlighting. Acta Hortic. 2012, 956, 59–66. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotraspiration Guidelines for Computing Crop Water Requirements-FAO Irrigation & Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Kusuma, P.; Pattison, P.M.; Bugbee, B. From physics to fixtures to food: Current and potential LED efficacy. Hortic. Res. 2020, 7, 56. [Google Scholar] [CrossRef] [Green Version]
- Palmitessa, O.D.; Paciello, P.; Santamaria, P. Supplemental LED increases tomato yield in mediterranean semi-closed greenhouse. Agronomy 2020, 10, 1353. [Google Scholar] [CrossRef]
- Gómez, C.; Mitchell, C.A. In search of an optimized supplemental lighting spectrum for greenhouse tomato production with intracanopy lighting. Acta Hortic. 2016, 1134, 57–62. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, C.; Gao, L. Polychromatic supplemental lighting from underneath canopy is more effective to enhance tomato plant development by improving leaf photosynthesis and stomatal regulation. Front. Plant Sci. 2016, 7, 1832. [Google Scholar] [CrossRef] [Green Version]
- Ratner, K.; Joshi, N.C.; Yadav, D.; Many, Y.; Kamara, I.; Esquira, I.; Achiam, M.; Gilad, Z.; Charuvi, D. Application of LED-interlighting for improving the yield of passive tunnel-grown bell pepper. Acta Hortic. 2020, 1268, 19–26. [Google Scholar] [CrossRef]
- Tewolde, F.T.; Lu, N.; Shiina, K.; Maruo, T.; Takagaki, M.; Kozai, T.; Yamori, W. Nighttime supplemental LED inter-lighting improves growth and yield of single-truss tomatoes by enhancing photosynthesis in both winter and summer. Front. Plant Sci. 2016, 7, 448. [Google Scholar] [CrossRef] [PubMed]
- Sase, S.; Mito, C.; Okushima, L. Effect of Overnight Supplemental Lighting with Different Spectral LEDs on the Growth of Some Leafy Vegetables. Acta Hortic. 2012, 956, 327–334. [Google Scholar] [CrossRef]
- Stitt, M.; Zeeman, S.C. Starch turnover: Pathways, regulation and role in growth. Curr. Opin. Plant Biol. 2012, 15, 282–292. [Google Scholar] [CrossRef] [PubMed]
- MacNeill, G.J.; Mehrpouyan, S.; Minow, M.A.A.; Patterson, J.A.; Tetlow, I.J.; Emes, M.J. Starch as a source, starch as a sink: The bifunctional role of starch in carbon allocation. J. Exp. Bot. 2017, 68, 4433–4453. [Google Scholar] [CrossRef]
- Gibon, Y.; Pyl, E.; Sulpice, R.; Lunn, J.E.; Höhne, M.; Günther, M.; Stitt, M. Adjustment of growth, starch turnover, protein content and central metabolism to a decrease of the carbon supply when Arabidopsis is grown in very short photoperiods. Plant Cell Environ. 2009, 32, 859–874. [Google Scholar] [CrossRef]
- Hendrickson, L.; Ball, M.C.; Wood, J.T.; Chow, W.S.; Furbank, R.T. Low temperature effects on photosynthesis and growth of grapevine. Plant Cell Environ. 2004, 27, 795–809. [Google Scholar] [CrossRef]
- Reshef, N.; Fait, A.; Agam, N. Grape berry position affects the diurnal dynamics of its metabolic profile. Plant Cell Environ. 2019, 42, 1897–1912. [Google Scholar] [CrossRef]
- Van Der Meer, M.; De Visser, P.H.B.; Heuvelink, E.; Marcelis, L.F.M. Row orientation affects the uniformity of light absorption, but hardly affects crop photosynthesis in hedgerow tomato crops. Silico Plants 2021, 3, diab025. [Google Scholar] [CrossRef]
Parameter | CR | LED |
---|---|---|
Chl (µmol m−2) | 571 ± 59 b | 616 ± 57 a |
Fv/Fm | 0.81 ± 0.01 a | 0.81 ± 0.01 a |
A (µmol CO2 m−2 s−1) | 2.01 ± 0.76 b | 6.56 ± 1.87 a |
Gs (mol H2O m−2 s−1) | 0.030 ± 0.017 b | 0.157 ± 0.036 a |
E (mmol H2O m−2 s−1) | 0.530 ± 0.307 b | 1.853 ± 0.264 a |
Ci (µmol CO2 mol−1) | 283 ± 48 b | 351 ± 32 a |
T (°C) | 27.7 ± 1.6 a | 27.6 ± 0.6 a |
PAR (µmol photons m−2 s−1) | 23 ± 6 b | 86 ± 36 a |
Parameter | E-Facing | W-Facing | ||||
---|---|---|---|---|---|---|
CR | LED-D | LED-N | CR | LED-D | LED-N | |
Yield † (kg/plant) | 1.65 ± 0.37 a | 2.14 ± 0.46 a | 1.89 ± 0.29 a | 1.86 ± 0.25 B | 2.34 ± 0.34 AB | 2.66 ± 0.48 A |
Yield † (#/plant) | 7.74 ± 1.74 a | 9.84 ± 2.03 a | 8.73 ± 1.51 a | 9.12 ± 0.89 B | 10.67 ± 1.40 AB | 13.05 ± 1.51 A * |
Fresh weight ‡ (kg) | 2.00 ± 0.27 a | 2.24 ± 0.54 a | 2.24 ± 0.59 a | 2.04 ± 0.40 B | 2.54 ± 0.69 A | 2.65 ± 0.63 A * |
Height ‡ (m) | 2.85 ± 0.32 a | 2.89 ± 0.26 a | 2.86 ± 0.20 a | 2.70 ± 0.30 B | 3.03 ± 0.20 A * | 3.05 ± 0.23 A * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiwari, V.; Kamara, I.; Ratner, K.; Many, Y.; Lukyanov, V.; Ziv, C.; Gilad, Z.; Esquira, I.; Charuvi, D. Daytime or Edge-of-Daytime Intra-Canopy Illumination Improves the Fruit Set of Bell Pepper at Passive Conditions in the Winter. Plants 2022, 11, 424. https://doi.org/10.3390/plants11030424
Tiwari V, Kamara I, Ratner K, Many Y, Lukyanov V, Ziv C, Gilad Z, Esquira I, Charuvi D. Daytime or Edge-of-Daytime Intra-Canopy Illumination Improves the Fruit Set of Bell Pepper at Passive Conditions in the Winter. Plants. 2022; 11(3):424. https://doi.org/10.3390/plants11030424
Chicago/Turabian StyleTiwari, Vivekanand, Itzhak Kamara, Kira Ratner, Yair Many, Victor Lukyanov, Carmit Ziv, Ziva Gilad, Itzhak Esquira, and Dana Charuvi. 2022. "Daytime or Edge-of-Daytime Intra-Canopy Illumination Improves the Fruit Set of Bell Pepper at Passive Conditions in the Winter" Plants 11, no. 3: 424. https://doi.org/10.3390/plants11030424
APA StyleTiwari, V., Kamara, I., Ratner, K., Many, Y., Lukyanov, V., Ziv, C., Gilad, Z., Esquira, I., & Charuvi, D. (2022). Daytime or Edge-of-Daytime Intra-Canopy Illumination Improves the Fruit Set of Bell Pepper at Passive Conditions in the Winter. Plants, 11(3), 424. https://doi.org/10.3390/plants11030424