Competitive Interactions between Two Non-Native Species (Alliaria petiolata [M. Bieb.] Cavara & Grande and Hesperis matronalis L.) and a Native Species (Ageratina altissima [L.] R.M. King & H. Rob.)
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Seed Collection and Preparation
4.2. Study Design
4.3. Data Measurement
4.4. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vilà, M.; Weiner, J. Are invasive plant species better competitors than native plant species?—Evidence from pair-wise experiments. Oikos 2004, 105, 229–238. [Google Scholar] [CrossRef]
- Von Holle, B.; Delcourt, H.R.; Simberloff, D. The importance of biological inertia in plant community resistance to invasion. J. Veg. Sci. 2003, 14, 425–432. [Google Scholar] [CrossRef] [Green Version]
- Guiver, C.; Dreiwi, H.; Filannino, D.M.; Hodgson, D.; Lloyd, S.; Townley, S. The role of population inertia in predicting the outcome of stage-structured biological invasions. Math. Biosci. 2015, 265, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, L.M.; Reynolds, H.L. Light, allelopathy, and post-mortem invasive impact on native forest understory species. Biol. Invasions 2013, 16, 1131–1144. [Google Scholar] [CrossRef]
- Skálová, H.; Jarošík, V.; Dvořáčková, Š.; Pyšek, P. Effect of intra- and interspecific competition on the performance of native and invasive species of Impatiens under varying levels of shade and moisture. PLoS ONE 2013, 8, e62842. [Google Scholar] [CrossRef]
- Robakowski, P.; Bielinis, E.; Sendall, K. Light energy partitioning, photosynthetic efficiency and biomass allocation in invasive Prunus serotina and native Quercus petraea in relation to light environment, competition and allelopathy. J. Plant Res. 2018, 131, 505–523. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Li, Z.; Zhang, J.; Song, H.; Liang, Q.; Tao, J.; Cornelissen, J.H.C.; Liu, J. Do shallow soil, low water availability, or their combination increase the competition between grasses with different root systems in karst soil? Environ. Sci. Pollut. Res. 2017, 24, 10640–10651. [Google Scholar] [CrossRef] [PubMed]
- Gérard, J.; Triest, L. The effect of phosphorus reduction and competition on invasive lemnids: Life traits and nutrient uptake. ISRN Bot. 2014, 2014, 514294. [Google Scholar] [CrossRef] [Green Version]
- Liu, G.; Yang, Y.B.; Zhu, Z.H. Elevated nitrogen allows the weak invasive plant Galinsoga quadriradiata to become more vigorous with respect to inter-specific competition. Sci. Rep. 2018, 8, 3136. [Google Scholar] [CrossRef] [Green Version]
- Aschehoug, E.T.; Brooker, R.; Atwater, D.Z.; Maron, J.L.; Callaway, R.M. The mechanisms and consequences of interspecific competition among plants. Annu. Rev. Ecol. Evol. Syst. 2016, 47, 263–281. [Google Scholar] [CrossRef] [Green Version]
- Carboni, M.; Livingstone, S.W.; Isaac, M.E.; Cadotte, M.W. Invasion drives plant diversity loss through competition and ecosystem modification. J. Ecol. 2021, 109, 3587–3601. [Google Scholar] [CrossRef]
- Corbin, J.D.; D’Antonio, C.M. Not novel, just better: Competition between native and non-native plants in California grasslands that share species traits. Plant Ecol. 2010, 209, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Corbin, J.D.; D’Antonio, C.M. Competition between native perennial and exotic annual grasses: Implications for an historical invasion. Ecology 2004, 85, 1273–1283. [Google Scholar] [CrossRef]
- Cunard, C.E.; Lankau, R.A. Declining survival across invasion history for Microstegium vimineum. PLoS ONE 2017, 12, e0183107. [Google Scholar]
- Nuzzo, V.A. Distribution and spread of the invasive biennial Alliaria petiolata (garlic mustard) in North America. In Biological Pollution: The Control and Impact of Invasive Exotic Species; McKnight, B.N., Ed.; Indiana Academy of Science: Indianapolis, IN, USA, 1993; pp. 137–145. [Google Scholar]
- Welk, E.; Schubert, K.; Hoffmann, M.H. Present and potential distribution of invasive garlic mustard (Alliaria petiolata) in North America. Div. Distrib. 2002, 8, 219–233. [Google Scholar] [CrossRef]
- Cavers, P.B.; Heagy, M.I.; Kokron, R.F. The biology of Canadian weeds. 35. Alliaria petiolata (M. Bieb.) Cavara and Grande. Can. J. Plant Sci. 1979, 59, 217–229. [Google Scholar]
- Stinson, K.; Kaufman, S.; Durbin, L.; Lowenstein, F. Impacts of garlic mustard invasion on a forest understory community. Northeast Nat. 2007, 14, 73–88. [Google Scholar] [CrossRef]
- Warrix, A.R.; Moore, D.; Marshall, J.M. Influence of low density garlic mustard presence and hardwood leaf litter composition on litter dwelling arthropod diversity. Proc. Indiana Acad. Sci. 2015, 124, 16–25. [Google Scholar]
- Cipollini, D.; Cipollini, K. A review of garlic mustard (Alliaria petiolata, Brassicaceae) as an allelopathic plant. J. Torrey Bot. Soc. 2016, 143, 339–348. [Google Scholar] [CrossRef] [Green Version]
- Durka, W.; Bossdorf, O.; Prati, D.; Auge, H. Molecular evidence for multiple introductions of garlic mustard (Alliaria petiolata, Brassicaceae) to North America. Mol. Ecol. 2005, 14, 1697–1706. [Google Scholar] [CrossRef]
- Anderson, R.C.; Dhillion, S.S.; Kelley, T.M. Aspects of the ecology of an invasive plant, garlic mustard (Alliaria petiolata), in Central Illinois. Restor. Ecol. 1996, 4, 181–191. [Google Scholar] [CrossRef]
- Rodgers, V.L.; Stinson, K.A.; Finzi, A.C. Ready or not, garlic mustard is moving in: Alliaria petiolata as a member of eastern North American forests. BioScience 2008, 58, 426–436. [Google Scholar] [CrossRef] [Green Version]
- Pardini, E.A.; Drake, J.M.; Chase, J.M.; Knight, T.M. Complex population dynamics and control of the invasive biennial Alliaria petiolata (garlic mustard). Ecol. Appl. 2009, 19, 387–397. [Google Scholar] [CrossRef] [PubMed]
- Francis, A.; Cavers, P.B.; Warwick, S.I. The biology of Canadian weeds. 140. Hesperis matronalis L. Can. J. Plant Sci. 2009, 89, 189–204. [Google Scholar] [CrossRef]
- Gleason, H.A.; Cronquist, A. Manual of Vascular Plants of Northeastern United States and Adjacent Canada; New York Botanical Garden: Bronx, NY, USA, 1991. [Google Scholar]
- Mitchell, R.J.; Ankeny, D.P. Effects of local conspecific density on reproductive success in Penstmon digitalis and Hesperis matronalis. Ohio J. Sci. 2001, 101, 22–27. [Google Scholar]
- Hale, A.N.; Lapointe, L.; Kalisz, S. Invader disruption of belowground plant mutualism reduces carbon acquisition and alters allocation patterns in a native forest herb. New Phytol. 2016, 209, 542–549. [Google Scholar] [CrossRef]
- Pavlovic, N.B.; Leicht-Young, S.A.; Frohnapple, K.J.; Grundel, R. Effect of removal of Hesperis matronalis (dame’s rocket) on species cover of forest understory vegetation in NW Indiana. Am. Midl. Nat. 2009, 161, 165–176. [Google Scholar] [CrossRef]
- Tanentzap, A.J.; Bazely, D.R. Propagule pressure and resource availability determine plant community invasibility in a temperate forest understorey. Oikos 2009, 118, 300–308. [Google Scholar] [CrossRef]
- Redwood, M.E.; Matlack, G.R.; Huebner, C.D. Seed longevity and dormancy state in a disturbance-dependent forest herb, Ageratina altissima. Seed Sci. Res. 2016, 26, 148–152. [Google Scholar] [CrossRef]
- Kil, J.H.; Shim, K.C.; Park, S.H.; Koh, K.S.; Suh, M.H.; Ku, Y.B.; Suh, S.U.; Oh, H.K.; Kong, H.Y. Distributions of naturalized alien plants in South Korea. Weed Technol. 2004, 18, 1493–1495. [Google Scholar] [CrossRef]
- Kim, E.; Choi, J.; Song, W. Introduction and spread of the invasive alien species Ageratina altissima in a disturbed forest ecosystem. Sustainability 2021, 13, 6152. [Google Scholar] [CrossRef]
- Kil, J.H.; Shim, K.C.; Lee, H.J. Allelopathic effect of volatile extracts from Eupatorium rugosum. Korean J. Ecol. 2005, 28, 135–139. (In Korean) [Google Scholar] [CrossRef] [Green Version]
- Byun, C.; Lee, E.J. Ecological application of biotic resistance to control the invasion of an invasive plant, Ageratina altissima. Ecol. Evol. 2017, 7, 2181–2192. [Google Scholar] [CrossRef] [PubMed]
- Kang, W.; Song, Y.; Lee, D.; Kim, G.; Chae, H. Identifying habitats and corridors of an invasive plant, Ageratina altissima, in an urban forest. Land Ecol. Eng. 2019, 15, 277–287. [Google Scholar] [CrossRef]
- Kartesz, J.T. The Biota of North America Program (BONAP). North American Plant Atlas. 2015. Available online: http://bonap.net/napa (accessed on 16 December 2021).
- Leicht-Young, S.A.; Pavlovic, N.B.; Adams, J.V. Competitive interactions of garlic mustard (Alliaria petiolata) and damesrocket (Hesperis matronalis). Invasive Plant Sci. Manag. 2012, 5, 27–36. [Google Scholar] [CrossRef]
- Rothfels, C.J.; Beaton, L.L.; Dudley, S.A. The effects of salt, manganese, and density on life history traits in Hesperis matronalis L. from oldfield and roadside populations. Can. J. Bot. 2002, 80, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Hwang, B.C.; Lauenroth, W.K. Effect of nitrogen, water, and neighbors on the growth of Hesperis matronalis in a natural community. Am. Midl. Nat. 2010, 163, 212–219. [Google Scholar] [CrossRef]
- Meekins, J.F.; McCarthy, B.C. Competitive ability of Alliaria petiolata (garlic mustard, Brassicaceae), an invasive, nonindigenous forest herb. Int. J. Plant Sci. 1999, 160, 743–752. [Google Scholar] [CrossRef] [Green Version]
- Hochstedler, W.W.; Slaughter, B.S.; Gorchov, D.L.; Saunders, L.P.; Stevens, M.H.H. Forest floor plant community response to experimental control of the invasive biennial, Alliaria petiolata (garlic mustard). J. Torrey Bot. Soc. 2007, 134, 155–165. [Google Scholar] [CrossRef] [Green Version]
- Park, K.A.; Shim, K.C.; Kil, J.H.; Yeau, S.H. Allelopathic effects of aqueous extracts from Eupatorium rugosum Houtt. and Erigeron annus L. on radicles growth of Lactuca sativa and Raphanus raphanistroides. Allelopath. J. 2011, 27, 65–73. [Google Scholar]
- Corbett, B.F.; Morrison, J.A. The allelopathic potentials of the non-native invasive plant Microstegium vimineum and the native Ageratina altissima: Two dominant species of the eastern forest herb layer. Northeast Nat. 2012, 19, 297–312. [Google Scholar] [CrossRef]
- Davis, T.Z.; Lee, S.T.; Ralphs, M.H.; Panter, K.E. Selected common poisonous plants of the United States’ rangelands. Rangelands 2009, 31, 38–44. [Google Scholar] [CrossRef] [Green Version]
- Lau, J.M.; Robinson, D.L. Phenotypic selection for seed dormancy in white snakeroot (Eupatorium rugosum). Weed Biol. Manag. 2010, 10, 241–248. [Google Scholar] [CrossRef]
- Williams, A.C.; McCarthy, B.C. A new index of interspecific competition for replacement and additive designs. Ecol. Res. 2001, 16, 29–40. [Google Scholar] [CrossRef]
- Byers, D.L.; Quinn, J.A. Demographic variation in Alliaria petiolata (Brassicaceae) in four contrasting habitats. J. Torrey Bot. Soc. 1998, 125, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Tremblay, N.; Liang, Y. Comparing SPAD and atLEAF values for chlorophyll assessment in crop species. Can. J. Soil Sci. 2012, 92, 645–648. [Google Scholar] [CrossRef]
- Uddling, J.; Gelang-Alfredsson, J.; Piikki, K.; Pleijel, H. Evaluating the relationship between leaf chlorophyll concentration and SPAD-502 chlorophyll meter readings. Photosynth Res. 2007, 91, 37–46. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 21 December 2021).
- Bates, D.; Maechler, M.; Boker, B.; Walker, S. Fitting linear mixed-effect models using lme4. J. Stat. Soft 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Fox, J.; Weisberg, S. An R Companion to Applied Regression, 3rd ed.; Sage: Thousand Oaks, CA, USA, 2019. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biomet. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Series | Competition | Interaction | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Species | Measure | df | F | p-Value | df | F | p-Value | df | F | p-Value | ||
Ageratina altissima | Mortality | 4, 40 | 1.26 | 0.303 | 1, 40 | 0.44 | 0.510 | 4, 40 | 0.37 | 0.827 | ||
Leaf Count | 4, 35 | 2.53 | 0.058 | 1, 35 | 4.06 | 0.052 | 4, 40 | 1.59 | 0.199 | |||
Chlorophyll | 4, 33 | 1.76 | 0.161 | 1, 33 | 10.47 | 0.003 * | 4, 33 | 2.15 | 0.113 | |||
Biomass | 4, 33 | 1.44 | 0.244 | 1, 33 | 6.43 | 0.016 * | 4, 33 | 0.77 | 0.517 | |||
Alliaria petiolata | Mortality | 4, 40 | 6.96 | <0.001 * | 1, 40 | 0.69 | 0.413 | 4, 40 | 3.76 | 0.011 * | ||
Leaf Count | 4, 38 | 4.91 | 0.003 * | 1, 38 | 6.72 | 0.013 * | 4, 38 | 1.61 | 0.191 | |||
Chlorophyll | 4, 40 | 8.67 | <0.001 * | 1, 40 | 0.47 | 0.498 | 4, 40 | 0.36 | 0.839 | |||
Biomass | 4, 40 | 7.94 | <0.001 * | 1, 40 | 1.57 | 0.217 | 4, 40 | 0.84 | 0.510 | |||
Hesperis matronalis | Mortality | 4, 40 | 0.97 | 0.437 | 1, 40 | 0.26 | 0.613 | 4, 40 | 0.05 | 0.996 | ||
Leaf Count | 4, 33 | 0.79 | 0.541 | 1, 33 | 0.01 | 0.914 | 4, 33 | 0.26 | 0.900 | |||
Chlorophyll | 4, 33 | 0.50 | 0.734 | 1, 33 | 0.12 | 0.734 | 4, 33 | 0.24 | 0.914 | |||
Biomass | 4, 33 | 19.16 | <0.001 * | 1, 33 | 2.49 | 0.124 | 4, 33 | 0.60 | 0.664 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paulus, K.R.; Marshall, J.M. Competitive Interactions between Two Non-Native Species (Alliaria petiolata [M. Bieb.] Cavara & Grande and Hesperis matronalis L.) and a Native Species (Ageratina altissima [L.] R.M. King & H. Rob.). Plants 2022, 11, 374. https://doi.org/10.3390/plants11030374
Paulus KR, Marshall JM. Competitive Interactions between Two Non-Native Species (Alliaria petiolata [M. Bieb.] Cavara & Grande and Hesperis matronalis L.) and a Native Species (Ageratina altissima [L.] R.M. King & H. Rob.). Plants. 2022; 11(3):374. https://doi.org/10.3390/plants11030374
Chicago/Turabian StylePaulus, Kassandra R., and Jordan M. Marshall. 2022. "Competitive Interactions between Two Non-Native Species (Alliaria petiolata [M. Bieb.] Cavara & Grande and Hesperis matronalis L.) and a Native Species (Ageratina altissima [L.] R.M. King & H. Rob.)" Plants 11, no. 3: 374. https://doi.org/10.3390/plants11030374
APA StylePaulus, K. R., & Marshall, J. M. (2022). Competitive Interactions between Two Non-Native Species (Alliaria petiolata [M. Bieb.] Cavara & Grande and Hesperis matronalis L.) and a Native Species (Ageratina altissima [L.] R.M. King & H. Rob.). Plants, 11(3), 374. https://doi.org/10.3390/plants11030374