Exogenous Application of a Plant Elicitor Induces Volatile Emission in Wheat and Enhances the Attraction of an Aphid Parasitoid Aphidius gifuensis
Abstract
1. Introduction
2. Results
2.1. Olfactory Responses of A. gifuensis to Wheat Plants and Plant Extracts
2.2. Analysis of Wheat Seedling Volatiles
2.3. Multivariate Analysis VOCs
2.4. Gas Chromatography-Electroantennogram Detection
2.5. EAG Responses to Selected Compounds
2.6. Y-Tube Olfactometer Bioassay
3. Discussion
4. Materials and Methods
4.1. Plant
4.2. Insects
4.3. Chemicals
4.4. Plant Treatments
4.5. Volatile Organic Compound (VOC) Collection
4.6. Chemical Analysis
4.7. Gas Chromatography-Electroantennogram Detection (GC−EAD)
4.8. Comparative Electroantennogram (EAG) Responses to Selected Compounds
4.9. Y-Tube Olfactometer Bioassay
4.10. Data Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Woodard, M.A.; Ervin, G.N.; Marsico, T.D. Host plant defense signaling in response to a coevolved herbivore combats introduced herbivore attack. Ecol. Evol. 2012, 2, 1056–1064. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.F.; Liu, Y.; Portaluri, V.; Woodcock, C.; Pickett, J.A.; Wang, S.S.; Zhou, J.J. Chemical identity and functional characterization of semiochemicals that promote the interactions between rice plant and rice major pest Nilaparvata lugens. J. Agr. Food Chem. 2021, 69, 4635–4644. [Google Scholar] [CrossRef] [PubMed]
- Mithöfer, A.; Boland, W. Plant defense against herbivores: Chemical aspects. Annu. Rev. Plant. Biol. 2012, 63, 431–450. [Google Scholar] [CrossRef] [PubMed]
- Heil, M. Herbivore-induced plant volatiles: Targets, perception and unanswered questions. New Phytol. 2014, 204, 297–306. [Google Scholar] [CrossRef]
- Luisa, A.; Anna, M.; Irene, S.; Katerina, S. Exogenous application of Methyl Jasmonate increases emissions of volatile organic compounds in pyrenean oak trees, Quercus pyrenaica. Biology 2022, 6, 525–530. [Google Scholar]
- Anastasaki, E.; Drizou, F.; Milonas, P.G. Electrophysiological and oviposition responses of Tuta absoluta females to herbivore-induced volatiles in tomato plants. J. Chem. Ecol. 2018, 44, 288–298. [Google Scholar] [CrossRef]
- Baldwin, I.T. Plant volatiles. Curr Biol. 2010, 20, 392–397. [Google Scholar] [CrossRef]
- Ding, P.; Ding, Y. Stories of Salicylic acid: A plant defense hormone. Trends. Plant. Sci. 2020, 25, 549–565. [Google Scholar] [CrossRef]
- Park, S.W.; Kaimoyo, E.; Kumar, D.; Mosher, S.; Klessig, D.F. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 2007, 318, 113–116. [Google Scholar] [CrossRef]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes. Nature 2002, 419, 712–715. [Google Scholar] [CrossRef]
- Filgueiras, C.C.; Willett, D.S.; Junior, A.M.; Pareja, M.; Borai, F.E.; Dickson, D.W.; Stelinski, L.L.; Duncan, L.W. Stimulation of the salicylic acid pathway aboveground recruits entomopathogenic nematodes belowground. PLoS ONE 2016, 11, e0154712. [Google Scholar] [CrossRef] [PubMed]
- Arimura, G.; Huber, D.P.W.; Bohlmann, J. Forest tent caterpillars (Malacosoma disstria) induce local and systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa × deltoides): CDNA cloning, functional characterization, and patterns of gene expression of (−)-germacrene D synthase, PtdTPS1. Plant. J. 2004, 37, 603–616. [Google Scholar] [PubMed]
- Dicke, M.; Gols, R.; Ludeking, D.; Posthumus, M.A. Jasmonic acid and herbivory differentially induce carnivoreattracting plant volatiles in lima bean plants. J. Chem. Ecol. 1999, 25, 1907–1922. [Google Scholar] [CrossRef]
- Ozawa, R.; Arimura, G.; Takabayashi, J.; Shimoda, T.; Nishioka, T. Involvement of jasmonate and salicylaterelated signaling pathways for the production of specific herbivore-induced volatiles in plants. Plant. Cell. Physiol. 2000, 41, 391–398. [Google Scholar] [CrossRef]
- Wang, K.; Liu, J.H.; Zhan, Y.D.; Liu, Y. A new slow-release formulation of methyl salicylate optimizes the alternative control of Sitobion avenae (Fabricius) (Hemiptera: Aphididae) in wheat fields. Pest. Manag. Sci. 2018, 75, 676–682. [Google Scholar] [CrossRef]
- Liu, J.H.; Zhao, X.J.; Zhan, Y.D.; Wang, K.; Francis, F.; Liu, Y. New slow release mixture of (E)-β-farnesene with methyl salicylate to enhance aphid biocontrol efficacy in wheat ecosystem. Pest. Manag. Sci. 2021, 77, 3341–3348. [Google Scholar] [CrossRef] [PubMed]
- Chi, B.J.; Zheng, X.; Liang, X.C.; Liu, Y. T emperature-dependent demography of Agriphila aeneociliella (Lepidoptera: Crambidae), a new insect pest of wheat in China. Agric. For. Entomol. 2016, 18, 189–197. [Google Scholar] [CrossRef]
- Zhan, Y.D.; Zhao, L.; Zhao, X.J.; Liu, J.H.; Francis, F.; Liu, Y. Terpene synthase gene OtLIS confers wheat resistance to Sitobion avenae by regulating Linalool emission. J. Agric. Food Chem. 2021, 69, 13734–13743. [Google Scholar] [CrossRef]
- Cheng, J.; Li, P.L.; Zhang, Y.H.; Zhan, Y.D.; Liu, Y. Quantitative assessment of the contribution of environmental factors to divergent population trends in two lady beetles. Bio. Control. 2020, 145, 104259. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Zhou, H.; Chen, J. Enhancement of natural control function for aphids by intercropping and infochemical releasers in wheat ecosystem. In Integrative Biological Control: Progress in Biological Control; Gao, Y., Hokkanen, H., Menzler-Hokkanen, I., Eds.; Springer: Cham, Switzerland, 2020; pp. 85–116. [Google Scholar]
- Liu, Y.J.; Dong, J.; Chi, B.J.; Liu, Y. Thermal activity thresholds of parasitoids Aphidius avenae and Aphidius gifuensis (Hymenoptera: Braconidae): Implications for their efficacy as biological control agents in the same location. Fla Entomol. 2016, 99, 691–695. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, W.L.; Guo, G.X.; Ji, X.L. Volatile emission in wheat and parasitism by Aphidius avenae after exogenous application of salivary enzymes of Sitobion avenae. Entomol. Exp. Appl. 2009, 130, 215–221. [Google Scholar] [CrossRef]
- Vlot, A.C.; Liu, P.P.; Cameron, R.K.; Park, S.W.; Yang, Y.; Kumar, D.; Zhou, F.; Padukkavidana, T.; Gustafsson, C.; Pichersky, E.; et al. Identification of likely orthologs of tobacco salicylic acid-binding protein 2 and their role in systemic acquired resistance in Arabidopsis thaliana. Plant J. 2008, 56, 445–456. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.L.; Zheng, J.; Yang, J.; Zou, L.P.; Fang, T.T.; Xu, H.L.; Cai, Q.N. Exogenous salicylic acid improves resistance of aphid-susceptible wheat to the grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). B. Entomol. Res. 2021, 111, 544–552. [Google Scholar] [CrossRef]
- Dong, J.; Wan, G.; Liang, Z. Accumulation of salicylic acid-induced phenolic compounds and raised activities of secondary metabolic and antioxidative enzymes in Salvia miltiorrhiza cell culture. J. Biotechnol. 2010, 148, 99–104. [Google Scholar] [CrossRef]
- Jonathan, G.S.; Mathurin, O.K.; Beranger, N.; Goran, K.S.; Odette, D.D. Salicylic acid, phosphorous acid and fungicide Sumi 8 effects on polyphenol oxidases activities and cassava resistance to anthracnose. Am. J. Agric. For. 2015, 3, 109. [Google Scholar] [CrossRef][Green Version]
- Tang, F.; Fu, Y.Y.; Ye, J.R. The effect of methyl salicylate on the induction of direct and indirect plant defense mechanisms in poplar (Populus × euramericana ‘Nanlin 895’). J. Plant Interact. 2015, 10, 93–100. [Google Scholar] [CrossRef]
- Mumm, R.; Posthumus, M.A.; Dicke, M. Significance of terpenoids in induced indirect plant defence against herbivorous arthropods. Plant. Cell. Environ. 2008, 31, 575–585. [Google Scholar] [CrossRef]
- Niinemets, Ü. Mild versus severe stress and BVOCs: Thresholds, priming a-nd consequences. Trends. Plant Sci. 2010, 15, 145–153. [Google Scholar] [CrossRef]
- Jiang, Y.; Ye, J.; Li, S.; Niinemets, Ü. Methyl jasmonate-induced emission of biogenic volatiles is biphasic in cucumber: A high-resolution analysis of dose dependence. J. Exp. Bot. 2017, 68, 4679–4694. [Google Scholar] [CrossRef]
- Ninkovic, V.; Glinwood, R.; Gül Ünlü1, A.; Ganji, S.; Unelius, C.R. Effects of Methyl salicylate on host plant acceptance and feeding by the aphid Rhopalosiphum padi. Front. Plant Sci. 2021, 12, 710268. [Google Scholar] [CrossRef]
- Zhao, J.H.; Wang, Z.Y.; Li, Z.S.; Shi, J.Y.; Meng, L.; Wang, G.R.; Cheng, J.L.; Du, Y.J. Development of lady beetle attractants from floral volatiles and other semiochemicals for the biological control of aphids. J. Asia-Pac. Entomol. 2020, 23, 1023–1029. [Google Scholar] [CrossRef]
- Wu, S.L.; Liu, F.L.; Zeng, W.A.; Xiao, Z.P.; Li, J.Y.; Teng, K.; Guo, Q.S.; Zhao, J.H.; Du, Y.J. Evaluation of floral-derived volatile blend for attracting aphid parasitoids and lady beetles in the tobacco fields. Biol. Control 2022, 172, 104979. [Google Scholar] [CrossRef]
- Mallinger, R.E.; Hogg, D.B.; Gratton, C. Methyl salicylate attracts natural enemies and reduces populations of soybean aphids (Hemiptera: Aphididae) in soybean agroecosystems. J. Econ. Entomol. 2011, 104, 116–124. [Google Scholar] [CrossRef]
- Bruce, T.J.A. Variation in plant responsiveness to defense elicitors caused by genotype and environment. Front. Plant Sci. 2014, 5, 349. [Google Scholar] [CrossRef][Green Version]
- Holopainen, J.K.; Heijari, J.; Nerg, A.M.; Vuorinen, M.; Kainulainen, P. Potential for the use of exogenous chemical elicitors in disease and insect pest management of conifer seedling production. For. Sci. J. 2009, 2, 17–24. [Google Scholar] [CrossRef]
- War, A.R.; Paulraj, M.G.; Ahmad, T.; Buhroo, A.A.; Hussain, B.; Ignacimuthu, S.; Sharma, H.C. Mechanisms of plant defense against insect herbivores. Plant Signal. Behav. 2012, 7, 1306–1320. [Google Scholar] [CrossRef]
- Ayelo, P.M.; Yusuf, A.A.; Pirk, W.W.; Mohamed, A.S. The role of Trialeurodes vaporariorum-Infested tomato plant volatiles in the attraction of Encarsia formosa (Hymenoptera: Aphelinidae). J. Chem. Ecol. 2021, 47, 192–203. [Google Scholar] [CrossRef]
- Takeda, M.; Ohat, I. Acute toxicities of 42 pesticides used for green peppers to an aphid parasitoid, Aphidius gifuensis (Hymenoptera: Braconidae), in adult and mummy stages. Appl. Entomol. Zool. 2015, 50, 207–212. [Google Scholar]
- Sobhy, I.S.; Woodcock, C.M.; Powers, S.J.; Caulfield, J.C.; Pickett, J.A.; Birkett, M.A. cis-Jasmone elicits aphid-induced stress signalling in potatoes. J. Chem. Ecol. 2017, 43, 39–52. [Google Scholar] [CrossRef]
- Li, C.Y.; Cao, J.M.; Wang, X.F.; Xu, P.J.; Wang, X.W.; Ren, G.W. Efficacy of an improved method to screen semiochemicals of insect. Peer J. 2021, 9, e11510. [Google Scholar] [CrossRef]
- Yang, L.; Hu, X.P.; Allan, S.A.; Alborn, H.T.; Bernier, U.R. Electrophysiological and behavioral responses of the kudzu bug, Megacopta cribraria (Hemiptera: Plataspidae), to volatile compounds from kudzu and soybean plants. J. Agric. Food Chem. 2019, 67, 4177–4183. [Google Scholar] [CrossRef] [PubMed]
No. | Library/ID (by Retention Time) | 0.5 mmol/L | 1 mmol/L | Control |
---|---|---|---|---|
1 | β-pinene | + | + | |
2 | 2,5-Dimethyl-1-hepten-4-ol | + | ||
3 | 3-Carene | + | + | + |
4 | Benzene,1-ethyl-2-methyl | + | + | + |
5 | 6-methyl-5-Hepten-2-one | + | + | + |
6 | Mesitylene | + | + | + |
7 | m-Diethylbenzene | + | + | |
8 | D-Limonene | + | + | + |
9 | p-Cymene | + | ||
10 | Carveol | + | ||
11 | Nonanal | + | + | |
12 | Benzaldehyde,3-ethyl | + | + | |
13 | Levomenthol | + | ||
14 | Dodecane,4,6-dimethyl | + | + | + |
15 | Linalool | + | ||
16 | Methyl salicylate | + | + | |
17 | Decanal | + | + | |
18 | Tridecane | + | + | + |
19 | Tetradecane | + | ||
20 | β-Acorenol | + |
Compounds | Control | 0.5 mmol/L24 h | 0.5 mmol/L48 h | 0.5 mmol/L72 h | 1 mmol/L24 h | 1 mmol/L48 h | 1 mmol/L72 h |
---|---|---|---|---|---|---|---|
3-carene | 1.23 ± 0.55 b | 1.77 ± 0.77 b | 1.94 ± 0.41 b | 0 | 3.65 ± 0.56 a | 3.17 ± 0.60 a | 2.93 ± 1.13 a |
β-pinene | 0 | 0 | 1.58 ± 0.28 a | 1.99 ± 0.19 a | 0 | 0 | 1.12 ± 0.03 a |
6-methyl-5-Hepten-2-one | 0 | 2.70 ± 0.30 b | 1.52 ± 0.23 b | 0 | 4.87 ± 1.36 a | 4.22 ± 0.35 a | 2.48 ± 0.49 b |
D-limonene | 12.96 ± 3.78 c | 100 a | 43.28 ± 1.84 b | 100 a | 70.38 ± 12.13 a | 59.34 ± 7.89 ab | 48.63 ± 10.12 b |
m-Diethylbenzene | 0 | 0 | 0 | 0 | 2.95 ± 0.95 a | 1.32 ± 0.64 b | 0 |
P-cymene | 0 | 1.45 ± 0.01 a | 1.49 ± 0.05 a | 0 | 2.05 ± 0.34 a | 1.67 ± 0.17 a | 1.24 ± 0.04 a |
Carveol | 0 | 0 | 0 | 0 | 1.37 ± 0.037 a | 1.38 ± 0.034 a | 0 |
Nonanal | 0 | 7.45 ± 0.92 a | 4.59 ± 0.77 a | 2.04 ± 0.35 b | 4.31 ± 1.89 a | 2.03 ± 0.55 b | 4.45 ± 1.34 a |
Linalool | 0 | 0 | 0 | 0 | 3.39 ± 0.56 a | 2.30 ± 0.32 a | 0 |
MeSA | 0 | 4.53 ± 0.92 c | 3.18 ± 0.14 c | 57.39 ± 8.83 b | 68.10 ± 17.97 b | 57.39 ± 8.83 b | 100 a |
Levomenthol | 0 | 0 | 0 | 0 | 1.12 ± 0.03 | 0 | 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, D.; Liu, J.; Liu, Y.; Wang, Y.; Zhan, Y.; Liu, Y. Exogenous Application of a Plant Elicitor Induces Volatile Emission in Wheat and Enhances the Attraction of an Aphid Parasitoid Aphidius gifuensis. Plants 2022, 11, 3496. https://doi.org/10.3390/plants11243496
Xiao D, Liu J, Liu Y, Wang Y, Zhan Y, Liu Y. Exogenous Application of a Plant Elicitor Induces Volatile Emission in Wheat and Enhances the Attraction of an Aphid Parasitoid Aphidius gifuensis. Plants. 2022; 11(24):3496. https://doi.org/10.3390/plants11243496
Chicago/Turabian StyleXiao, Dianzhao, Jiahui Liu, Yulong Liu, Yiwei Wang, Yidi Zhan, and Yong Liu. 2022. "Exogenous Application of a Plant Elicitor Induces Volatile Emission in Wheat and Enhances the Attraction of an Aphid Parasitoid Aphidius gifuensis" Plants 11, no. 24: 3496. https://doi.org/10.3390/plants11243496
APA StyleXiao, D., Liu, J., Liu, Y., Wang, Y., Zhan, Y., & Liu, Y. (2022). Exogenous Application of a Plant Elicitor Induces Volatile Emission in Wheat and Enhances the Attraction of an Aphid Parasitoid Aphidius gifuensis. Plants, 11(24), 3496. https://doi.org/10.3390/plants11243496