Next Article in Journal
Metabolites from Bacillus subtilis J-15 Affect Seedling Growth of Arabidopsis thaliana and Cotton Plants
Next Article in Special Issue
Mulberroside F from In Vitro Culture of Mulberry and the Potential Use of the Root Extracts in Cosmeceutical Applications
Previous Article in Journal
Transcriptome Analysis of Genes Involved in Fatty Acid and Lipid Biosynthesis in Developing Walnut (Juglans regia L.) Seed Kernels from Qinghai Plateau
Previous Article in Special Issue
Genetic Evaluation of In Vitro Micropropagated and Regenerated Plants of Cannabis sativa L. Using SSR Molecular Markers
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Review

Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application

1
The United Graduate School of Agricultural Science, Ehime University, Matsuyama 790-8556, Japan
2
Department of Horticulture, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
3
Department of Plant Pathology, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
4
Graduate School of Agricultural Science, Kobe University, Rokkodai, Nada-ku, Kobe 657-8501, Japan
5
Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima 739-8511, Japan
6
Department of Plant Cytology and Embryology, Institute of Botany, Faculty of Biology, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
*
Author to whom correspondence should be addressed.
Plants 2022, 11(23), 3208; https://doi.org/10.3390/plants11233208
Submission received: 19 October 2022 / Revised: 17 November 2022 / Accepted: 17 November 2022 / Published: 23 November 2022
(This article belongs to the Special Issue New Insight into Research in In Vitro Plants Propagation)

Abstract

:
Ornamentals come in a variety of shapes, sizes, and colors to suit a wide range of climates, landscapes, and gardening needs. Compared to demand, a shortage of plant materials and diversity force the search for solutions for their constant acquisition and improvement to increase their commercial value, respectively. In vitro cultures are a suitable solution to meet expectations using callus culture, somatic embryogenesis, protoplast culture, and the organogenesis of protocorm-like bodies; many of these techniques are commercially practiced. Factors such as culture media, explants, carbohydrates, plant growth regulators, and light are associated with the success of in vitro propagation. Techniques, especially embryo rescue and somatic hybridization, are widely used to improve ornamentals. The development of synthetic seed allows season-independent seed production and preservation in the long term. Despite the advantages of propagation and the improvement of ornamentals, many barriers still need to be resolved. In contrast to propagation and crop developmental studies, there is also a high scope for molecular studies, especially epigenetic changes caused by plant tissue culture of ornamentals. In this review, we have accumulated and discussed an overall update on cultivation factors, propagation techniques in ornamental plant tissue culture, in vitro plant improvement techniques, and future perspectives.

1. Introduction

Ornamental horticulture, flowering, and landscape horticulture are economically viable industries in the agricultural sector. It deals with producing and commercializing flowers, flowering plants, foliage plants, and landscape plants; plants used in ornamental horticulture are collectively called ornamentals. Plant tissue culture, including micropropagation, is the most applicable plant propagation technique in ornamentals. It allows the production of several exact genetic copies from small pieces of plant tissue (known as explants), and the propagation of uniform, season-independent, and seed-borne diseases free seedlings is an additional advantage [1]. Thus, micropropagation techniques are frequently used in the commercial production of seedlings in diversified plant species. Explants are usually cultured in a nutrient-supplemented medium under sterile conditions. White’s medium was the first chemically defined nutrient medium [2,3,4,5]. Afterward, Murashige and Skoog (1962) developed a new nutrient supplemented medium, which is known as Murashige–Skoog (MS) medium [6], and it is the most used nutrient supplemented medium in the world for plant tissue culture. Other nutrient-supplemented media, such as White (WH) medium [7], Linsmaier and Skoog (LS) medium [8], Gamborg (B5) medium [9], Nitsch and Nitsch (NN) medium [10], etc., are also widely accepted. These nutrient supplement media are the basal media that usually contain major salts (plant macronutrients), minor salts (plant micronutrients), vitamins, and organic compounds. Solidifying agents are used in the basal medium to support the plantlets in micropropagation and, to some extent, in liquid culture medium. Different kinds of agars—phytagel, gelrite, gellan gum, etc.—are used to solidify the nutrient supplement culture media for plant tissue culture that are available in the commercial market. The pH of the basal nutrient supplement media keeps changing during preparation, which is required to adjust before autoclaving. The pH in the media is considered a dynamic variable for in vitro plant growth and development. MS medium is the most used medium in vitro, and manipulation of MS medium and culture conditions according to the plant—specific requirements are also practiced [11,12]. The success of plant tissue culture techniques largely depends on sources of carbon, plant growth regulators (PGRs), culture environment, lights, genotype, type of explant, etc. The key tool for the success of plant tissue culture technology greatly relies on the proper culture media composition and their culture condition because of plant—specific response. Other than propagation, tissue culture technology has been used for plant improvement, somatic hybrid development, synthetic seed production, and ploidy manipulation. We reviewed the research findings of plant tissue culture technologies for ornamental plant propagation, cultivation factors, and their application in ornamentals from a future perspective.

2. In Vitro Cultivation Factors

2.1. Carbohydrate Supplements as Carbon Sources in Culture Media

Plant tissues, cells, and organs usually go through either heterotrophic or mixotrophic conditions in vitro. Heterotrophic conditions are the primary obstacle to in vitro plant growth and development where cultured tissue or cell or organ can only synthesize their required nutrients from the basal media, and mixotrophy conditions where plants depend on heterotrophy and can produce food by photosynthesis as well [13]. Plants need exogenous carbohydrates in both phases for proper growth and development due to their morphogenic effect on nutritional value, osmotic potential, and cell division [13,14]. The addition of exogenous carbohydrates can easily supply energy to explants when explants are not ready for photosynthesis. Even though plants become ready for photosynthesis, they need exogenous carbohydrate supplements because of their lower photosynthesis efficiency than in vivo conditions [15]. Exogenous carbohydrate supplements assist plant embryos in increasing cell division by encouraging cell expansion and reserve accumulation [16]. Many forms of carbon sources are available in commercial markets, such as sucrose, glucose, fructose, maltose, trehalose, lactose, galactose, sorbitol, etc. The specific sources and requirements vary according to the plant species, stages, tissues for explants, culture period, culture environment, etc. [13]. Sucrose is superior and cheaper than other carbon sources, which ensures favorable effects on in vitro plant growth [17,18,19,20]. In plants, phloem sap contains sucrose to control plant growth and developmental processes [21], while sucrose is highly soluble in water, acts as a molecule transporter, and is transported by the plasma membrane [22,23]. Therefore, plants efficiently utilize sucrose for their carbon requirements during the in vitro heterotrophic and mixotrophic phases. About 2–5% sucrose concentrations are generally used in plant tissue culture of ornamentals [24]. Depending on the plant species and culture conditions, other carbon sources showed more efficiency than sucrose. For example, the wishbone flower (Torenia fournieri) extended twice its vegetative culture period in a trehalose-based culture medium over a sucrose-based medium without alteration in plant viability [25]. Trehalose was found to be equally or sometimes more effective than sucrose for the propagation of protocorm-like bodies (PLBs) in Phalaenopsis and Doritaenopsos orchids [20,26]. Glucose stimulates the in vitro shoot and root growth of chrysanthemum, while its intermediate product, fructose, slowly affects in vitro plant growth and development; however, its efficiency varies according to plant species and culture conditions [27,28]. On the other hand, slower hydrolysis (20 times slower than sucrose) of maltose is the main oblige [29]. Plants take a long time to absorb and metabolize maltose, and the requirement is sometimes twice that of sucrose [29]. From the above discussion, it is clear that exogenous carbohydrate supplements are crucial for in vitro plant growth and development. Exogenous carbohydrate concentration is also varied, and concentrations over a threshold level could be toxic, hamper photosynthesis, and inhibit in vitro plant growth [30,31,32].

2.2. Plant Growth Regulators, Inhibitors, and Elicitors in Culture Media

The application of PGRs in basal media accelerates the induction of a new plant from a cell or tissue. Auxins (Au), gibberellins (GA), cytokinins (CK), abscisic acid (ABA), and ethylene (ET) are the five groups of PGRs; Au and CK are widely used, while GA, ABA, and ET are less used for vitro micropropagation of ornamentals [33]. The in vitro propagation of plants is significantly influenced by the addition of auxin to culture media. Auxin triggers cell division and leaf initiation before lateral root initiation [34,35,36], and it is crucial for the formation of meristems [37]. In culture media with auxin, the cells of the explant rapidly undergo cell division to form calli [38] and start to develop shoots and/or roots from the calli [39]. A proper concentration of auxin can assist in initiating plant roots; application of exogenous auxin can stimulate auxin-triggered pathways and GA biosynthesis; meanwhile, it can suppress ABA and ET biosynthesis [40]. The naturally occurring auxins (indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), indole-3-propionic acid (IPA), 4-chloroindole-3-acetic acid, phenylacetic acid, etc.) and synthetic auxins (4-chlorophenoxy acetic acid (4-CPA), dicamba, picloram, etc.) are used in plant tissue culture [41,42]. Cytokinin is naturally found in all plant tissues; however, it is enriched in the root tip, shoot apex, and immature seeds [43]. In vitro micropropagation, cytokinin stimulates cell division and is usually used to initiate the growth and proliferation of buds and shoots and slow down root formation [24]. 6-benzyloaminopurine (BAP), 6-(γ,γ-dimethylallylamino)purine (2iP), kinetin, zeatin, and thidiazuron-N-phenyl-N-1,2,3 thiadiazol-5-ylurea (TDZ) are commonly used cytokinins in plant tissue culture. A combination of Au–CK, different combinations of their concentrations, is frequently used in micropropagation, and the effect of both Au and CK depends on their relative concentrations. A culture medium with high-cytokinin and low-auxin causes shoot initiation, while a high-auxin and low-cytokinin medium causes root initiation [44]. Gibberellic acid (GA3) is the most used gibberellin, which is used to accelerate in vitro plant growth, while the function of ABA can be stimulatory or inhibitory depending on different factors such as media ingredients, light intensity and quality, or plant species [24]. We have summarized 200 research articles belonging to 52 ornamentals studied for the effective PGR concentration and/or effective PGR combinations with their suitable concentrations (Supplementary Table S1).
Different growth retardants, such as paclobutrazol, daminozide, chlorocholine chloride (CCC), ancymidol, etc., can be beneficial for plants propagated in vitro media (Supplementary Table S2). Growth retardants act as anti-gibberellin in sucrose supplemented medium; the addition of growth retardant in culture media activates adenosine diphosphate-glucose pyrophosphorylase (ADGPase) and UDP glucose pyrophosphorylase (UDPGPase), which promotes starch synthesis [45,46]. Similar to tuberization in potatoes, CCC showed a prompting effect on in vitro PLB regeneration in Phalaenopsis orchid [26,46]. In vitro treatment of growth retardants, e.g., paclobutrazol, has an additional advantage in increasing in vitro to ex vitro transfer efficiency [47,48]. The positive regulation of growth retardants in micropropagation cannot be ignored. Elicitors, biotic and abiotic, have been widely used for triggering secondary metabolites in plant tissue culture [49]. Chitosan (Ch), aminolevulinic acid (ALA), alginate (Ag), N-acetylglucosamine (NAG), salicylic acid (SA), hyaluronic acid (HA), silver nitrate (AgNO3), jasmonic acid (JA), methyl jasmonate (MeJA), phloroglucinol (PG), pectin, casein hydrolysate, and yeast extracts are some common elicitors [50]. Like growth retardants, elicitors are also beneficial for micropropagation. For example, MeJA, ALA, AgNO3, HA, Ch, and PG trigger PLBs, root shoots, and flower organogenesis in ornamentals (Supplementary Table S2). In tulips, MeJA has been applied in a combination of different polyamines for efficient bulb formation, and MeJA-polyamine combinations significantly enhanced bulb formation [51]. An oxidizing biocicide, chlorine dioxide (ClO2), has been used in the culture media for in vitro plant regeneration in chrysanthemum and gerbera, and it accelerates plant shoot and root regeneration [52,53]. Additives, organic and synthetic, can also influence in vitro plant growth and development (Supplementary Table S3).

2.3. Light-Emitting Diodes over Conventional Light

In vitro culture conditions can be manipulated by altering the light color and intensity for effective morphogenesis or organogenesis. Plants can respond well to a wide spectrum of light in terms of plant growth and development with wavelengths of <400 nm (UV radiation), 400~700 nm (visible), and 700~800 nm (far-red) [54]. White fluorescent light with 350~750 nm wavelengths spectral emission is the conventional light source in vitro culture; however, the consumption of high electricity, high radiant heat, and uneven radiation are the major disadvantages [55]. Monochromatic light-emitting diodes (LEDs) with a specific range of wavelengths are widely used for in vitro plant propagation (Figure 1).
LEDs are the most efficient over white fluorescent light, which overcomes the stated disadvantages [56,57]. Red LED showed efficiency for callus proliferation, PLB organogenesis, PLB proliferation, shoot induction, shoot multiplications, and plantlet regeneration in different ornamentals, such as orchids, gerbera, chrysanthemum (cv. Kitam Cheonsu), anthurium (cv. Violeta and Pink Lady), heliconia, peace lily, giant protea, and hosta (Supplementary Table S4). Far red was efficient for the plant growth of chrysanthemum (cv. Ellen) (Supplementary Table S4). A higher percentage of red LED with a lower percentage of blue LED is suitable for the PLBs and plantlet regeneration of Phalaenopsis, Rosa × kordesii, chrysanthemum (cv. Ellen), gerbera, anthurium, heliconia, peony, and spurflower, while some other ratios of red and blue LED mixture were found to be effective in some ornamentals (Supplementary Table S4).
A mixture of red and blue LEDs, compared with red LED alone, enhanced both plant growth and development by increasing the net photosynthesis in Cymbidium [58,59] because the spectral energy distribution of red and blue light coincides with that of chlorophyll absorption [60]. Red and blue LED combinations were reported as effective for the growth and development of PLBs in Cymbidium, Doritaenopsis, Phalaenopsis, and Calanthe [26,57] (Supplementary Table S4). Blue LED increases the shoot formation of PLB cultures in Dendrobium officinale and D. kingianum [61,62], while PLBs cultured under red and blue LED showed the lowest and highest, respectively, in vitro differentiation rates on Oncidium and D. officinale [61,63]. Very little information is available on the effect of green LED on in vitro micropropagation of ornamentals. In recent studies, it was found that green LED increased PLB regeneration in Dendrobium [31], and Cymbidium [64]; however, PLB generation was more efficient under green LED when culture media had anti-auxin, PCIB (p-Chlorophenoxyisobutyric acid, an anti-auxin), in D. okinawense [31]. Additionally, yellow and orange light spectra have also been reported, respectively, in PLB, shoot, and plantlet regeneration of Dendrobium and seed germination and rhizoid development of Bletilla ochracea (Supplementary Table S4). These results suggest the requirement for a diverse range of light spectra for in vitro micropropagation, which largely depends on plant species and culture media supplements (Supplementary Table S4; Supplementary Table S5).

3. Standard Techniques Involved in Plantlet Generation In Vitro

3.1. Callus Culture

In the early 20th century, callus formation and its ability to generate independent life were first noticed [65,66]. The callus is a mass of loosely packed parenchymatous cells with various degrees of differentiation, which is raised from the in vitro proliferating cells of plant tissue in response to biotic and abiotic stimuli. It is similar to non-differentiated meristematic cells but different from differentiated plant cells. Depending on the accumulated compounds, calli may be pale brown, creamish yellow, greenish, or colorless. The callus is cytologically diverse in shape and type of cells and is genetically heterogeneous. Under the influence of selected phytohormones, a certain pool of parenchymal callus cells is dedifferentiated and has dividing activity. Calli lack chloroplasts for photosynthesis and have a small vacuole, and their culture can generate new plants. Callus can be inducted from any plant part, such as seeds, leaves, stem, root, flowers, etc.; successful callus induction depends on plant species, explant used for the callus inductions, culture media, PGR supplements in culture media, and growth conditions [67]. Two major PGR groups, auxin and cytokinin, are largely used for callus induction [67]. Some plant species induce callus in day–night conditions, while some need entirely night conditions. Callus induction gives an idea of the potentiality of in vitro regeneration of any plant species, while it can also be a good source of materials for other in vitro culture techniques and can be used for long-term preservation [67]. Callus has been used for the successful plant regeneration and genetic modification of different ornamental plant species [68].

3.2. Protoplast Culture

Protoplast culture is used for plantlet regeneration (process illustrated in Figure 2), and protoplast fusion is used for crop improvement, which is known as somatic hybridization (details in Section 4.2) [69]. The nature of the explant tissue and the thickness of the cell wall play an important role in high-efficiency protoplast isolation, which is a critical stage in the process of seedling regeneration or somatic hybridization. However, protoplasts were successfully isolated and cultured in different ornamentals, such as Dendrobium [70], lily [71], rose [72], chrysanthemum [73], petunia [74], carnation [75], coneflower [76], geraniums [77,78], Persian silk tree [79], etc. Pre-plasmolyzing the explant tissue with osmotic stabilizers, such as mannitol and sorbitol, before enzyme treatment is effective for protoplast isolation in most plant tissue [80].
Sugar concentration is another important factor for high-yield protoplasts, and the effective sugar concentration ranges from 0.3 to 0.8 M in ornamentals [69,74,76,81,82,83,84]. Factors such as the concentration of enzyme, digestion period, pH of the enzyme solution, temperature, and agitation during incubation are also important for protoplast isolation in ornamentals [69,73,74,79,83,85,86]. In orchids, the first protoplasts were isolated in 1978 [87,88], while few studies reported colony formation [89,90,91,92,93]. After successful protoplast isolation, there are some challenges to plantlet regeneration from an isolated protoplast. Types of culture medium, culture medium components, strength of the culture medium, carbon sources, pH of the culture medium, supplements of the culture medium, PGRs, and culture conditions have been proven to be vital factors for plantlet generations from protoplasts [69]. Considering these factors and despite these limitations, plantlets have been generated successfully in several ornamental plant species [69,73,74,78,94,95].

3.3. Somatic Embryogenesis

An alternative to root and shoot regeneration from the callus, regeneration of the whole plant from the plant cell throughout embryo formation, was identified in 1958 [96,97]. The development of an embryo or plant from the vegetative/somatic cell is known as somatic embryogenesis [98]. The procedure for somatic embryogenesis is illustrated in Figure 3. Somatic embryogenesis is considered more efficient than other propagation techniques. which guarantees variability. It produces identical genotypes differing from zygotic embryos, which guarantees variability. The bipolar structure of a somatic embryo consists of apical (known as plumule) and basal meristem regions (known as radicles), which are responsible for shoot and root formation, respectively [99]. Cytological and histological studies have confirmed that PLBs (details in Section 3.4) are also somatic embryos [99]. Morphogenesis or regeneration of PLBs can be initiated by direct or indirect embryogenesis. Organogenesis of PLB avoiding the callus phase is known as direct embryogenesis, and PLB generated from the callus (an intermediate phase) is known as indirect embryogenesis [99].
In somatic embryogenesis, the morphogenic response varies on factors like explants, PGRs, hormones, concentrations of PGRs or hormones, light, etc. [99,100,101,102]. Plantlet regeneration by somatic embryogenesis has been reported in many genera of orchids; for example—Cymbidium [103,104,105,106,107,108], Phalaenopsis [108,109,110,111,112,113,114,115], Oncidium [28,116,117,118,119,120], Dendrobium [121,122,123,124], Rhynchostylis [125], Renanthera [126], Paphiopedilum [127,128], Malaxis [129,130], Epipactis veratrifolia [131], Spathoglottis plicata [132], Geodorum densiflorum [133], Anoectochilus elatus [134], and Nothodoritis zhejiangensis [135]. In addition to orchids, it has also been reported in diverse ornamentals, such as rose [136], Rosa × damascena [137], chrysanthemum [138,139], lilies [140,141,142,143,144,145,146], jasmine [147], lisianthus [148,149,150,151], carnation [152], Camellia [153,154,155,156,157], Cineraria [158], coneflower [159,160], Crocus [161,162,163], Clematis [164,165,166]; Sawara cypress [167], cyclamen [168], bellflower [169], passion flowers [170], perennial daisy and false daisy [171,172]; tulip [173], periwinkle [174], peony [175,176], anthurium [177,178,179,180,181], gentian [182,183,184,185], Exacum trinervium [186], gloriosa [187,188], amaryllis [189], phlox [190], Centaurium erythraea [191], Lachenalia viridiflora [192], pine [193,194,195,196], Japanese black pine [197], agave [198,199,200,201], and hosta [202].

3.4. Protocorm-like Body

In Cymbidium orchid, protocorm-like bodies (PLBs) were noticed for the first time during the shoot-tip culture by Morel (1960) [203]. Protocorms are small spherical tuber-like structures formed in a germinating seed; protocorm-like structures with similar characteristics generated from somatic cells in tissue culture techniques are known as PLBs [204,205]. PLBs are induced directly from explants and/or indirectly from calluses [206], and the formation, regeneration, and proliferation of PLBs are among the most efficient techniques of micropropagation, especially for clonal propagation of orchids [207]. Meristemoids in callus cells initiate polarized growth, and continuous cell division causes the shoot pole (for shoot initiation) and the base pole (for root initiation) of a protocorm-like body (PLB) [127,204,208]. The induction of PLBs has several advantages over typical shoot and plantlet regeneration, such as a higher rate of multiplications, long-term preservation, easy differentiation into shoots, generations of secondary PLBs, etc. The success of efficient PLB induction, regeneration, and proliferation depends on multiple factors. Culture media ingredients, such as carbohydrate sources, plant growth regulators, elicitors, etc., are also crucial for efficient PLB organogenesis and regeneration [205]. Growth retardants also stimulate PLB regeneration in orchids through the inhibition of GA biosynthesis [26]. Setting up the optimum temperature in the growth chamber is also necessary for PLB proliferation, and a higher or lower temperature compared to the optimum causes stress in PLB regeneration in orchids [209]. Light quality is another crucial factor for PLB organogenesis and regeneration for photosynthetic and phototropic responses, and many studies have suggested the efficiency of LEDs over traditional fluorescent light, suggesting the advantages of monochromatic light for PLB organogenesis and regeneration (Supplementary Table S4) [205]. However, different factors can work synergistically for better PLB organogenesis and regeneration compared with their independent applications. However, all these external factors are highly species-specific (Supplementary Table S5) [205]. We have also reported the manipulation of culture media and growth conditions for PLB regeneration in Dendrobium [30,209,210,211,212,213,214] and Phalaenopsis [26,215,216,217]. We found that culture media manipulation and light quality are highly species-specific in orchid PLB proliferation.
Besides these techniques, seed culture, meristem culture, anther culture, embryo culture, ovule culture, cell suspension culture, and direct shoot organogenesis are also practiced for in vitro plantlet generation in ornamentals.

4. Application of In Vitro Techniques in Ornamentals

Plant tissue culture is well known for producing disease-free plantlets by clonal propagation. In vitro culture offers a wide range of possibilities for manipulating plant materials to improve their quality. In vitro techniques are used for hybridization with the assistance of micropropagation, embryo rescue, and somatic hybridization.

4.1. Plant Improvement by the Application of In Vitro Embryo Rescue

The technique of developing a viable plant from an embryo is known as embryo culture or embryo rescue (Figure 4). The embryo culture technique was introduced by Hannig, who cultured mature embryos of a few Brassicaceae plants on sugar-supplemented salt medium [218]. In 1924, Dietrich disclosed that both mature and immature embryos could be rescued [219]. The first interspecific hybridization by embryo rescue from nonviable seeds was reported in the perennial flax (Linum perenne L. × Linum austriacum L.) in 1925 [220]. Since the first report, embryo rescue has been used for interspecific hybridization in many crops, flowering, ornamentals, medicinals, and woody plants [221,222].
It allows for the culture of the ovary, ovule, and embryo [223,224,225]. The success of embryo rescue depends on various factors, such as size and age of the embryo, intactness of embryo, excision procedure, sterilization, culture medium, supplementation in culture medium, light, temperature, etc. [221,222]. It has been used in crop improvement by intraspecific/interspecific/intergeneric hybrid development, haploid/double haploid production, overcoming embryo abortion, overcoming seed dormancy, overcoming self- and cross-incompatibility, shortening the breeding cycle, propagating rare plants, etc. [226,227,228]. For example, breeding cycles were shortened by embryo rescue in rose [229], and lily [230]. Interspecific hybrids were developed in chrysanthemums by embryo rescue technique for cold-tolerant [224,225,231], heat-tolerant [232], drought-tolerant [233,234], salt-tolerant [235], aphid resistance [236], and heterotic [224,232,237] characteristics. A new flower shape and cold-tolerant intraspecific (Campanula carpatica ‘White’) and interspecific (C. medium and C. formanekiana) hybrid, respectively, were developed in bellflowers [238]. Interspecific hybrids, haploids, or double haploids were developed in rose [239,240,241], tulip [242], lisianthus [243], lily [244], day lily [245], calla lily [246], alstroemeria or peruvian lily [247,248,249,250], Primula [251,252], night-blooming cactus [253,254,255], gentian [256,257,258], Camellia [259], begonia [260], Christmas bells or golden lily of the valley [261], carnation [262,263], Gypsophila [264], Rhododendron [265], cyclamen [266], and ornamental alliums [267,268]. Embry rescue has been widely studied for crop improvement, while its current research has been reduced by the rapid evolution of advanced molecular breeding.
In addition, embryo rescue is generally used to overcome post-fertilization barriers in plants, while many ornamentals have pre-fertilization barriers [269,270] that can be overcome by in vitro pollination. In in vitro pollination, plant reproductive cells (stigma and anther) are isolated and fused under controlled conditions to develop a zygotic embryo. The in vitro technique has been applied for in vitro flowering and pollination in different ornamentals [227,271].

4.2. Plant Improvement by Somatic Hybridization and In Vitro Pollination

Somatic hybridization has been proven to be a great source to produce genetic variability which is known as somaclonal variation. Many somaclones have been considered superior hybrids. Two methods are usually followed to produce the somatic hybrid, one is cytoplast-protoplast fusion and the other is the donor-recipient method. In cytoplast–protoplast fusion, protoplasts are allowed to fuse for combining somatic cells either fully or partially from different cultivars or species or genera (Figure 5).
The combination of the nuclear genome of one parent with the mitochondrial and/or chloroplast genome of the other parent proceeds in somatic hybridization. An alternative and improved somatic incompatibility is the donor–recipient fusion method, where specific genes or chromosomes can be transferred [272,273]. Chemicals used for protoplast fusions are known as fusogens, and sodium nitrate (NaNO3), calcium nitrate (Ca(NO3)2), dextran sulfate, polyvinyl alcohol, and polyethylene glycol are common fusogens [274]. Somatic hybridization by protoplast fusion can develop either symmetric or asymmetric hybrids, which are known as somatic hybrids or cybrids (Figure 5).
The first asymmetric hybrid was found in somatic hybridization through fusion between Nicotiana tabacum (tobacco) and Petroselium hortense (parsley) [275,276]. Many wild plant species have some significant traits, especially disease and pathogen resistance, and these traits can be transferred into cultivated crop species. Somatic hybridization allows the transfer of desirable traits to increase yield, resistance, tolerance, etc. [277,278]. It allows breeders to create novel hybrids by the asexual process, bypassing conventional breeding (Figure 5).
Somatic hybridization has been applied for the genetic improvements of various flowering and ornamentals, such as rose [72], Dendrobium [279], chrysanthemum [95], dianthus [280], gentin [281,282], iris [283], lily [284], petunia [285], between petunia and Calibrachoa [286], hydrangea [287], cyclamen [288], coneflower [289], and Saintpaulia [290].
Somaclonal variants or somatic hybrids can be confirmed by morphological, biochemical, protein marker, cytogenetic, and molecular analyses. Restriction fragment length polymorphism (RFLP), simple sequence repeat (SSR), amplified fragment length polymorphism (AFLP), methylation-sensitive amplification polymorphism (MSAP), transposon-based marker systems, and Next-Generation Sequencing (NGS) have been applied for the validation of somatic hybrids at the molecular level in several ornamentals [278]. Somaclonal variation is highly dependent on the PGRs [291]. The main constraints of somatic hybridization are the difficulties in isolating protoplasts (described in Section 3.2), generating unexpected and useless variations, newly generated variants that are not novel, etc. [278].

4.3. Production of Synthetic Seeds

Any encapsulated plant tissue, somatic embryos, or any other micropropagules is known as a synthetic seed or artificial seed (Figure 6). Synthetic seeds have several advantages over natural seeds, such as season-independent seed production, genetic uniformity, maintain hybrid vigor, long-term storage capacity, rapid multiplication, free from vegetative and seed-borne pathogens, propagation of high volume with low cost, assure quality plant materials, and shorten the life cycles [292,293]. Somatic embryos, nodal segments, and shoot tips are mostly used as explants for the development of synthetic seeds in ornamentals, while callus is rarely used, and PLBs are mainly used in orchids to produce synthetic seeds. Synthetic seeds have been generated in Caladium bicolor (caladium), Eustoma grandiflorum (lishianthus), Pinus patula (pine), Genista monosperma (bridal broom), Hyoscyamus muticus (Egyptian henbane), and Clitoria ternatea (bluepea or bluebellvine) from the somatic embryo; Gypsophila paniculata (gypsophila), Saintpaulia ionantha (saintpaulia), Urginea altissima (tall white squill), and Taraxacum pieninicum (Mniszek pieninski) from shoot tip; Rosa × damascena f. trigintipetala (Damask rose), Syringa vulgaris (lilac), Nerium oleander (oleander), Centella asiatica (Asiatic pennywort), Eclipta alba (false daisy), Erythrina variegata (tiger’s claw), Photinia fraseri (red tip photinia), Ruta graveolens (rue), Salix tetrasperma (Indian willow) from axillary buds/nodes, Anthurium andreanum (anthurium) from callus, Lilium longiflorum (easter lily) from bulb, and different species of orchids from PLBs (Cymbidium giganteum, Vanda coerulea, Geodorum densiflorum, Coelogyne breviscapa, Cremastra appendiculata, Flickingeria nodosa, Spathoglottis plicata, etc.) [292,293].
In vitro synthetic seeds in ornamentals allow season-independent seed production, to preserve for long term, and to supply in time to the growers. Some factors are crucial for the synthesis of artificial seeds in ornamentals; these are concentrations of sucrose, sodium alginate (Na-alginate), and calcium chloride (CaCl2). A range of 2–3% sucrose, 2–3% Na-alginate, and 50–100 mM CaCl2 was found to be effective concentrations for synthetic seed development in ornamentals [292,293].
Synthetic seeds have some limitations over the advantages: low efficient root systems, development of non-synchronous seeds from the somatic embryo (the most effective plant material for synthetic seed development), deviation from the normal structure, loss of embryogenic potential with time, etc. Synthetic seed technology can be used more effectively in the commercial ornamental plant propagation sector after resolving these limitations.

4.4. In Vitro Ploidy Manipulation

In vitro ploidy manipulation is a way of developing genetic diversification by increasing or decreasing chromosome numbers (Figure 7). The induction of polyploidy is used for crop improvement in ornamentals and can expand breeding opportunities to expand traits in ornamentals, environmental tolerances, and restore fertility in wide hybrids [294]. Two antimitotic agents, colchicine or oryzalin, are mostly used for chromosome doubling [295]. Two ginger lily lines: Hedychium gardnerianum Shepard ex Ker Gawl. and H. coronarium J. Koenig were used for chromosome doubling using colchicine or oryzalin and successfully developed the tetraploid ginger lily [296]. Forty—eight tetraploids were developed in ornamental aroid plants using colchicine (Caladium × hortulanum Birdsey) that showed variation in leaf shape, color, and thickness compared to the wild type [297]. Tetraploid anise hyssop (Agastache foeniculum L.) was induced by the application of colchicine, which showed a wide range of variation compared to diploid plants in their morphophysiological characteristics [298]. Polyploid has also been inducted in Dendrobium, Phalaenopsis, Epidendrum, and Odontioda orchids by the application of oryzalin [299]. Diverse phenotypic variations were observed in the in vitro-generated polyploids in rose, lilies, phlox, petunia, bellflowers, rhododendron, etc. [295]. Besides the antimitotic agents, ploidy manipulation also depends on the species, types of explants, antimitotic agent exposure method, duration of antimitotic agent exposure, etc.
Diverse phenotypic variations were observed in the in vitro-generated polyploids in roses, lilies, phlox, petunia, bellflowers, rhododendron, etc. [295]. Besides the antimitotic agents, ploidy manipulation also depends on the species, types of explants, antimitotic agent exposure method, duration of antimitotic agent exposure, etc. The chromosome doubling technique produces only additional copies of chromosomes and genes, but it does not generate new genetic materials. However, it may cause morphological changes, anatomical changes, loss of duplicated genes, changes in gene expression, changes in epigenome status, and changes in epigenomic alteration-mediated gene expression, which ultimately lead to superior phenotypes in polyploids compared with diploids. These changes may also help generate resistance and tolerance capacity to biotic and abiotic stress.

5. Future Perspective

In vitro plant propagation and multiplication offer significant potential for the advancement of both basic and applied biological sciences. Rapid multiplication and propagation by callus culture, protoplast culture, somatic embryogenesis, PLB organogenesis, and direct plantlet regeneration allowed for the cheaper and disease-free seedling of a diverse ornamental plant species. Millions of in vitro plantlets of different ornamentals are generated worldwide for commercial purposes. However, it is important to put more effort into reducing the cost of production. In contrast to propagation, it also facilitates plant improvement following diverse techniques, such as embryo rescue, somatic hybridization, in vitro pollination, ploidy manipulation, the development of synthetic seeds, etc., and large numbers of hybrids in various ornamentals have already been developed. In addition, the in vitro technique is largely used for phytochemicals and secondary metabolite production. However, more effort is needed to reduce species-specific and other factor-specific responses for the efficient regeneration of ornamentals.
In recent years, researchers have started to study at the molecular level, including genetic transformation, using in vitro technology in ornamentals [300]. About 40 genera have been reported on creating transgenic ornamental species using Agrobacterium tumefaciens-mediated transformation [301]; however, only a few ornamentals, such as Phalaenopsis and petunia, have suitable and efficient transformation techniques. Some studies have revealed that many genes and transcriptions are involved in the in vitro organogenic callus, shoot, root, somatic embryos, and PLBs, and the transcriptions of those genes are also regulated by the exogenous application of different growth regulators [302].
It is believed that plant tissue culture generates genetically identical genotypes or somaclonal variants. Recent studies in Arabidopsis and crop plants, such as rice, wheat, corn, barley, and rye, have suggested that tissue culture can alter the genetic nature by point mutations [303]. In contrast to genetic factors, different epigenetic regulators, such as DNA methylation and histone modifications, are also involved in regulating the success of in vitro plant propagation [302,303]. Most of the genetic and epigenetic studies were conducted in the model plant Arabidopsis or crop plants, and this suggests the scope of future study in genetic and epigenetic aspects (Figure 8).
Tissue culture alters genome-wide DNA methylation in the CG, CHG, and CHH contexts (H represents the A, C, or T), and these alterations change the gene expression that might be regulating factors for in vitro plant growth and development. DNA methylation was studied in the callus and somatic embryos of Arabidopsis and crop plants, and callus and somatic embryos are vulnerable to the alteration of DNA methylation, leading to changes in gene expression [303,304]. Involvement of di-methylated lysine 4 of histone H3 (H3K4me2) was associated with successful shoot regeneration from callus in Arabidopsis [305], while H3K4me3 and H3K27me3 histone marks are involved with the callus tissues in rice [306]. These reports suggest the importance of epigenetic regulation of in vitro regenerated plants. Besides DNA methylation and histone modification, different miRNAs and sRNAs may also be involved in the success of in vitro plant propagation. The expression of transposable elements (TEs) can also be epigenetically regulated in vitro environments; for example, TEs can be activated by the plant tissue culture [307]. However, there has been no significant advancement in the molecular mechanisms controlling in vitro regeneration in ornamentals.
Studies on Arabidopsis and crop plants provide fundamental knowledge for disclosing the molecular mechanisms in ornamental plant species. Therefore, it is high time for advanced study of the genetic and epigenetic mechanisms that would provide a breakthrough in the commercialization of in vitro propagation of ornamental plant species.

Supplementary Materials

The following supporting information can be downloaded at: https://www.mdpi.com/article/10.3390/plants11233208/s1, Table S1: Effective plant growth regulators and other factors for the in vitro culture in ornamentals [38,110,111,113,114,123,173,192,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507]; Table S2: Effective elicitors for the in vitro culture in ornamentals [26,51,215,216,217,340,404,458,470,482,508,509,510,511,512,513,514,515,516,517]; Table S3: Effective additives for the in vitro culture in ornamentals [342,347,350,363,365,504,518,519,520,521,522,523]; Table S4: Effective light emitting diodes (LEDs) for the in vitro culture in ornamentals [26,31,55,58,61,210,440,467,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554]; Table S5: Studies in combination of light emitting diodes (LEDs) and plant growth regulators in vitro culture in ornamentals [26,31,55,58,61,62,210,317,440,467,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559].

Author Contributions

Conceptualization, H.M. (Hasan Mehraj); writing—original draft preparation, H.M. (Hasan Mehbub), A.A., M.A.A., M.S.H.M., M.A.H. and H.M. (Hasan Mehraj); visualization, H.M. (Hasan Mehraj); writing—review and editing, M.T. and H.M. (Hasan Mehraj). All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

We thank to our colleagues for accessing, non-open access to us, articles.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Bhojwani, S.S.; Dantu, P.K. Micropropagation. In Plant Tissue Culture: An Introductory Text; Bhojwani, S.S., Dantu, P.K., Eds.; Springer: New Delhi, India, 2013; Chapter 17; pp. 245–274. [Google Scholar]
  2. White, P.R. Potentially unlimited growth of excised tomato root tips in a liquid medium. Plant Physiol. 1934, 9, 585–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  3. White, P.R. Accessory salts in the nutrition of excised tomato roots. Plant Physiol. 1938, 13, 391–398. [Google Scholar] [CrossRef] [PubMed]
  4. White, P.R. Glycine in the nutrition of excised tomato roots. Plant Physiol. 1939, 14, 527–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  5. White, P.R. A Handbook of Plant Tissue Culture; The Jaques Cattell Press: Lancaster, PA, USA, 1943; pp. 1–277. [Google Scholar]
  6. Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
  7. White, P.R. The Cultivation of Animal and Plant Cells; Ronald Press, Co.: New York, NY, USA, 1963; p. 239. [Google Scholar]
  8. Linsmaier, E.M.; Skoog, F. Organic growth factor requirements of tobacco tissue cultures. Physiol. Plant 1965, 18, 100–127. [Google Scholar] [CrossRef]
  9. Gamborg, O.L.; Miller, R.A.; Ojima, K. Nutrient requirements of suspension culture of soybean root cells. Exp. Cell. Res. 1968, 50, 15–158. [Google Scholar] [CrossRef]
  10. Nitsch, J.P.; Nitsch, C. Haploid plants from pollen grains. Science 1969, 163, 85–87. [Google Scholar] [CrossRef]
  11. Madke, S.S.; Cherian, K.J.; Badere, R.S. A modified Murashige and Skoog media for efficient multiple shoot induction in G. arborea Roxb. J. For. Res. 2014, 25, 557–564. [Google Scholar] [CrossRef]
  12. Enoki, S.; Takahara, Y. Application of a modified MS medium for tissue culture with cutting in Phalaenopsis-comparison with other conventional media with regard to the survival rate and varietal differences in cultural characteristics. J. Sci. High Technol. Agric. (Shokubutsu Kankyo Kogaku) 2014, 26, 109–117. [Google Scholar] [CrossRef] [Green Version]
  13. Yaseen, M.; Ahmad, T.; Sablok, G.; Standardi, A.; Hafiz, I.H. Review: Role of carbon sources for in vitro plant growth and development. Mol. Biol. Rep. 2013, 40, 2837–2849. [Google Scholar] [CrossRef]
  14. Calamar, A.; De Klerk, G.J. Effect of sucrose on adventitious root regeneration in apple. Plant Cell Tissue Organ Cult. 2002, 70, 207–212. [Google Scholar] [CrossRef]
  15. Kozai, T.; Kubota, C.; Jeong, B.R. Environmental control for the large-scale production of plants through in vitro techniques. Plant Cell Tissue Organ Cult. 1997, 51, 49–56. [Google Scholar] [CrossRef]
  16. Borisjuk, L.; Walenta, S.; Rollerschek, H.; Mueller-Klieser, W.; Wobus, U.; Weber, H. Spatial analysis of plant metabolism: Sucrose imaging within Vicia faba in cotyledons reveals specific developmental patterns. Plant J. 2003, 29, 521–530. [Google Scholar] [CrossRef]
  17. Stepan-Sarkissian, G.; Fowler, M.W. Carbohydrates by suspension cultures. Plant Physiol. 1977, 59, 151–181. [Google Scholar]
  18. Neto, V.B.D.P.; Otoni, W.C. Carbon sources and their osmotic potential in plant tissue culture: Does it matter? Sci. Hortic. 2003, 97, 193–202. [Google Scholar] [CrossRef]
  19. Tokuhara, K.; Mii, M. Highly-efficient somatic embryogenesis from cell suspension cultures of Phalaenopsis orchids by adjusting carbohydrate sources. Vitr. Cell Dev. Biol. Plant 2003, 39, 635–639. [Google Scholar] [CrossRef]
  20. Liu, T.H.A.; Lin, J.J.; Wu, R.Y. The effects of using trehalose as a carbon source on the proliferation of Phalaenopsis and Doritaenopsis protocorm-like-bodies. Plant Cell Tissue Organ Cult. 2006, 86, 125–129. [Google Scholar] [CrossRef]
  21. Gibson, S.I. Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol. 2000, 124, 1532–1539. [Google Scholar] [CrossRef] [Green Version]
  22. Baskaran, P.; Jayabalan, N. Role of basal media, carbon sources and growth regulators in micropropagation of Eclipta alba—A valuable medicinal herb. Curr. Appl. Sci. Technol. 2005, 5, 469–482. [Google Scholar]
  23. Javed, F.; Ikram, S. Effect of sucrose induced osmotic stress on callus growth and biochemical aspects of two wheat genotypes. Pak. J. Bot. 2008, 40, 1487–1495. [Google Scholar]
  24. Saad, A.I.; Elshahed, A.M. Plant tissue culture media. In Recent Advances in Plant In Vitro Culture; Leva, A., Rinaldi, L.M.R., Eds.; IntechOpen: London, UK, 2012; Chapter 2; pp. 1–13. [Google Scholar]
  25. Yamaguchi, H.; Sasaki, K.; Shikata, M.; Aida, R.; Ohtsubo, N. Trehalose drastically extends the in vitro vegetative culture period and facilitates maintenance of Torenia fournieri plants. Plant Biotechnol. 2011, 28, 263–266. [Google Scholar] [CrossRef] [Green Version]
  26. Mehraj, H.; Alam, M.M.; Habiba, S.U.; Mehbub, H. LEDs combined with CHO sources and CCC priming PLB regeneration of Phalaenopsis. Horticulturae 2019, 5, 34. [Google Scholar] [CrossRef] [Green Version]
  27. Teixeira da Silva, J.A. Ornamental chrysanthemums: Improvement by biotechnology. Plant Cell Tissue Organ Cult. 2004, 79, 1–18. [Google Scholar] [CrossRef]
  28. Hong, P.I.; Chen, J.T.; Chang, W.C. Promotion of direct somatic embryogenesis of Oncidium by adjusting carbon sources. Biol. Plant. 2008, 52, 597–600. [Google Scholar] [CrossRef]
  29. Blanc, G.; Lardet, L.; Martin, A.; Jacob, J.L.; Carron, M.P. Differential carbohydrate metabolism conducts morphogenesis in embryogenic callus of Hevea brasiliensis (Mull. Arg.). J. Exp. Bot. 2002, 53, 1453–1462. [Google Scholar] [CrossRef] [Green Version]
  30. Capellades, M.; Lemeur, R.; Debergh, P. Effects of sucrose on starch accumulation and rate of photosynthesis in Rosa cultured in vitro. Plant Cell Tissue Organ Cult. 1991, 25, 21–26. [Google Scholar] [CrossRef]
  31. Mehbub, H.; Shimasaki, K.; Mehraj, H. Low concentration of anti-auxin and anti-fungal agent accelerates the PLB regeneration of Dendrobium okinawense under green LED. Plants 2022, 11, 1082. [Google Scholar] [CrossRef]
  32. Jo, E.A.; Tewari, R.K.; Hahn, E.J.; Paek, K.Y. In vitro sucrose concentration affects growth and acclimatization of Alocasia amazonica plantlets. Plant Cell Tissue Organ Cult. 2009, 96, 307–315. [Google Scholar] [CrossRef]
  33. Shahzad, A.; Parveen, S.; Sharma, S.; Shaheen, A.; Saeed, T.; Yadav, V.; Akhtar, R.; Ahmad, Z.; Upadhyay, A. Plant tissue culture: Applications in plant improvement and conservation. In Plant Biotechnology: Principles and Applications; Abdin, M., Kiran, U., Ali, A., Eds.; Springer: Singapore, 2017; Chapter 2; pp. 37–72. [Google Scholar]
  34. Che, P.; Lall, S.; Howell, S.H. Developmental steps in acquiring competence for shoot development in Arabidopsis tissue culture. Planta 2007, 226, 1183–1194. [Google Scholar] [CrossRef]
  35. Atta, R.; Laurens, L.; Boucheron-Dubuisson, E.; Guivarc’h, A.; Carnero, E.; Giraudat-Pautot, V.; Rech, P.; Chriqui, D. Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J. 2009, 57, 626–644. [Google Scholar] [CrossRef]
  36. Marhavý, P.; Montesinos, J.C.; Abuzeineh, A.; Van Damme, D.; Vermeer, J.E.; Duclercq, J.; Rakusová, H.; Nováková, P.; Friml, J.; Geldner, N.; et al. Targeted cell elimination reveals an auxin-guided biphasic mode of lateral root initiation. Genes Dev. 2016, 30, 471–483. [Google Scholar] [CrossRef] [Green Version]
  37. Blakesley, D.; Weston, G.; Hall, J. The role of endogenous auxin in root initiation. Plant Growth Regul. 1991, 10, 341–353. [Google Scholar] [CrossRef]
  38. Roy, J.; Banerjee, N. Induction of callus and plant regeneration from shoot-tip explants of Dendrobium fimbriatum Lindl. var. oculatum Hk. f. Sci. Hortic. 2003, 97, 333–340. [Google Scholar] [CrossRef]
  39. Benková, E.; Michniewicz, M.; Sauer, M.; Teichmann, T.; Seifertová, D.; Jürgens, G.; Friml, J. Local, efflux-dependent auxin gradients as a common module for plant organ formation. Cell 2003, 115, 591–602. [Google Scholar] [CrossRef] [Green Version]
  40. Wang, Y.H.; Irving, H.R. Developing a model of plant hormone interactions. Plant Signal. Behav. 2011, 6, 494–500. [Google Scholar] [CrossRef] [Green Version]
  41. Ludwig-Müller, J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011, 62, 1757–1773. [Google Scholar] [CrossRef] [Green Version]
  42. Simon, S.; Petrášek, J. Why plants need more than one type of auxin. Plant Sci. 2011, 180, 454–460. [Google Scholar] [CrossRef] [Green Version]
  43. Schmülling, T. Cytokinin. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, J.W., Lane, D.M., Eds.; Academic Press: Cambridge, MA, USA, 2013; pp. 627–631. [Google Scholar]
  44. Thimann, K.V.; Bonner, J. The mechanism of the action of the growth substance of plants. Proc. R. Soc. Lond. Ser. B 1933, 113, 126–149. [Google Scholar]
  45. Mares, D.J.; Marschner, H.; Krauss, A. Effect of gibberellic acid on growth and carbohydrate metabolism of developing tubers of potato (Solanum tuberosum L.). Physiol. Plant 1981, 52, 267–274. [Google Scholar] [CrossRef]
  46. Wang, H.; Li, H.; Liu, F.; Xiao, L. Chlorocholine chloride application effects on photosynthetic capacity and photoassimilates partitioning in potato (Solanum tuberosum L.). Sci. Hortic. 2009, 119, 113–116. [Google Scholar] [CrossRef]
  47. Wen, Z.Z.; Lin, Y.; Liu, Y.Q.; Wang, M.; Wang, Y.Q.; Liu, W. Effects of paclobutrazol in vitro on transplanting efficiency and root tip development of Dendrobium nobile. Biol. Plant 2013, 57, 576–580. [Google Scholar] [CrossRef]
  48. Gimenes, R.; Pivetta, K.F.L.; Mazzini-Guedes, R.B.; Ferraz, M.V.; Pereira, S.T.S.; Santos, Á.S.; de Faria, R.T.; de Almeida, L.C.P. Paclobutrazol on in vitro growth and development of Zygopetalum crinitum orchid, and on seedling acclimatization. Am. J. Plant Sci. 2018, 9, 1029–1036. [Google Scholar] [CrossRef] [Green Version]
  49. Murthy, H.N.; Lee, E.J.; Paek, K.Y. Production of secondary metabolites from cell and organ cultures: Strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult. 2014, 118, 1–16. [Google Scholar] [CrossRef]
  50. Xu, A.; Zhan, J.C.; Huang, W.D. Effects of ultraviolet C, methyl jasmonate and salicylic acid, alone or in combination, on stilbene biosynthesis in cell suspension cultures of Vitis vinifera L. cv. Cabernet Sauvignon. Plant Cell Tissue Organ Cult. 2015, 122, 197–211. [Google Scholar] [CrossRef]
  51. Podwyszyńska, M.; Kosson, R.; Treder, J. Polyamines and methyl jasmonate in bulb formation of in vitro propagated tulips. Plant Cell Tissue Organ Cult. 2015, 123, 591–605. [Google Scholar] [CrossRef] [Green Version]
  52. Cardoso, J.C.; Teixeira da Silva, J.A. Micropropagation of gerbera using chlorine dioxide (ClO2) to sterilize the culture medium. Vitr. Cell Dev. Biol. Plant 2011, 48, 362–368. [Google Scholar] [CrossRef]
  53. Tian, C.; Xie, Z.; Zhao, Y.; Zhang, Z.; Xue, T.; Sheng, W.; Zhao, F.; Duan, Y. Microgram-grade concentration of chlorine dioxide induces one-step plant regeneration in chrysanthemum. Vitr. Cell Dev. Biol. Plant 2022, 1–7. [Google Scholar] [CrossRef]
  54. Rajapakse, N.C.; Shahak, Y. Light-quality manipulation by horticulture industry. In Annual Plant Reviews, Volume 30: Light and Plant Development IV. Applied Aspects of Photomorphogenesis; Whitelam, G.C., Halliday, K.J., Eds.; Blackwell Publishing Ltd.: Hoboken, NJ, USA, 2007; Chapter 12; pp. 290–312. [Google Scholar]
  55. Bello-Bello, J.J.; Perez-Sato, J.A.; Cruz-Cruz, C.A.; Martinez-Estrada, E. Light-emitting diodes: Progress in plant micropropagation. In Chlorophyll; Jacob-Lopes, E., Zepka, L.Q., Queiroz, M.I., Eds.; IntechOpen: London, UK, 2017; Chapter 6; pp. 93–103. [Google Scholar]
  56. Yeow, L.C.; Chew, B.L.; Sreeramanan, S. Elevation of secondary metabolites production through light-emitting diodes (LEDs) illumination in protocorm-like bodies (PLBs) of Dendrobium hybrid orchid rich in phytochemicals with therapeutic effects. Biotechnol. Rep. 2020, 27, e00497. [Google Scholar] [CrossRef]
  57. Hanus-Fajerska, E.; Wojciechowska, R. Impact of light-emitting diodes (LEDs) on propagation of orchids in tissue culture. In Light Emitting Diodes for Agriculture; Dutta Gupta, S., Ed.; Springer: Singapore, 2017; Chapter 13; pp. 305–320. [Google Scholar]
  58. Tanaka, M.; Takamura, T.; Watanabe, H.; Endo, M.; Yanagi, T.; Okamoto, K. In vitro growth of Cymbidium plantlets cultured under superbright red and blue light-emitting diodes (LEDs). J. Hort. Sci. Biotech. 1998, 73, 39–44. [Google Scholar] [CrossRef]
  59. Huan, L.V.T.; Tanaka, M. Callus induction from protocorm-like body segments and plant regeneration in Cymbidium (Orchidaceae). J. Hortic. Sci. Biotechnol. 2004, 79, 406–410. [Google Scholar] [CrossRef]
  60. Goins, G.D.; Yorio, N.C.; Sanwo, M.; Brown, C.S. Photomorphogenesis photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LED) with and without supplement blue lighting. J. Exp. Bot. 1997, 312, 1407–1413. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  61. Lin, Y.; Li, J.; Li, B.; He, T. Effects of light quality on growth and development of procorm-like bodied of Dendrobium officinale in vitro. Plant Cell Tissue Organ Cult. 2011, 105, 329–335. [Google Scholar] [CrossRef]
  62. Habiba, S.U.; Shimasaki, K.; Ahasan, M.M.; Alam, M.M. Effects of different light quality on growth and development of protocorm-like bodies (PLBs) in Dendrobium kingianum cultured in vitro. Bangladesh Res. Public J. 2014, 10, 223–227. [Google Scholar]
  63. Xu, Z.G.; Cui, J.; Di, X.R. Effects of different spectral energy distribution on tissue culture of Oncidium in vitro. Int. J. Autom. Comput. 2009, 31, 45–50. [Google Scholar]
  64. Ona, A.F.; Shimasaki, K.; Emteas, M.A.; Uddin, A.F.M.J. Effects of different LED lights on the organogenesis of a Cymbidium cultivar. Environ. Control Biol. 2021, 59, 197–201. [Google Scholar] [CrossRef]
  65. Haberlandt, G. Culturversuehe mit isolierten Pflanzenzellen. Sitzungsber. Akad. Wiss. Wien Math. Nat. 1902, 111, 69–92. [Google Scholar]
  66. Fehér, A. Callus, dedifferentiation, totipotency, somatic embryogenesis: What these terms mean in the era of molecular plant biology? Front. Plant Sci. 2019, 10, 536. [Google Scholar] [CrossRef]
  67. Bhatia, S. Plant tissue culture. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences; Bhatia., S., Sharma, K., Dahiya, R., Bera, T., Eds.; Academic Press: Cambridge, MA, USA, 2015; pp. 31–107. [Google Scholar]
  68. Efferth, T. Biotechnology applications of plant callus cultures. Engineering 2019, 5, 50–59. [Google Scholar] [CrossRef]
  69. Naing, A.H.; Adedeji, O.S.; Kim, C.K. Protoplast technology in ornamentals: Current progress and potential applications on genetic improvement. Sci. Hortic. 2021, 283, 110043. [Google Scholar] [CrossRef]
  70. Thomas, A.; Pujari, I.; Shetty, V.; Joshi, M.B.; Rai, P.S.; Satyamoorthy, K.; Babu, V.S. Dendrobium protoplast co-culture promotes phytochemical assemblage in vitro. Protoplasma 2017, 254, 1517–1528. [Google Scholar] [CrossRef]
  71. Yousuf, S.; Ashraf, F.; Kazmi, S.K.; Khan, S.; Kayani, H.A. A study on the isolation of protoplasts from the callus of Lilium longiflorum Overig. Pak. J. Bot. 2015, 47, 2391–2396. [Google Scholar]
  72. Pati, P.K.; Sharma, M.; Ahuja, P.S. Rose protoplast isolation and culture and heterokaryonselection by immobilization in extra thin alginate film. Protoplasma 2008, 233, 165–171. [Google Scholar] [CrossRef]
  73. Adedeji, O.S.; Naing, A.H.; Kim, C.K. Protoplast isolation and shoot regeneration from protoplast-derived calli of Chrysanthemum cv. White ND. Plant Cell Tissue Organ Cult. 2020, 141, 571–581. [Google Scholar] [CrossRef]
  74. Kang, H.H.; Naing, A.H.; Kim, C.K. Protoplast isolation and shoot regeneration from protoplast-derived callus of Petunia hybrida Cv. Mirage Rose. Biology 2020, 9, 228. [Google Scholar] [CrossRef] [PubMed]
  75. Shiba, T.; Mii, M. Plant regeneration from mesophyll-and cell suspension-derived protoplasts of Dianthus acicularis and characterization of regenerated plants. Vitr. Cell Dev. Biol. Plant 2005, 41, 794. [Google Scholar] [CrossRef]
  76. Liqing, Z.; Bochu, W.; Jing, Z.; Lingxi, C.; Chuanyun, D.; Chuanren, D. Protoplast isolation of callus in Echinacea augustifolia. Colloids Surf. B Biointerfaces 2005, 44, 1–5. [Google Scholar] [CrossRef]
  77. Nassour, M.; Dorion, N. Plant regeneration from protoplasts of micropropagated Pelargonium x hortorum ‘Alain’: Effect of some environmental and medium factors on protoplast system efficiency. Plant Sci. 2002, 163, 169–176. [Google Scholar] [CrossRef]
  78. Nassour, M.; Chasseriaux, G.; Dorion, N. Optimization of protoplast-to-plant system for Pelargonium× hortorum ‘Alain’ and genetic stability of the regenerated plants. Plant Sci. 2003, 165, 121–128. [Google Scholar] [CrossRef]
  79. Rahmani, M.S.; Pijut, P.M.; Shabanian, N. Protoplast isolation and genetically true-to-type plant regeneration from leaf-and callus-derived protoplasts of Albizia julibrissin. Plant Cell Tissue Organ Cult. 2016, 127, 475–488. [Google Scholar] [CrossRef]
  80. Lang, I.; Sassmann, S.; Schmidt, B.; Komis, G. Plasmolysis: Loss of turgor and beyond. Plants 2014, 3, 583–593. [Google Scholar] [CrossRef]
  81. Pan, Z.G.; Liu, C.Z.; Zobayed, S.M.A.; Saxena, P.K. Plant regeneration from mesophyll protoplasts of Echinacea purpurea. Plant Cell Tissue Organ Cult. 2004, 77, 251–255. [Google Scholar] [CrossRef]
  82. Zhou, J.; Wang, B.; Zhu, L. Conditioned culture for protoplasts isolated from Chrysanthemum: An efficient approach. Colloids Surf. B Biointerfaces 2005, 45, 113–119. [Google Scholar] [CrossRef] [PubMed]
  83. Duquenne, B.; Eeckhaut, T.; Werbrouck, S. Effect of enzyme concentrations on protoplast isolation and protoplast culture of Spathiphyllum and Anthurium. Plant Cell Tissue Organ Cult. 2007, 91, 165–173. [Google Scholar] [CrossRef]
  84. Pongchawee, K.; Na-Nakorn, U.; Lamseejan, S.; Poompuang, S.; Phansiri, S. Factors affecting the protoplast isolation and culture of Anubias nana Engler. Int. J. Bot. 2006, 2, 193–200. [Google Scholar] [CrossRef]
  85. Meyer, L.; Serek, M.; Winkelmann, T. Protoplast isolation and plant regeneration of different genotypes of Petunia and Calibrachoa. Plant Cell Tissue Organ Cult. 2009, 99, 27–34. [Google Scholar] [CrossRef]
  86. Li, J.; Liao, X.; Zhou, S.; Liu, S.; Jiang, L.; Wang, G. Efficient protoplast isolation and transient gene expression system for Phalaenopsis hybrid cultivar ‘Ruili Beauty’. Vitr. Cell Dev. Biol. Plant 2018, 54, 87–93. [Google Scholar] [CrossRef]
  87. Teo, C.K.H.; Neumann, K.H. The culture of protoplasts isolated from Renantanda Rosalind Cheok. Orchid Rev. 1978, 86, 156–158. [Google Scholar]
  88. Teo, C.K.H.; Neumann, K.H. The isolation and hybridization of protoplasts from orchids. Orchid Rev. 1978, 86, 186–189. [Google Scholar]
  89. Kobayashi, S.; Kameya, T.; Ichihashi, S. Plant regeneration from protoplasts derived from callus of Phalaenopsis. Plant Tiss. Cult. Lett. 1993, 10, 267–270. [Google Scholar] [CrossRef] [Green Version]
  90. Kunasakdakul, K.; Smitamana, P. Dendrobium Pratum Red protoplast. Thai J. Agric. Sci. 2003, 36, 1–8. [Google Scholar]
  91. Khentry, Y.; Paradornuvat, A.; Tantiwiwat, S.; Phansiri, S.; Thaveechai, N. Protoplast isolation and culture of Dendrobium Sonia “Bom 17”. Kasetsart J. (Nat. Sci.) 2006, 40, 361–369. [Google Scholar]
  92. Shrestha, B.R.; Tokuhara, K.; Mii, M. Plant regeneration from cell suspension-derived protoplasts of Phalaenopsis. Plant Cell Rep. 2007, 26, 719–725. [Google Scholar] [CrossRef] [PubMed]
  93. Tee, C.S.; Lee, P.S.; Kiong, A.L.P.; Mahmood, M. Optimisation of protoplast isolation protocols using in vitro leaves of Dendrobium crumenatum (pigeon orchid). Afr. J. Agric. Res. 2011, 5, 2685–2693. [Google Scholar]
  94. Cui, J.; Mackenzie, K.K.; Eeckhaut, T.; Müller, R.; Lütken, H. Protoplast isolation and culture from Kalanchoë species: Optimization of plant growth regulator concentration for efficient callus production. Plant Cell Tissue Organ Cult. 2019, 138, 287–297. [Google Scholar] [CrossRef] [Green Version]
  95. Furuta, H.; Shinoyama, H.; Nomura, Y.; Maeda, M.; Makara, K. Production of intergeneric somatic hybrids of chrysanthemum [Dendranthema × grandiflorum (Ramat.) Kitamura] and wormwood (Artemisia sieversiana JF Ehrh. ex. Willd) with rust (Puccinia horiana Henning) resistance by electrofusion of protoplasts. Plant Sci. 2004, 166, 695–702. [Google Scholar] [CrossRef]
  96. Steward, F.C.; Mapes, M.O.; Mears, K. Growth and organized development of cultured cells. II. Organization in cultures grown from freely suspended cells. Am. J. Bot. 1958, 45, 705–708. [Google Scholar] [CrossRef]
  97. Reinert, J. Über die kontrolle der morphogenese und die induktion von adventivembryonen an gewebekulturen aus karotten. Planta 1959, 53, 318–333. [Google Scholar] [CrossRef]
  98. Backs-Hüsemann, D.; Reinert, J. Embryobildung durch isolierte Einzelzellen aus Gewebekulturen vonDaucus carota. Protoplasma 1970, 70, 49–60. [Google Scholar] [CrossRef]
  99. Hossain, M.M.; Kant, R.; Van, P.T.; Winarto, B.; Zeng, S.; Teixeira da Silva, J.A. The application of biotechnology to orchids. Crit. Rev. Plant Sci. 2013, 32, 69–139. [Google Scholar]
  100. Mujib, A. Somatic Embryogenesis in Ornamentals and Its Applications; Springer: New Delhi, India, 2016; Volume 267, pp. 1–267. [Google Scholar]
  101. Nic-Can, G.I.; Galaz-Ávalos, R.M.; De-la-Peña, C.; AlcazarMagaña, A.; Wrobel, K.; Loyola-Vargas, V.M. Somatic embryogenesis: Identified factors that lead to embryogenic repression. a case of species of the same genus. PLoS ONE 2015, 10, e0126414. [Google Scholar] [CrossRef]
  102. Loyola-Vargas, V.M.; Ochoa-Alejo, N. Somatic Embryogenesis: Fundamental Aspects and Applications; Springer: Cham, Switzerland, 2018; pp. 1–296. [Google Scholar]
  103. Mahendran, G.; Bai, V.N. Direct somatic embryogenesis and plant regeneration from seed derived protocorms of Cymbidium bicolor Lindl. Sci. Hortic. 2012, 135, 40–44. [Google Scholar] [CrossRef]
  104. Deb, C.R.; Pongener, A. Studies on the in vitro regenerative competence of aerial roots of two horticultural important Cymbidium species. J. Plant Biochem. Biotechnol. 2012, 21, 235–241. [Google Scholar] [CrossRef]
  105. Chang, C.; Chang, W.C. Plant regeneration from callus of Cymbidium ensifolium var ‘Misericors’. Plant Cell Rep. 1998, 17, 251–255. [Google Scholar] [CrossRef] [PubMed]
  106. Teixeira da Silva, J.A.; Chan, M.-T.; Sanjaya; Chai, M.-L.; Tanaka, M. Priming abiotic factors for optimal hybrid Cymbidium (Orchidaceae) PLB and callus induction, plantlet formation, and their subsequent cytogenetic stability analysis. Sci. Hortic. 2006, 109, 368–378. [Google Scholar] [CrossRef]
  107. Teixeira da Silva, J.A.; Singh, N.; Tanaka, M. Priming biotic factors for optimal protocorm-like body and callus induction in hybrid Cymbidium (Orchidaceae), and assessment of cytogenetic stability in regenerated plantlets. Plant Cell Tissue Organ Cult. 2006, 84, 135–144. [Google Scholar] [CrossRef]
  108. Teixeira da Silva, J.A.; Winarto, B. Somatic embryogenesis in two orchid genera (Cymbidium, Dendrobium). In In Vitro Embryogenesis in Higher Plants. Methods in Molecular Biology; Germana, M., Lambardi, M., Eds.; Humana Press: Totowa, NJ, USA, 2016; Volume 1359, pp. 371–386. [Google Scholar]
  109. Ishii, Y.; Takamura, T.; Goi, M.; Tanaka, M. Callus induction and somatic embryogenesis of Phalaenopsis. Plant Cell Rep. 1998, 17, 446–450. [Google Scholar] [CrossRef]
  110. Chen, J.T.; Chang, W.C. Direct somatic embryogenesis and plant regeneration from leaf explants of Phalaenopsis amabilis. Biol. Plant. 2006, 50, 169–173. [Google Scholar] [CrossRef]
  111. Gow, W.P.; Chen, J.T.; Chang, W.C. Enhancement of direct somatic embryogenesis and plantlet growth from leaf explants of Phalaenopsis by adjusting culture period and explant length. Acta Physiol. Plant. 2010, 32, 621–627. [Google Scholar] [CrossRef]
  112. Gow, W.P.; Chen, J.T.; Chang, W.C. Influence of growth regulators on direct embryo formation from leaf explants of Phalaenopsis orchids. Acta Physiol. Plant. 2008, 30, 507–512. [Google Scholar] [CrossRef]
  113. Gow, W.P.; Chen, J.T.; Chang, W.C. Effects of genotype, light regime, explant position and orientation on direct somatic embryogenesis from leaf explants of Phalaenopsis orchids. Acta Physiol. Plant. 2009, 31, 363–369. [Google Scholar] [CrossRef]
  114. Niknejad, A.; Kadir, M.A.; Kadzimin, S.B. In vitro plant regeneration from protocorms-like bodies (PLBs) and callus of Phalaenopsis gigantea (Epidendroideae: Orchidaceae). Afr. J. Biotechnol. 2011, 10, 11808–11816. [Google Scholar]
  115. Feng, J.H.; Chen, J.T. A novel in vitro protocol for inducing direct somatic embryogenesis in Phalaenopsis aphrodite without taking explants. Sci. World J. 2014, 7, 263642. [Google Scholar]
  116. Chen, J.T.; Chang, C.; Chang, W.C. Direct somatic embryogenesis on leaf explants of Oncidium Gower Ramsey and subsequent plant regeneration. Plant Cell Rep. 1999, 19, 143–149. [Google Scholar] [CrossRef] [PubMed]
  117. Chen, J.T.; Chang, W.C. Effects of tissue culture conditions and explant characteristics on direct somatic embryogenesis in Oncidium ‘Gower Ramsey’. Plant Cell Tissue Organ Cult. 2002, 69, 41–44. [Google Scholar] [CrossRef]
  118. Su, Y.J.; Chen, J.T.; Chang, W.C. Efficient and repetitive production of leaf-derived somatic embryos of Oncidium. Biol. Plant. 2006, 50, 107–110. [Google Scholar] [CrossRef]
  119. Hong, P.I.; Chen, J.T.; Chang, W.C. Effects of salicylic and acetylsalicylic acid on direct somatic embryogenesis in Oncidium. J. Plant Biochem. Biotechnol. 2008, 17, 149–153. [Google Scholar] [CrossRef]
  120. Shen, H.J.; Chen, J.T.; Chung, H.H.; Chang, W.C. Plant regeneration via direct somatic embryogenesis from leaf explants of Tolumnia Louise Elmore ‘Elsa’. Bot. Stud. 2018, 59, 4. [Google Scholar] [CrossRef] [Green Version]
  121. Chung, H.H.; Chen, J.T.; Chang, W.C. Cytokinins induce direct somatic embryogenesis of Dendrobium Chiengmai Pink and subsequent plant regeneration. In Vitro Cell. Dev. Biol. Plant 2005, 41, 765–769. [Google Scholar] [CrossRef]
  122. Chung, H.H.; Chen, J.T.; Chang, W.C. Plant regeneration through direct somatic embryogenesis from leaf explants of Dendrobium. Biol. Plant. 2007, 51, 346–350. [Google Scholar] [CrossRef]
  123. Asghar, S.; Ahmad, T.; Hafiz, I.A.; Yaseen, M. In vitro propagation of orchid (Dendrobium nobile) var. Emma White. Afr. J. Biotechnol. 2011, 10, 3097–3103. [Google Scholar]
  124. Parthibhan, S.; Rao, M.V.; Teixeira da Silva, J.A.; Kumar, T.S. Somatic embryogenesis from stem thin cell layers of Dendrobium aqueum. Biol. Plant. 2018, 62, 439–450. [Google Scholar] [CrossRef]
  125. Islam, S.S.; Bhattacharjee, B. Plant regeneration through somatic embryogenesis from leaf and root explants of Rhynchostylis retusa (L.) Blume. Appl. Biol. Res. 2015, 17, 158–165. [Google Scholar] [CrossRef]
  126. Wu, K.L.; Zeng, S.J.; Teixeira da Silva, J.A.; Chen, Z.L.; Zhang, J.X.; Yang, Y.S.; Duan, J. Efficient regeneration of Renanthera Tom Thumb ‘Qilin’ from leaf explants. Sci. Hortic. 2012, 135, 194–201. [Google Scholar] [CrossRef]
  127. Hong, P.I.; Chen, J.T.; Chang, W.C. Plant regeneration via protocormlike body formation and shoot multiplication from seed-derived callus of a maudiae type slipper orchid. Acta Physiol. Plant. 2008, 30, 755–759. [Google Scholar] [CrossRef]
  128. Long, B.; Niemiera, A.X.; Cheng, Z.Y.; Long, C.L. In vitro propagation of four threatened Paphiopedilum species (Orchidaceae). Plant Cell Tissue Organ Cult. 2010, 101, 151–162. [Google Scholar] [CrossRef]
  129. Cheruvathur, M.K.; Abraham, J.; Mani, B.; Thomas, T.D. Adventitious shoot induction from cultured internodal explants of Malaxis acuminata D. Don, a valuable terrestrial medicinal orchid. Plant Cell Tissue Organ Cult. 2010, 101, 163–170. [Google Scholar] [CrossRef]
  130. Mahendran, G.; Bai, V.N. Direct somatic embryogenesis of Malaxis densiflora (A. Rich.) Kuntze. J. Genet. Eng. Biotechnol. 2016, 14, 77–81. [Google Scholar] [CrossRef]
  131. Moradi, S.; Daylami, S.D.; Arab, M.; Vahdati, K. Direct somatic embryogenesis in Epipactis veratrifolia, a temperate terrestrial orchid. J. Hortic. Sci. Biotechnol. 2017, 92, 88–97. [Google Scholar] [CrossRef]
  132. Manokari, M.; Priyadharshini, S.; Shekhawat, M.S. Direct somatic embryogenesis using leaf explants and short term storage of synseeds in Spathoglottis plicata Blume. Plant Cell Tissue Organ Cult. 2021, 145, 321–331. [Google Scholar] [CrossRef]
  133. Bhadra, S.K.; Hossain, M.M. In vitro germination and micropropagation of Geodorum densiflorum (Lam.) Schltr., an endangered orchid species. Plant Tissue Cult. 2003, 13, 165–171. [Google Scholar]
  134. Sherif, N.A.; Benjamin, J.H.F.; Kumar, T.S.; Rao, M.V. Somatic embryogenesis, acclimatization and genetic homogeneity assessment of regenerated plantlets of Anoectochilus elatus Lindl., an endangered terrestrial jewel orchid. Plant Cell Tissue Organ Cult. 2018, 132, 303–316. [Google Scholar] [CrossRef]
  135. Zeng, S.J.; Chen, Z.L.; Wu, K.L.; Bai, C.K.; Zhang, J.X.; Teixeira da Silva, J.A.; Duan, J. Asymbiotic seed germination, induction of calli and protocorm-like bodies, and in vitro seedling development of the rare and endangered Nothodoritis zhejiangensis Chinese orchid. HortScience 2011, 46, 460–465. [Google Scholar] [CrossRef] [Green Version]
  136. Azadi, P.; Kermani, M.J.; Samiei, L. Somatic embryogenesis in Rosa hybrida. In Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants; Jain, S., Gupta, P., Eds.; Springer: Cham, Switzerland, 2018; Volume II, pp. 161–170. [Google Scholar]
  137. Pati, P.K.; Sharma, M.; Sood, A.; Ahuja, P.S. Direct shoot regeneration from leaf explants of Rosa damascena Mill. Vitr. Cell Dev. Biol. Plant 2004, 40, 192–195. [Google Scholar] [CrossRef]
  138. Tanaka, K.; Kanno, Y.; Kudo, S.; Suzuki, M. Somatic embryogenesis and plant regeneration in chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Plant Cell Rep. 2000, 19, 946–953. [Google Scholar] [CrossRef]
  139. Teixeira da Silva, J.A.; Lema-Rumińska, J.; Tymoszuk, A.; Kulpa, D. Regeneration from chrysanthemum flowers: A review. Acta Physiol. Plant. 2015, 37, 67–77. [Google Scholar]
  140. Khosravi, S.; Azghandi, A.V.; Hadad, R.; Mojtahedi, N. In vitro micrpropagation of Lilium longiflorum. J. Agric. Res. Seed Plant 2007, 23, 159–168. [Google Scholar]
  141. Bakhshaie, M.; Babalar, M.; Mirmasoumi, M.; Khalighi, A. Somatic embryogenesis and plant regeneration of Lilium ledebourii (Baker) Boiss., an endangered species. Plant Cell Tissue Organ Cult. 2010, 102, 229–235. [Google Scholar] [CrossRef] [Green Version]
  142. Zhang, J.; Gai, M.; Li, X.; Li, T.; Sun, H. Somatic embryogenesis and direct as well as indirect organogenesis in Lilium pumilum DC. Fisch., an endangered ornamental and medicinal plant. Biosci. Biotechnol. Biochem. 2016, 80, 1898–1906. [Google Scholar] [CrossRef] [Green Version]
  143. Fu, L.; Zhu, Y.; Li, M.; Wang, C.; Sun, H. Autopolyploid induction via somatic embryogenesis in Lilium distichum Nakai and Lilium cernuum Komar. Plant Cell Tissue Organ Cult. 2019, 139, 237–248. [Google Scholar] [CrossRef]
  144. Priyadharshini, S.; Manokari, M.; Shekhawat, M.S. In vitro conservation strategies for the critically endangered Malabar river lily (Crinum malabaricum Lekhak & Yadav) using somatic embryogenesis and synthetic seed production. S. Afr. J. Bot. 2020, 135, 172–180. [Google Scholar]
  145. Yan, R.; Sun, Y.; Sun, H. Current status and future perspectives of somatic embryogenesis in Lilium. Plant Cell Tissue Organ Cult. 2020, 143, 229–240. [Google Scholar] [CrossRef]
  146. de Almeida, N.V.; Rivas, E.B.; Cardoso, J.C. Somatic embryogenesis from flower tepals of Hippeastrum aiming regeneration of virus-free plants. Plant Sci. 2022, 317, 111191. [Google Scholar] [CrossRef] [PubMed]
  147. Gaber, M.K.; Barakat, A.A. Micropropagation and somatic embryogenesis induction of Gardenia jasminoides plants. Alex. Sci. Exch. J. 2019, 40, 190–202. [Google Scholar] [CrossRef] [Green Version]
  148. Yumbla-Orbes, M.; da Cruz, A.C.F.; Pinheiro, M.V.M.; Rocha, D.I.; Batista, D.S.; Koehler, A.D.; Barbosa, J.G.; Otoni, W.C. Somatic embryogenesis and de novo shoot organogenesis can be alternatively induced by reactivating pericycle cells in Lisianthus (Eustoma grandiflorum (Raf.) Shinners) root explants. Vitr. Cell Dev. Biol. Plant 2017, 53, 209–218. [Google Scholar] [CrossRef]
  149. Yumbla-Orbes, M.; Rocha, D.I.; de Matos, E.M.; Koehler, A.D.; Pinheiro, M.V.M.; Batista, D.S.; Freitas, D.M.S.; da Cruz, A.C.; Barbosa, J.G.; Viccini, L.F.; et al. Somatic embryogenesis induced from vascular tissues in leaf explants of Lisianthus (Eustoma grandiflorum (Raf.) Shinn) generates true-to-type diploid plants. Vegetos 2020, 33, 135–144. [Google Scholar] [CrossRef]
  150. Nhut, D.T.; Tuan, N.S.; Ngoc, H.M.; Uyen, P.N.; Don, N.T.; Mai, N.T.; Teixeira da Silva, J.A. Somatic embryogenesis induction from in vitro leaf cultures of Lisianthus (Eustoma grandiflorum (Raf.) Shinn.). Propag. Ornam. Plants 2006, 6, 121–127. [Google Scholar]
  151. Ruffoni, B.; Bassolino, L. Somatic embryogenesis in Lisianthus (Eustoma russellianum Griseb.). In In Vitro Embryogenesis in Higher Plants, Methods in Molecular Biology Series; Maria, A.G., Maurizio, L., Eds.; Humana Press: Totowa, NJ, USA, 2016; Volume 1359, Chapter 17; pp. 359–370. [Google Scholar]
  152. Iantcheva, A. Somatic embryogenesis and genetic transformation of carnation (Dianthus caryophyllus L.). In Somatic Embryogenesis in Ornamentals and Its Applications; Mujib, A., Ed.; Springer: New Delhi, India, 2016; Chapter 7; pp. 107–120. [Google Scholar]
  153. Vieitez, A.M.; Barciela, J. Somatic embryogenesis and plant regeneration from embryonic tissues of Camellia japonica L. Plant Cell Tissue Organ Cult. 1990, 21, 267–274. [Google Scholar] [CrossRef]
  154. Ponsamuel, J.; Samson, N.P.; Ganeshan, P.S.; Sathyaprakash, V.; Abraham, G.C. Somatic embryogenesis and plant regeneration from the immature cotyledonary tissues of cultivated tea (Camellia sinensis (L).O. Kuntze). Plant Cell Rep. 1996, 16, 210–214. [Google Scholar] [CrossRef]
  155. Lü, J.; Chen, R.; Zhang, M.; Teixeira da Silva, J.A.; Ma, G. Plant regeneration via somatic embryogenesis and shoot organogenesis from immature cotyledons of Camellia nitidissima. J. Plant Physiol. 2013, 170, 1202–1211. [Google Scholar] [CrossRef]
  156. San José, M.C.; Couselo, J.L.; Martínez, M.T.; Mansilla, P.; Corredoira, E. Somatic embryogenesis in Camellia japonica L.: Challenges and future prospects. In Somatic Embryogenesis in Ornamentals and Its Applications; Mujib, A., Ed.; Springer: New Delhi, India, 2016; Chapter 6; pp. 91–105. [Google Scholar]
  157. Gladfelter, H.J.; Johnston, J.; Wilde, H.D.; Markle, S.A. Somatic embryogenesis and cryopreservation of Stewartia species. Plant Cell Tissue Organ Cult. 2021, 144, 211–221. [Google Scholar] [CrossRef]
  158. Sivanesan, I.; Jeong, B.R. Optimizing factors affecting somatic embryogenesis in Cineraria. In Somatic Embryogenesis in Ornamentals and Its Applications; Mujib, A., Ed.; Springer: New Delhi, India, 2016; Chapter 4; pp. 55–65. [Google Scholar]
  159. Choffe, K.L.; Victor, J.M.; Muruch, S.J.; Saxena, P.K. In vitro regeneration of Echinacea purpurea L.: Direct somatic embryogenesis and indirect shoot organogenesis in petiole culture. Vitr. Cell Dev. Biol. Plant 2000, 36, 30–36. [Google Scholar] [CrossRef]
  160. Dehestani-Ardakani, M.; Hejazi, M.; Aliabad, K.K. Indirect somatic embryogenesis of purple coneflower (Echinacea purpurea (L.) Moench): A medicinal-ornamental plant: Evaluation of antioxidant enzymes activity and histological study. Mol. Biol. Rep. 2020, 47, 6621–6633. [Google Scholar] [CrossRef] [PubMed]
  161. Sivanesan, I.; Son, M.S.; Jana, S.; Jeong, B.R. Secondary somatic embryogenesis in Crocus vernus (L.) Hill. Propag. Ornam. Plants 2012, 12, 163–170. [Google Scholar]
  162. Mitrofanova, I.; Ivanova, N.; Kuzmina, T.; Mitrofanova, O.; Zubkova, N. In vitro regeneration of clematis plants in the Nikita Botanical Garden via somatic embryogenesis and organogenesis. Front. Plant Sci. 2021, 12, 541171. [Google Scholar] [CrossRef]
  163. Verma, S.K.; Das, A.K.; Cingoz, G.S.; Uslu, E.; Gurel, E. Influence of nutrient media on callus induction, somatic embryogenesis and plant regeneration in selected Turkish crocus species. Biotechnol. Rep. 2016, 10, 66–74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  164. Sevindik, B.; Mendi, Y.Y. Somatic embryogenesis in Crocus sativus L. In In Vitro Embryogenesis in Higher Plants, Methods in Molecular Biology Series; Germana, M.A., Lambardi, K., Eds.; Humana Press: Totowa, NJ, USA, 2016; Chapter 16; pp. 351–357. [Google Scholar]
  165. Mandegaran, Z.; Sieber, V.K. Somatic embryogenesis in Clematis integrifolia × C. viticella. Plant Cell Tissue Organ Cult. 2000, 62, 163–165. [Google Scholar] [CrossRef]
  166. Mitrofanova, I.V.; Galaev, A.V.; Sivolap, Y.M. Investigation of molecular-genetic heterogeneity of clematis plants (Clematis L.) obtained by organogenesis and somatic embryogenesis in vitro. Tsitol. Genet. 2003, 37, 12–26. [Google Scholar]
  167. Hosoi, Y.; Maruyama, T.E. Somatic embryogenesis in Sawara cypress (Chamaecyparis pisifera Sieb. et Zucc.). In Somatic Embryogenesis in Ornamentals and Its Applications; Mujib, A., Ed.; Springer: New Delhi, India, 2016; Chapter 6; pp. 41–53. [Google Scholar]
  168. Tagipur, M.E.; Seker, G.; Teixeira da Silva, J.A.; Mendi, Y.Y. Somatic embryogenesis, cryopreservation, and in vitro mutagenesis in Cyclamen. In Somatic Embryogenesis in Ornamentals and Its Applications; Mujib, A., Ed.; Springer: New Delhi, India, 2016; Chapter 10; pp. 155–167. [Google Scholar]
  169. Sivanesan, I.; Lim, M.Y.; Jeong, B.R. Somatic embryogenesis and plant regeneration from leaf and petiole explants of Campanula punctata Lam. var. rubriflora Makino. Plant Cell Tissue Organ Cult. 2011, 107, 365–369. [Google Scholar] [CrossRef]
  170. Pipino, L.; Braglia, L.; Giovannini, A.; Fascella, G.; Mercuri, A. In vitro regeneration of Passiflora species with ornamental value. Propag. Ornam. Plants 2008, 8, 47–49. [Google Scholar]
  171. Correa, C.M.; de Oliveira, G.N.; Astariata, L.V.; Santarem, E.R. Plant regeneration through somatic embryogenesis of yacon [Smallanthus sonchifolius (Poepp. and Endl.) H. Robinson]. Braz. Arch. Biol. Technol. 2009, 52, 549–554. [Google Scholar] [CrossRef]
  172. Salma, U.; Kundu, S.; Ali, M.N.; Mandal, N. Somatic embryogenesis-mediated plant regeneration of Eclipta alba (L.) Hassk. and its conservation through synthetic seed technology. Acta Physiol. Plant. 2019, 41, 103. [Google Scholar] [CrossRef]
  173. Podwyszyńska, M.; Marasek-Ciolakowska, A. Micropropagation of tulip via somatic embryogenesis. Agronomy 2020, 10, 1857. [Google Scholar] [CrossRef]
  174. Mujib, A.; Ali, M.; Isah, T.; Dipti, T. Somatic embryo mediated mass production of Catharanthus roseus in culture vessel (bioreactor)—A comparative study. Saudi J. Biol. Sci. 2014, 21, 442–449. [Google Scholar] [CrossRef] [Green Version]
  175. Jana, S.; Sivanesan, I.; Lim, M.Y.; Jeong, B.R. In vitro zygotic embryo germination and somatic embryogenesis through cotyledonary explants of Paeonia lactiflora Pall. Kor. Soc. Floricult. Sci. 2013, 21, 17–22. [Google Scholar] [CrossRef]
  176. Du, Y.; Cheng, F.; Zhong, Y. Induction of direct somatic embryogenesis and shoot organogenesis and histological study in tree peony (Paeonia sect. Moutan). Plant Cell Tissue Organ Cult. 2020, 141, 557–570. [Google Scholar] [CrossRef]
  177. Kuehnle, A.R.; Chen, F.C.; Sugii, N. Somatic embryogenesis and plant regeneration in Anthurium andraeanum hybrids. Plant Cell Rep. 1992, 11, 438–442. [Google Scholar] [CrossRef]
  178. Pinheiro, M.V.M.; Martins, F.B.; da Cruz, A.C.F.; de Carvalho, A.C.P.P.; Ventrella, M.C.; Otoni, W.C. Somatic embryogenesis in anthurium (Anthurium andraeanum cv. Eidibel) as affected by different explants. Acta Sci. Agron. 2014, 36, 87–98. [Google Scholar] [CrossRef] [Green Version]
  179. Teixeira da Silva, J.A.; Dobránszki, J.; Winarto, B.; Zeng, S. Anthurium in vitro: A review. Sci. Hortic. 2015, 186, 266–298. [Google Scholar] [CrossRef]
  180. Bhattacharya, C.; Dam, A.; Karmakar, J.; Bandyopadhyay, T.K. Direct somatic embryogenesis and genetic homogeneity assessment of regenerated plants of Anthurium andraeanum Linden cv. Fantasia. Vitr. Cell Dev. Biol. Plant 2016, 52, 512–519. [Google Scholar] [CrossRef]
  181. Wang, G.; Xu, C.; Yan, S.; Xu, B. An efficient somatic embryo liquid culture system for potential use in large-scale and synchronic production of Anthurium andraeanum seedlings. Front. Plant Sci. 2019, 10, 29. [Google Scholar] [CrossRef]
  182. Fiuk, A.; Rybczyński, J.J. Morphogenic capability of Gentiana kurroo Royle seedling and leaf explants. Acta Physiol. Plant. 2008, 30, 157–166. [Google Scholar] [CrossRef]
  183. Fiuk, A.; Rybczyński, J.J. The effect of several factors on somatic embryogenesis and plant regeneration in protoplast cultures of Gentiana kurroo (Royle). Plant Cell Tissue Organ Cult. 2007, 91, 263–271. [Google Scholar] [CrossRef]
  184. Wu, H.J.; Wang, X.X.; Li, Y.; Zhang, D.G.; Zhang, B.W.; Xin, Y. Propagation of Gentiana macrophylla (Pall) from hairy root explants via indirect somatic embryogenesis and gentiopicroside content in obtained plants. Acta Physiol. Plant. 2011, 33, 2229–2237. [Google Scholar] [CrossRef]
  185. Vinterhalter, B.; Mitić, N.; Vinterhalter, D.; Uzelac, B.; Krstić-Milošević, D. Somatic embryogenesis and in vitro shoot propagation of Gentiana utriculosa. Biologia 2016, 71, 139–148. [Google Scholar] [CrossRef]
  186. da Silva, V.; Eeswara, J.P. Induction of somatic embryogenesis from leaf explants of Exacum trinervium (L.) Druce (Binara). J. Natl. Sci. Found. Sri Lanka 2022, 50, 27–33. [Google Scholar] [CrossRef]
  187. Mahendran, D.; Kavi Kishor, P.B.; Geetha, N.; Venkatachalam, P. Phycomolecule-coated silver nanoparticles and seaweed extracts induced high-frequency somatic embryogenesis and plant regeneration from Gloriosa superba L. J. Appl. Phycol. 2018, 30, 1425–1436. [Google Scholar] [CrossRef]
  188. Balamurugan, V.; Amal, T.C.; Karthika, P.; Selvakumar, S.; Vasanth, K. Somatic embryogenesis and plant regeneration in Gloriosa superba L.: An endangered medicinal plant. In In Vitro Plant Breeding Towards Novel Agronomic Traits; Kumar, M., Muthusamy, A., Kumar, V., Bhalla-Sarin, N., Eds.; Springer: Singapore, 2019; Chapter 2; pp. 27–42. [Google Scholar]
  189. Ren, Z.; Lv, X.; Zhang, D.; Xia, Y. Efficient somatic embryogenesis and bulblet regeneration of the endangered bulbous flower Griffinia liboniana. Plant Cell Tissue Organ Cult. 2018, 135, 523–533. [Google Scholar] [CrossRef]
  190. Vejsadová, H.; Matiska, P.; Obert, B.; Ürgeová, E.; Preťová, A. Somatic embryogenesis in Phlox paniculata—Histological analysis. Biologia 2016, 71, 763–768. [Google Scholar] [CrossRef]
  191. Simonović, A.D.; Trifunović-Momčilov, M.; Filipović, B.K.; Marković, M.P.; Bogdanović, M.D.; Subotić, A.R. Somatic embryogenesis in Centaurium erythraea Rafn—Current status and perspectives: A review. Plants 2021, 10, 70. [Google Scholar] [CrossRef]
  192. Kumar, V.; Moyo, M.; Van Staden, J. Enhancing plant regeneration of Lachenalia viridiflora, a critically endangered ornamental geophyte with high floricultural potential. Sci. Hortic. 2016, 211, 263–268. [Google Scholar] [CrossRef]
  193. von Aderkas, P.; Label, P.; Lelu, M.A. Charcoal affects early development and hormonal concentrations of somatic embryos of hybrid larch. Tree Physiol. 2002, 22, 431–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  194. Nunes, S.; Marum, L.; Farinha, N.; Pereira, V.T.; Almeida, T.; Sousa, D.; Mano, N.; Figueiredo, J.; Dias, M.C.; Santos, C. Somatic embryogenesis of hybrid Pinus elliottii var. elliottii × P. caribaea var. hondurensis and ploidy assessment of somatic plants. Plant Cell Tissue Organ Cult. 2018, 132, 71–84. [Google Scholar] [CrossRef]
  195. Abrahamsson, M.; Clapham, D.; Arnold, S. Somatic embryogenesis in Scots pine (L.). In Step Wise Protocols for Somatic Embryogenesis of Important Woody Plants, Forestry Sciences; Jain, S.M., Gupta, P., Eds.; Springer: Cham, Switzerland, 2018; Volume 84, pp. 123–133. [Google Scholar]
  196. Aalifar, M.; Arab, M.; Aliniaeifard, S.; Dianati, S.; Mehrjerdi, M.Z.; Limpens, E.; Serek, M. Embryogenesis efficiency and genetic stability of Dianthus caryophyllus embryos in response to different light spectra and plant growth regulators. Plant Cell Tissue Organ Cult. 2019, 139, 479–492. [Google Scholar] [CrossRef]
  197. Maruyama, T.E.; Hosoi, Y. Progress in somatic embryogenesis of Japanese pines. Front. Plant Sci. 2019, 10, 31. [Google Scholar] [CrossRef] [PubMed]
  198. Rodríguez-Garay, B.; Gutiérrez-Mora, A.; Acosta-Duefias, B. Somatic embryogenesis of Agave victoria-reginae Moore. Plant Cell Tissue Organ Cult. 1996, 46, 85–87. [Google Scholar] [CrossRef]
  199. Tejavathi, D.H.; Rajanna, M.D.; Sowmya, R.; Gayathramma, K. Induction of somatic embryos from cultures of Agave vera-cruz Mill. Vitr. Cell Dev. Biol. Plant 2007, 43, 423–428. [Google Scholar] [CrossRef]
  200. Portillo, L.; Santacruz-Ruvalcaba, F.; Gutiérrez-Mora, A.; Rodríguez-Garay, B. Somatic embryogenesis in Agave tequilana Weber cultivar azul. Vitr. Cell Dev. Biol. Plant 2007, 43, 569–575. [Google Scholar] [CrossRef]
  201. Reyes-Diaz, J.I.; Arzate-Fernández, A.M.; Pina-Escutia, J.L.; Vázquez-García, L.M. Media culture factors affecting somatic embryogenesis in Agave angustifolia Haw. Ind. Crops Prod. 2017, 108, 81–85. [Google Scholar] [CrossRef]
  202. Kim, D.H.; Sivanesan, I. Somatic embryogenesis in Hosta minor (Baker) Nakai. Propag. Ornam. Plants 2017, 19, 24–29. [Google Scholar]
  203. Morel, G.M. Producing virus-free cymbidiums. Amer. Orchid Soc. Bull. 1960, 29, 495–497. [Google Scholar]
  204. Lee, Y.I.; Hsu, S.T.; Yeung, E.C. Orchid protocorm-like bodies are somatic embryos. Am. J. Bot. 2013, 100, 2121–2213. [Google Scholar] [CrossRef] [PubMed]
  205. Cardoso, J.C.; Zanello, C.A.; Chen, J.T. An overview of orchid protocorm-like bodies: Mass propagation, biotechnology, molecular aspects, and breeding. Int. J. Mol. Sci. 2020, 21, 985. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  206. Chugh, S.; Guha, S.; Rao, I.U. Micropropagation of orchids: A review on the potential of different explants. Sci. Hortic. 2009, 122, 507–520. [Google Scholar] [CrossRef]
  207. Yam, T.W.; Arditti, J. History of orchid propagation: A mirror of the history of biotechnology. Plant Biotechnol. Rep. 2009, 3, 1–56. [Google Scholar] [CrossRef] [Green Version]
  208. Yeung, E.C. A perspective on orchid seed and protocorm development. Bot. Stud. 2017, 58, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  209. Habiba, S.U.; Shimasaki, K.; Hasan, K.M.; Mehraj, H.; Alam, M.M.; Sharma, S.; Ahasan, M.M. Very low and high temperature act as stress factor on organogenesis in protocorm-like bodies (PLBs) of Dendrobium kingianum. World Appl. Sci. J. 2016, 34, 278–282. [Google Scholar]
  210. Habiba, S.U.; Shimasaki, K.; Ahasan, M.M.; Alam, M.M. Effect of 6-benzylaminopurine (BA) and hyaluronic acid (HA) under white light emitting diode (LED) on organogenesis in protocorm-like bodies (PLBs) of Dendrobium kingianum. Am. Eurasian J. Agric. Environ. Sci. 2014, 14, 605–609. [Google Scholar]
  211. Habiba, S.U.; Shimasaki, K.; Ahasan, M.M.; Kamal, M.M.; Alam, M.M. 5-aminolevulinic acid regulates growth and development of protocorm-like bodies (PLBs) in Dendrobium kingianum cultured in vitro. Middle East J. Sci. Res. 2014, 22, 279–283. [Google Scholar]
  212. Habiba, S.U.; Shimasaki, K.; Ahasan, M.M.; Uddin, A.F.M.J. Effect of two bio polysaccharides on organogenesis of PLBs in Dendrobium kingianum cultured in vitro. Acta Hortic. 2017, 1167, 127–132. [Google Scholar] [CrossRef]
  213. Habiba, S.U.; Shimasaki, K.; Ahasan, M.M.; Uddin, A.F.M.J. Effect of ethylene precursor 1-aminocyclopropane-1-carboxylic acid and ethylene inhibitor, silver thiosulfateon organogenesis of PLBs in Dendrobium kingianum cultured in vitro. Acta Hortic. 2017, 1167, 133–138. [Google Scholar] [CrossRef]
  214. Habiba, S.U.; Shimasaki, K.; Ahasan, M.M. Effects of ethrel on organogenesis of protocorm-like bodies in Dendrobium kingianum in vitro. Plant Tissue Cult. Biotech. 2018, 28, 141–146. [Google Scholar] [CrossRef]
  215. Sultana, K.S.; Hasan, K.M.; Hasan, K.M.; Sultana, S.; Mehraj, H.; Ahasan, M.; Shimasaki, K.; Habiba, S.U. Effect of two elicitors on organogenesis in protocorm-like-bodies (PLBs) of Phalaenopsis ‘Fmk02010’ cultured in vitro. World Appl. Sci. J. 2015, 33, 1528–1532. [Google Scholar]
  216. Sultana, K.S.; Hasan, K.M.; Hasan, K.M.; Sultana, S.; Mehraj, H.; Ahasan, M.; Shimasaki, K.; Habiba, S.U. Effect of hyaluronic acid (HA) on organogenesis in protocorm-like bodies (PLBs) of Phalaenopsis ‘Fmk02010’ cultured in vitro. Am. Eurasian J. Agric. Environ. Sci. 2015, 15, 1721–1724. [Google Scholar]
  217. Mehraj, H.; Shimasaki, K. In vitro PLBs organogenesis of Phalaenopsis using different concentrations of HA9 and HA12 combination. J. Biosci. Agric. Res. 2017, 12, 1036–1040. [Google Scholar] [CrossRef]
  218. Hannig, E. Zur physiologie pflanzlicher embryonen. I. Ueber die cultur von cruciferen-embryonen ausserhalb des embrysacks. Bot. Ztg. 1904, 62, 45–80. [Google Scholar]
  219. Dieterich, K. U¨ber kultur von Eembryonen ausserhalb des samens. Flora 1924, 117, 379–417. [Google Scholar]
  220. Laibach, F. Das taubwerden von bastardsamen und die kunstliche Aufzucht fruh absterbender bastardembryonen. Z. Bot. 1925, 17, 417–459. [Google Scholar]
  221. Raghavan, V. One hundred years of zygotic embryo culture investigations. Vitr. Cell Dev. Biol. Plant 2003, 39, 437–442. [Google Scholar] [CrossRef]
  222. Marasek-Ciolakowska, A.; Nishikawa, T.; Shea, D.J.; Okazaki, K. Breeding of lilies and tulips-Interspecific hybridization and genetic background. Breed. Sci. 2018, 68, 35–52. [Google Scholar] [CrossRef] [Green Version]
  223. Sharma, D.R.; Kaur, R.; Kumar, K. Embryo rescue in plants: A review. Euphytica 1996, 89, 325–337. [Google Scholar] [CrossRef]
  224. Cheng, X.; Chen, S.M.; Chen, F.D.; Fang, W.M.; Deng, Y.M.; She, L.F. Interspecific hybrids between Dendranthema morifolium (Ramat.) Kitamura and D. nankingense (Nakai) Tzvel. achieved using ovary rescue and their cold tolerance characteristics. Euphytica 2010, 172, 101–108. [Google Scholar] [CrossRef]
  225. Deng, Y.; Teng, N.; Chen, S.; Guan, Z.; Song, A.; Chang, Q. Reproductive barriers in the intergeneric hybridization between Chrysanthemum grandiflorum (Ramat.) Kitam. and Ajania przewalskii Poljak. (Asteraceae). Euphytica 2010, 174, 41–50. [Google Scholar] [CrossRef]
  226. Sahijram, L.; Rao, B.M. Hybrid embryo rescue in crop improvement. In Plant Biology and Biotechnology; Bahadur, B., Venkat Rajam, M., Sahijram, L., Krishnamurthy, K., Eds.; Springer: New Delhi, India, 2015; Chapter 18; pp. 363–384. [Google Scholar]
  227. Zulkarnain, Z.; Tapingkae, T.; Taji, A. Applications of in vitro techniques in plant breeding. In Advances in Plant Breeding Strategies: Breeding, Biotechnology and Molecular Tools; Al-Khayri, J.M., Jain, S.M., Johnson, D.V., Eds.; Springer: Cham, Switzerland, 2015; Chapter 10; pp. 293–328. [Google Scholar]
  228. Pramanik, K.; Sahoo, J.P.; Mohapatra, P.P.; Acharya, L.K.; Jena, C. Insights into the embryo rescue—A modern in-vitro crop improvement approach in horticulture. Plant Cell Biotechnol. Mol. Biol. 2021, 22, 20–33. [Google Scholar]
  229. Caser, M.; Dente, F.; Ghione, G.G.; Mansuino, A.; Giovannini, A.; Scariot, V. Shortening of selection time of Rosa hybrida by in vitro culture of isolated embryos and immature seeds. Propag. Ornam. Plants 2014, 14, 139–144. [Google Scholar]
  230. Yuan, M.S.; Wu, M.C.; Shii, C.T. Shortening breeding cycles of spider lilies (Lycoris spp.) through embryo culture and dikaryotype hybridization between Lycoris aurea and “a” karyotype species. Acta Hortic. 2003, 620, 345–352. [Google Scholar] [CrossRef]
  231. Deng, Y.; Chen, S.; Chen, F.; Cheng, X.; Zhang, F. The embryo rescue derived intergeneric hybrid between chrysanthemum and Ajania przewalskii shows enhanced cold tolerance. Plant Cell Rep. 2011, 30, 2177–2186. [Google Scholar] [CrossRef] [PubMed]
  232. Cheng, X.; Chen, S.; Chen, F.; Deng, Y.; Fang, W.; Tang, F.; Liu, Z.; Shao, W. Creating novel chrysanthemum germplasm via interspecific hybridization and backcrossing. Euphytica 2011, 177, 45–53. [Google Scholar] [CrossRef]
  233. Sun, C.Q.; Chen, F.D.; Teng, N.J.; Liu, Z.L.; Fang, W.M.; Hou, X.L. Factors affecting seed set in the crosses between Dendranthema grandiflorum (Ramat.) Kitamura and its wild species. Euphytica 2009, 171, 181–192. [Google Scholar] [CrossRef]
  234. Sun, C.Q.; Chen, F.D.; Teng, N.J.; Liu, Z.L.; Fang, W.M.; Hou, X.L. Interspecific hybrids between Chrysanthemum grandiflorum (Ramat.) Kitamura and C. indicum (L.) Des Moul. and their drought tolerance evaluation. Euphytica 2010, 174, 51–60. [Google Scholar] [CrossRef]
  235. Zhu, W.Y.; Jiang, J.F.; Chen, S.M.; Wang, L.; Xu, L.L.; Wang, H.B.; Li, P.L.; Guan, Z.Y.; Chen, F.D. Intergeneric hybrid between Chrysanthemum × morifolium and Artemisia japonica achieved via embryo rescue shows salt tolerance. Euphytica 2013, 191, 109–119. [Google Scholar] [CrossRef]
  236. Deng, Y.M.; Chen, S.M.; Lu, A.M.; Chen, F.D.; Tang, F.P.; Guan, Z.Y.; Teng, N.J. Production and characterisation of the intergeneric hybrids between Dendranthema morifolium and Artemisia vulgaris exhibiting enhanced resistance to chrysanthemum aphid (Macrosiphoniella sanbourni). Planta 2010, 231, 693–703. [Google Scholar] [CrossRef]
  237. Tang, F.; Chen, F.; Chen, S.; Teng, N.; Fang, W. Intergeneric hybridization and relationship of genera within the tribe Anthemideae Cass. (I. Dendranthema crissum (kitam.) kitam. × Crossostephium chinense (L.) Makino). Euphytica 2009, 169, 133–140. [Google Scholar] [CrossRef]
  238. Röper, A.C.; Lütken, H.; Hegelund, J.N.; Petersen, K.K.; Christensen, B.; Müller, R. Effect of different ovule isolation times on the embryo development of Campanula hybrids. Acta Hortic. 2012, 953, 161–166. [Google Scholar] [CrossRef] [Green Version]
  239. Holeman, D.J. Simple Embryo Culture for Plant Breeders: A Manual of Technique for the Extraction and In-Vitro Germination of Mature Plant Embryos with Emphasis on the Rose, 1st ed.; Rose Hybridizers Association: Hartford, CT, USA, 2009; pp. 1–34. [Google Scholar]
  240. Shen, X.; Gmitter, F.G.; Grosser, J.W. Immature embryo rescue and culture. In Plant Embryo Culture, Methods in Molecular Biology Series; Thorpe, T., Yeung, E., Eds.; Humana Press: Totowa, NJ, USA, 2011; Volume 710, Chapter 7; pp. 75–92. [Google Scholar]
  241. Abdolmohammadi, M.; Kermani, M.J.; Zakizadeh, H.; Hamidoghli, Y. In vitro embryo germination and interploidy hybridization of rose (Rosa sp). Euphytica 2014, 198, 255–264. [Google Scholar] [CrossRef]
  242. Puangkrit, T.; Nontaswatsri, C. Intersubgeneric hybridization between Paracurcuma and Eucurcuma via embryo rescue. Acta Hortic. 2014, 1025, 37–42. [Google Scholar] [CrossRef]
  243. Wang, Q.; Zhang, Y.; Kawabata, S.; Li, Y. Double fertilization and embryogenesis of Eustoma grandiflorum. J. Jap. Soc. Hortic. Sci. 2011, 80, 351–357. [Google Scholar] [CrossRef] [Green Version]
  244. Marasek-Ciolakowska, A.; Sochacki, D.; Marciniak, P. Breeding aspects of selected ornamental bulbous crops. Agronomy 2021, 11, 1709. [Google Scholar] [CrossRef]
  245. Li, Z.; Pinkham, L.; Campbell, N.F.; Espinosa, A.C.; Conev, R. Development of triploid daylily (Hemerocallis) germplasm by embryo rescue. Euphytica 2009, 169, 313–318. [Google Scholar] [CrossRef]
  246. Yao, J.L.; Cohen, D. Production of triploid Zantedeschia hybrids using embryo rescue. N. Z. J. Crop Hortic. Sci. 1996, 24, 297–301. [Google Scholar] [CrossRef]
  247. Burchi, G.; Mercuri, A.; Bianchini, C.; Bregliano, R.; Schiva, T. New interspecific hybrids of Alstroemeria obtained through in vitro embryo-rescue. Acta Hortic. 2000, 508, 233–236. [Google Scholar] [CrossRef]
  248. Bridgen, M.; Kollman, E.; Lu, C. Interspecific hybridization of Alstroemeria for the development of new, ornamentals. Acta Hortic. 2009, 836, 73–78. [Google Scholar] [CrossRef]
  249. Lim, S.S.; Lee, S.I.; Kang, S.C.; Kim, J.B. Alstroemeria plants and its biotechnological applications. J. Plant Biotechnol. 2012, 39, 219–224. [Google Scholar] [CrossRef] [Green Version]
  250. Aros, D.; Suazo, M.; Rivas, C.; Zapata, P.; Úbeda, C.; Bridgen, M. Molecular and morphological characterization of new interspecific hybrids of alstroemeria originated from A. caryophylleae scented lines. Euphytica 2019, 215, 93. [Google Scholar] [CrossRef] [Green Version]
  251. Kato, J.; Mii, M. Production of interspecific hybrid plants in Primula. In Plant Cell Culture Protocols, Methods in Molecular Biology Series; Loyola-Vargas, V.M., Vázquez-Flota, F., Eds.; Humana Press: Totowa, NJ, USA, 2006; Volume 318, Chapter 21; pp. 253–262. [Google Scholar]
  252. Amano, J.; Kato, J.; Nakano, M.; Mii, M. Production of inter-section hybrids between Primula filchnerae and P. sinensis through ovule culture. Sci. Hortic. 2006, 110, 223–227. [Google Scholar] [CrossRef]
  253. Benega-Garcia, R.; Cisneros, A.; Schneider, B.; Tel-Zur, N. Gynogenesis in the vine cacti Hylocereus and Selenicereus (Cactaceae). Plant Cell Rep. 2009, 28, 719–726. [Google Scholar] [CrossRef]
  254. Cisneros, A.; Tel-Zur, N. Embryo rescue and plant regeneration following interspecific crosses in the genus Hylocereus (Cactaceae). Euphytica 2010, 174, 73–82. [Google Scholar] [CrossRef]
  255. Cisneros, A.; Garcia, R.B.; Tel-Zur, N. Creation of novel interspecific-interploid Hylocereus hybrids (Cactaceae) via embryo rescue. Euphytica 2013, 189, 433–443. [Google Scholar] [CrossRef]
  256. Nishihara, M.; Tasaki, K.; Sasaki, N.; Takahashi, H. Development of basic technologies for improvement of breeding and cultivation of Japanese gentian. Breed. Sci. 2018, 68, 14–24. [Google Scholar] [CrossRef] [Green Version]
  257. Takamura, Y.; Asano, C.; Hikage, T.; Hatakeyama, K.; Takahata, Y. Production of interspecific hybrids between Japanese gentians and wild species of Gentiana. Breed. Sci. 2019, 69, 680–687. [Google Scholar] [CrossRef] [Green Version]
  258. Takamura, Y.; Takahashi, R.; Hikage, T.; Hatakeyama, K.; Takahata, Y. Production of haploids and doubled haploids from unfertilized ovule culture of various wild species of gentians (Gentiana spp.). Plant Cell Tissue Organ Cult. 2021, 146, 505–514. [Google Scholar] [CrossRef]
  259. Nishimoto, S.I.; Shimizu, K.; Hashimoto, F.; Sakata, Y. Interspecific hybrids of Camellia chrysantha × C. japonica by ovule culture. J. Jpn. Soc. Hortic. Sci. 2003, 72, 236–242. [Google Scholar] [CrossRef]
  260. Chen, Y.M.; Mii, M. Inter-sectional hybrids obtained from reciprocal crosses between Begonia semperflorens (section Begonia) and B. ‘Orange Rubra’ (section Gaerdita × section Pritzelia). Breed. Sci. 2012, 62, 113–123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  261. Morgan, E.; Burge, G.; Seelye, J.; Hopping, M.E.; Grant, J.E.; Warren, A.G.F.; Brundell, D. Wide crosses in the Colchicaceae: Sandersonia aurantiaca (Hook.) × Littonia modesta (Hook.). Euphytica 2001, 121, 343–348. [Google Scholar] [CrossRef]
  262. Sato, S.; Katoh, N.; Yoshida, H.; Iwai, S.; Hagimori, M. Production of doubled haploid plants of carnation (Dianthus caryophyllus L.) by pseudo fertilized ovule culture. Sci. Hortic. 2000, 83, 301–310. [Google Scholar] [CrossRef]
  263. Nimura, M.; Kato, J.; Mii, M.; Morioka, M. Unilateral compatibility and genotypic difference in crossability in interspecific hybridization between Dianthus caryophyllus L. and Dianthus japonicus Thunb. Theor. Appl. Genet. 2003, 106, 1164–1170. [Google Scholar] [CrossRef]
  264. Kishi, F.; Kagami, Y.; Shinohara, M.; Hatano, S.; Tsurushima, H. Production of interspecific hybrid in Gypsophila by ovule-embryo culture. Euphytica 1994, 74, 85–90. [Google Scholar] [CrossRef]
  265. Eeckhaut, T.; De Keyser, E.; Van Huylenbroeck, J.; de Riek, J.; van Bockstaele, E. Application of embryo rescue after interspecific crosses in the genus Rhododendron. Plant Cell Tissue Organ Cult. 2007, 89, 29–35. [Google Scholar] [CrossRef]
  266. Ishizaka, H. Interspecific hybridization by embryo rescue in the genus Cyclamen. Plant Biotechnol. 2008, 25, 511–519. [Google Scholar] [CrossRef] [Green Version]
  267. Nomura, Y.; Maeda, M.; Tsuchiya, T.; Makara, K. Efficient production of interspecific hybrids between Allium chinense and edible Allium spp. through ovary culture and pollen storage. Breed. Sci. 1994, 44, 151–155. [Google Scholar] [CrossRef]
  268. Dubouzet, J.G.; Arisumi, K.I.; Takeomi, E.; Maeda, M.; Sakata, Y. Studies on the development of new ornamental Allium through interspecific hybridization III. Hybridization of autumn-flowering species through pull-style pollination, cutflower culture and embryo rescue. Mem. Fac. Agric. Kagoshima Univ. 1994, 30, 35–42. [Google Scholar]
  269. Wilcock, C.; Neiland, R. Pollination failure in plants: Why it happens and when it matters. Trends Plant Sci. 2002, 7, 270–277. [Google Scholar] [CrossRef] [PubMed]
  270. Kinoshita, T. Reproductive barrier and genomic imprinting in the endosperm of flowering plants. Genes Genet. Syst. 2007, 82, 177–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  271. Murthy, K.S.R.; Kondamudi, R.; Rao, P.V.C.; Pullaiah, T. In vitro flowering—A review. J. Agric. Technol. 2012, 8, 1517–1536. [Google Scholar]
  272. Yamashita, Y.; Terada, R.; Nishibayashi, S.; Shimamoto, K. Asymmetric somatic hybrids of Brassica: Partial transfer of B. campestris genome into B. oleracea by cell fusion. Theor. Appl. Genet. 1989, 77, 189–194. [Google Scholar] [CrossRef]
  273. Trick, H.; Zelcer, A.; Bates, G.W. Chromosome elimination in asymmetric somatic hybrids: Effect of gamma dose and time in culture. Theor. Appl. Genet. 1994, 88, 965–972. [Google Scholar] [CrossRef] [PubMed]
  274. Anthony, P.; Marchant, R.; Blackhall, N.W.; Power, J.B.; Davey, M.R. Chemical fusion of protoplasts. In Plant Tissue Culture Manual; Lindsey, K., Ed.; Springer: Berlin, Germany, 1995; Chapter 1; pp. 1–15. [Google Scholar]
  275. Smith, H.H.; Kao, K.N.; Combatti, N.C. Interspecific hybridization by protoplast fusion in Nicotiana. Confirmation and extension. J. Hered. 1976, 67, 123–128. [Google Scholar] [CrossRef]
  276. Dudits, D.; Fejer, O.; Hadlaczky, G.; Koncz, C.; Lazar, G.B.; Horvath, G. Intergeneric gene transfer mediated by protoplast fusion. Mol. Gen. Genet. 1980, 179, 283–288. [Google Scholar] [CrossRef]
  277. Wang, J.; Jiang, J.; Wang, Y. Protoplast fusion for crop improvement and breeding in China. Plant Cell Tissue Organ Cult. 2013, 112, 131–142. [Google Scholar] [CrossRef]
  278. Ranghoo-Sanmukhiya, V.M. Somaclonal variation and methods used for its detection. In Propagation and Genetic Manipulation of Plants; Siddique, I., Ed.; Springer: Singapore, 2021; Chapter 1; pp. 1–18. [Google Scholar]
  279. Kanchanapoom, K.; Jantaro, S.; Rakchad, D. Isolation and fusion of protoplasts from mesophyll cells of Dendrobium pompadour. ScienceAsia 2001, 27, 29–34. [Google Scholar] [CrossRef]
  280. Nakano, M.; Mii, M. Somatic hybridization between Dianthus chinensis and D. barbatus through protoplast fusion. Theor. Appl. Genet. 1993, 86, 1–5. [Google Scholar] [CrossRef]
  281. Tomiczak, K.; Sliwinska, E.; Rybczyński, J.J. Protoplast fusion in the genus Gentiana: Genomic composition and genetic stability of somatic hybrids between Gentiana kurroo Royle and G. cruciata L. Plant Cell Tissue Organ Cult. 2017, 131, 1–14. [Google Scholar] [CrossRef] [Green Version]
  282. Tomiczak, K. Molecular and cytogenetic description of somatic hybrids between Gentiana cruciata L. and G. tibetica King. J. Appl. Genet. 2020, 61, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  283. Shimizu, K.; Miyabe, Y.; Nagaike, H.; Yabuya, T.; Adachi, T. Production of somatic hybrid plants between Iris ensata Thunb. and I. germanica. Euphytica 1999, 107, 105–113. [Google Scholar] [CrossRef]
  284. Horita, M.; Morohashi, H.; Komai, F. Production of fertile somatic hybrid plants between Oriental hybrid lily and Lilium × formolongi. Planta 2003, 217, 597–601. [Google Scholar] [CrossRef] [PubMed]
  285. Power, J.B.; Berry, S.F.; Chapman, J.V.; Cocking, E.C. Somatic hybridization of sexually incompatible petunias: Petunia parodii, Petunia parviflora. Theor. Appl. Genet. 1980, 57, 1–4. [Google Scholar] [CrossRef]
  286. Rode, C.; Winkelmann, T.; Meyer, L.; Debener, T. The ethylene 2 receptor gene as a robust molecular marker for intergeneric somatic hybrids between Petunia and Calibrachoa. Plant Breed. 2010, 129, 448–453. [Google Scholar]
  287. Kästner, U.; Klocke, E.; Abel, S. Regeneration of protoplasts after somatic hybridisation of Hydrangea. Plant Cell Tissue Organ Cult. 2017, 129, 359–373. [Google Scholar] [CrossRef]
  288. Prange, A.N.S.; Bartsch, M.; Meiners, J.; Serek, M.; Winkelmann, T. Interspecific somatic hybrids between Cyclamen persicum and C. coum, two sexually incompatible species. Plant Cell Rep. 2012, 31, 723–735. [Google Scholar] [CrossRef]
  289. Al-Atabee, J.S.; Mulligan, B.J.; Power, J.B.; Afkhami-Sarvestani, R.; Serek, M.; Winkelmann, T. Interspecific somatic hybrids of Rudbeckia hirta and R. Laciniata (Compositae). Plant Cell Rep. 1990, 8, 517–520. [Google Scholar] [CrossRef]
  290. Afkhami-Sarvestani, R.; Serek, M.; Winkelmann, T. Protoplast isolation and culture from Streptocarpus, followed by fusion with Saintpaulia ionantha protoplasts. Europ. J. Hort. Sci. 2012, 77, S249–S260. [Google Scholar]
  291. Chin, C.K.; Lee, Z.H.; Mubbarakh, S.A.; Antony, J.J.J.; Chew, B.L.; Subramaniam, S. Effects of plant growth regulators and activated charcoal on somaclonal variations of protocorm-like bodies (PLBs) of Dendrobium Sabin Blue orchid. Biocatal. Agric. Biotechnol. 2019, 22, 101426. [Google Scholar] [CrossRef]
  292. Qahtan, A.A.; Abdel-Salam, E.M.; Alatar, A.A.; Wang, Q.C.; Faisal, M. An introduction to synthetic seeds: Production, techniques, and applications. In Synthetic Seeds; Faisal, M., Alatar, A.A., Eds.; Springer: Cham, Switzerland, 2019; Chapter 1; pp. 1–20. [Google Scholar]
  293. Maqsood, M.; Khusrau, M.; Mujib, A.; Kaloo, Z.A. Synthetic seed technology in some ornamental and medicinal plants: An overview. In Propagation and Genetic Manipulation of Plants; Siddique, I., Ed.; Springer: Singapore, 2021; Chapter 2; pp. 19–31. [Google Scholar]
  294. Touchell, D.H.; Palmer, I.E.; Ranney, T.G. In vitro ploidy manipulation for crop improvement. Front. Plant Sci. 2020, 11, 722. [Google Scholar] [CrossRef] [PubMed]
  295. Dhooghe, E.; van Laere, K.; Eeckhaut, T.; Leus, L.; van Huylenbroeck, J. Mitotic chromosome doubling of plant tissues in vitro. Plant Cell Tissue Organ Cult. 2011, 104, 359–373. [Google Scholar] [CrossRef]
  296. Habibi, M.; Shukurova, M.K.; Watanabe, K.N. Testing two chromosome doubling agents for in vitro tetraploid induction on ginger lilies, Hedychium gardnerianum Shepard ex Ker Gawl and Hedychium coronarium J. Koenig. Vitr. Cell Dev. Biol. Plant 2022, 58, 489–497. [Google Scholar] [CrossRef]
  297. Cai, X.; Cao, Z.; Xu, S.; Deng, Z. Induction, regeneration and characterization of tetraploids and variants in ‘Tapestry’ caladium. Plant Cell Tissue Organ Cult. 2015, 120, 689–700. [Google Scholar] [CrossRef]
  298. Talebi, S.F.; Saharkhiz, M.J.; Kermani, M.J.; Sharafi, Y.; Raouf Fard, F. Effect of different antimitotic agents on polyploid induction of anise hyssop (Agastache foeniculum L.). Caryologia 2017, 70, 184–193. [Google Scholar] [CrossRef]
  299. Miguel, T.P.; Leonhardt, K.W. In vitro polyploid induction of orchids using oryzalin. Sci. Hortic. 2011, 130, 314–319. [Google Scholar] [CrossRef]
  300. Giovannini, A.; Laura, M.; Nesi, B.; Savona, M.; Cardi, T. Genes and genome editing tools for breeding desirable phenotypes in ornamentals. Plant Cell Rep. 2021, 40, 461–478. [Google Scholar] [CrossRef]
  301. Koetle, M.J.; Finniea, J.F.; Balázsab, E.; Staden, J.V. A review on factors affecting the Agrobacterium-mediated genetic transformation in ornamental monocotyledonous geophytes. S. Afr. J. Bot. 2015, 98, 37–44. [Google Scholar] [CrossRef]
  302. Bull, T.; Michelmore, R. Molecular determinants of in vitro plant regeneration: Prospects for enhanced manipulation of lettuce (Lactuca sativa L.). Front. Plant Sci. 2022, 13, 1211. [Google Scholar] [CrossRef]
  303. Bednarek, P.T.; Orłowska, R. Plant tissue culture environment as a switch-key of (epi)genetic changes. Plant Cell Tissue Organ Cult. 2020, 140, 245–257. [Google Scholar] [CrossRef]
  304. Ghosh, A.; Igamberdiev, A.U.; Debnath, S.C. Tissue culture-induced DNA methylation in crop plants: A review. Mol. Biol. Rep. 2021, 48, 823–841. [Google Scholar] [CrossRef] [PubMed]
  305. Ishihara, H.; Sugimoto, K.; Tarr, P.T.; Temman, H.; Kadokura, S.; Inui, Y.; Sakamoto, T.; Sasaki, T.; Aida, M.; Suzuki, T.; et al. Primed histone demethylation regulates shoot regenerative competency. Nat. Commun. 2019, 10, 1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  306. Zhang, K.; Xu, W.; Wang, C.; Yi, X.; Zhang, W.; Su, Z. Differential deposition of H2A.Z in combination with histone modifications within related genes in Oryza sativa callus and seedling. Plant J. 2017, 89, 264–277. [Google Scholar] [CrossRef] [Green Version]
  307. Azman, A.S.; Mhiri, C.; Grandbastien, M.A.; Tam, S.M. Transposable elements and the detection of somaclonal variation in plant tissue culture: A review. Malays. Appl. Biol. 2014, 43, 1–12. [Google Scholar]
  308. Mitra, G.C.; Prasad, R.N.; Choudhury, R.A. Inorganic salts & differentiation of protocorms in seed callus of an orchid & correlated changes in its free amino acid content. Indian J. Exp. Biol. 1976, 14, 350–351. [Google Scholar]
  309. Knudson, L. A new nutrient solution for the germination of orchid seed. Amer. Orchid Soc. Bull. 1946, 15, 214–217. [Google Scholar]
  310. Van der Salm, T.P.; Van der Toorn, C.J.; Ten Cate, C.H.H.; Dubois, L.A.; De Vries, D.P.; Dons, H.J. Importance of the iron chelate formula for micropropagation of Rosa hybrida L. ‘Moneyway’. Plant Cell Tissue Organ Cult. 1994, 37, 73–77. [Google Scholar] [CrossRef]
  311. Driver, J.A.; Kuniyuki, A.H. In vitro propagation of Paradox walnut rootstock. Hort. Sci. 1984, 19, 507–509. [Google Scholar]
  312. Teixeira da Silva, J.A. Response of hybrid Cymbidium (Orchidaceae) protocorm-like bodies to 26 plant growth regulators. Bot. Lith. 2014, 20, 3–13. [Google Scholar]
  313. Nayak, N.R.; Chand, P.K.; Rath, S.P.; Patnaik, S.N. Influence of some plant growth regulators on the growth and organogenesis of Cymbidium aloifolium (L.) Sw. seed-derived rhizomes in vitro. Vitr. Cell Dev. Biol. Plant 1998, 34, 185. [Google Scholar] [CrossRef]
  314. Nayak, N.R.; Sahoo, S.; Patnaik, S.; Rath, S.P. Establishment of thin cross section (TCS) culture method for rapid micropropagation of Cymbidium aloifolium (L.) Sw. and Dendrobium nobile Lindl. (Orchidaceae). Sci. Hortic. 2002, 94, 107–116. [Google Scholar] [CrossRef]
  315. Lukatkin, A.S.; Mokshin, E.V.; Bolshakova, E.V.; Teixeira da Silva, J.A. Effects of inorganic salts concentration and alternative plant growth regulators on the in vitro organogenesis of a new hybrid Cymbidium. BioTechnologia 2019, 100, 279–288. [Google Scholar] [CrossRef]
  316. Kaewjampa, N.; Shimasaki, K.; Nahar, S.J. Hyaluronic acid can be a new plant growth regulator for hybrid Cymbidium micropropagation. Plant Tissue Cult. Biotech. 2012, 22, 59–64. [Google Scholar] [CrossRef] [Green Version]
  317. Nahar, S.J.; Shimasaki, K.; Haque, S.M. Chondroitin sulfate can be a new plant growth regulator for Cymbidium micropropagation. Acta Hortic. 2013, 1014, 449–455. [Google Scholar] [CrossRef]
  318. Tao, J.; Yu, L.; Kong, F.; Zhao, D. Effects of plant growth regulators on in vitro propagation of Cymbidium faberi Rolfe. Afr. J. Biotechnol. 2011, 10, 15639–15646. [Google Scholar] [CrossRef]
  319. Nahar, S.J.; Shimasaki, K.; Huang, C.L.; Naruemol, K. Effect of plant growth regulators on organogenesis in protocorm-like body (PLBs) of Cymbidium dayanum in vitro. ARPN J. Agric. Biol. Sci. 2011, 6, 28–33. [Google Scholar]
  320. Pant, B.; Swar, S. Micropropagation of Cymbidium iridioides. Nepal J. Sci. Technol. 2011, 12, 91–96. [Google Scholar] [CrossRef] [Green Version]
  321. Islam, S.S.; Islam, T.; Bhattacharjee, B.; Mondal, T.K.; Subramaniam, S. In vitro pseudobulb based micropropagation for mass development of Cymbidium finlaysonianum Lindl. Emir. J. Food Agric. 2015, 27, 469–474. [Google Scholar] [CrossRef] [Green Version]
  322. Khatun, H.; Khatun, M.; Biswas, M.; Kabir, M.; Al-Amin, M. In vitro growth and development of Dendrobium hybrid orchid. Bangladesh J. Agric. Res. 2010, 35, 507–514. [Google Scholar] [CrossRef] [Green Version]
  323. Khatun, M.; Khatun, H.; Khanam, D.; Al-Amin, M. In vitro root formation and plantlet development in Dendrobium orchid. Bangladesh J. Agric. Res. 2010, 35, 257–265. [Google Scholar] [CrossRef] [Green Version]
  324. Martin, K.P.; Madassery, J. Rapid in vitro propagation of Dendrobium hybrids through direct shoot formation from foliar explants, and protocorm-like bodies. Sci. Hortic. 2006, 108, 95–99. [Google Scholar] [CrossRef]
  325. Goswami, K.; Yasmin, S.; Nasiruddin, K.M.; Khatun, F.; Akte, J. In vitro regeneration of Dendrobium sp. of orchid using leaf tip as explant. J. Environ. Sci. Nat. Resour. 2015, 8, 75–78. [Google Scholar] [CrossRef]
  326. Hossen, M.M.; Saha, S.; Khatun, F. Effects of plant growth regulators on in vitro growth and development of orchid (Dendrobium sp.) from protocorm like bodies (PLBs). J. Bangladesh Agric. Univ. 2021, 193, 294–301. [Google Scholar] [CrossRef]
  327. Luo, J.P.; Wang, Y.; Zha, X.Q.; Huang, L. Micropropagation of Dendrobium densiflorum Lindl. ex Wall. through protocorm-like bodies: Effects of plant growth regulators and lanthanoids. Plant Cell Tissue Organ Cult. 2008, 93, 333. [Google Scholar] [CrossRef]
  328. Pradhan, S.; Paudel, Y.P.; Pant, B. Efficient regeneration of plants from shoot tip explants of Dendrobium densiflorum Lindl., a medicinal orchid. Afr. J. Biotechnol. 2013, 12, 1378–1383. [Google Scholar]
  329. Sheela, V.L.; Sarada, S.; Anitha, S. Development of protocorm-like bodies and shoots in Dendrobium cv. Sonia following gamma irradiation. J. Trop. Agric. 2006, 44, 86–87. [Google Scholar]
  330. Bhattacharyya, P.; Kumaria, S.; Tandon, P. High frequency regeneration protocol for Dendrobium nobile: A model tissue culture approach for propagation of medicinally important orchid species. S. Afr. J. Bot. 2016, 104, 232–243. [Google Scholar] [CrossRef]
  331. Malabadi, R.B.; Mulgund, G.S.; Kallappa, N. Micropropagation of Dendrobium nobile from shoot tip sections. J. Plant Physiol. 2005, 162, 473–478. [Google Scholar] [CrossRef]
  332. Tikendra, L.; Potshangbam, A.M.; Dey, A.; Devi, T.R.; Sahoo, M.R.; Nongdam, P. RAPD, ISSR, and SCoT markers based genetic stability assessment of micropropagated Dendrobium fimbriatum Lindl. var. oculatum Hk. f.- an important endangered orchid. Physiol. Mol. Biol. Plants 2021, 27, 341–357. [Google Scholar] [CrossRef]
  333. Bhowmik, T.K.; Rahman, M.M. Micropropagation of commercially important orchid Dendrobium palpebrae Lindl. through in vitro developed pseudobulb culture. J. Adv. Biotechnol. Exp. Ther. 2020, 3, 225–232. [Google Scholar] [CrossRef]
  334. Shiau, Y.J.; Nalawade, S.M.; Hsia, C.N.; Mulabagal, V.; Tsay, H.S. In vitro propagation of the Chinese medicinal plant, Dendrobium candidum wall. ex lindl., from axenic nodal segments. Vitr. Cell Dev. Biol. Plant 2005, 41, 666–670. [Google Scholar] [CrossRef]
  335. Zhao, P.; Wu, F.; Feng, F.S.; Wang, W.J. Protocorm-like body (PLB) formation and plant regeneration from the callus culture of Dendrobium candidum Wall ex Lindl. Vitr. Cell Dev. Biol. Plant 2008, 44, 178–185. [Google Scholar] [CrossRef]
  336. Longchar, T.B.; Deb, C.R. Optimization of in vitro propagation protocol of Dendrobium heterocarpum Wall. ex. Lindl. and clonal genetic fidelity assessment of the regenerates: An orchid of horticultural and medicinal importance. S. Afr. J. Bot. 2022, 149, 67–78. [Google Scholar] [CrossRef]
  337. Pant, B.; Thapa, D. In vitro mass propagation of an epiphytic orchid, Dendrobium primulinum Lindl. through shoot tip culture. Afr. J. Biotechnol. 2012, 11, 9970–9974. [Google Scholar]
  338. Tikendra, L.; Koijam, A.S.; Nongdam, P. Molecular markers based genetic fidelity assessment of micropropagated Dendrobium chrysotoxum Lindl. Meta Gene 2019, 20, 100562. [Google Scholar] [CrossRef]
  339. Hajong, S.; Kumaria, S.; Tandon, P. Effect of plant growth regulators on regeneration potential of axenic nodal segments of Dendrobium chrysanthum Wall. ex Lindl. J. Agric. Sci. Tech. 2013, 15, 1425–1435. [Google Scholar]
  340. Bhattacharyya, P.; Kumaria, S.; Job, N.; Tandon, P. Phyto-molecular profiling and assessment of antioxidant activity within micropropagated plants of Dendrobium thyrsiflorum: A threatened, medicinal orchid. Plant Cell Tissue Organ Cult. 2015, 122, 535–550. [Google Scholar] [CrossRef]
  341. Zhao, D.; Hu, G.; Chen, Z.; Shi, Y.; Zheng, L.; Tang, A.; Long, C. Micropropagation and in vitro flowering of Dendrobium wangliangii: A critically endangered medicinal orchid. J. Med. Plants Res. 2013, 7, 2098–2110. [Google Scholar]
  342. Chen, B.; Trueman, S.J.; Li, J.; Li, Q.; Fan, H.; Zhang, J. Micropropagation of the endangered medicinal orchid, Dendrobium officinale. Life Sci. J. 2014, 11, 526–530. [Google Scholar]
  343. Nasiruddin, K.M.; Begum, R.; Yasmin, S. Protocorm like bodies and plantlet regeneration from Dendrobium formosum leaf callus. Asian J. Plant Sci. 2003, 2, 955–957. [Google Scholar] [CrossRef] [Green Version]
  344. Riva, S.S.; Islam, A.; Hoque, M.E. In vitro regeneration and rapid multiplication of Dendrobium bensoniae, an indigenous ornamental orchid. Agriculturists 2016, 14, 24–31. [Google Scholar] [CrossRef] [Green Version]
  345. Khatun, K.; Nath, U.K.; Rahman, M.S. Tissue culture of Phalaenopsis: Present status and future prospects. J. Adv. Biotechnol. Exp. Therap. 2020, 3, 273–285. [Google Scholar] [CrossRef]
  346. Zanello, C.A.; Cardoso, J.C. PLBs induction and clonal plantlet regeneration from leaf segment of commercial hybrids of Phalaenopsis. J. Hortic. Sci. Biotechnol. 2019, 94, 627–631. [Google Scholar] [CrossRef]
  347. Mose, W.; Daryono, B.S.; Indrianto, A.; Purwantoro, A.; Semiarti, E. Direct somatic embryogenesis and regeneration of an Indonesian orchid Phalaenopsis amabilis (L.) Blume under a variety of plant growth regulators, light regime, and organic substances. Jordan J. Biol. Sci. 2020, 13, 509–518. [Google Scholar]
  348. Balilashaki, K.; Vahedi, M.; Karimi, R. In vitro direct regeneration from node and leaf explants of Phalaenopsis cv. ‘Surabaya’. Plant Tissue Cult. Biotech. 2015, 25, 193–205. [Google Scholar] [CrossRef] [Green Version]
  349. Kuo, H.L.; Chen, J.T.; Chang, W.C. Efficient plant regeneration through direct somatic embryogenesis from leaf explants of Phalaenopsis ‘Little Steve’. Vitr. Cell Dev. Biol. Plant 2005, 41, 453–456. [Google Scholar] [CrossRef] [Green Version]
  350. Sinha, P.; Jahan, M.A.A. Clonal propagation of Phalaenopsis amabilis (L.) BL. cv. ‘Golden Horizon’ through In vitro culture of leaf segments. Bangladesh J. Sci. Ind. Res. 2011, 46, 163–168. [Google Scholar] [CrossRef] [Green Version]
  351. Rittirat, S.; Kongruk, S.; Te-chato, S. Induction of protocorm-like bodies (PLBs) and plantlet regeneration from wounded protocorms of Phalaenopsis cornucervi (Breda) Blume & Rchb. f. Int. J. Agric. Technol. 2012, 8, 2397–2407. [Google Scholar]
  352. Kalimuthu, K.; Senthilkumar, R.; Vijayakumar, S. In vitro micropropagation of orchid, Oncidium sp. (Dancing Dolls). Afr. J. Biotechnol. 2007, 6, 1171–1174. [Google Scholar]
  353. Chen, J.T.; Chang, W.C. TIBA affects the induction of direct somatic embryogenesis from leaf explants of Oncidium. Plant Cell Tissue Organ Cult. 2004, 79, 315–320. [Google Scholar] [CrossRef]
  354. Mata-Rosas, M.; Baltazar-García, R.J.; Chávez-Avila, V.M. In vitro regeneration through direct organogenesis from protocorms of Oncidium tigrinum Llave & Lex. (Orchidaceae), an endemic and threatened Mexican species. Hort. Sci. 2011, 46, 1132–1135. [Google Scholar]
  355. Mayer, J.L.S.; Stancato, G.C.; Appezzato-Da-Glória, B. Direct regeneration of protocorm-like bodies (PLBs) from leaf apices of Oncidium flexuosum Sims (Orchidaceae). Plant Cell Tissue Organ Cult. 2010, 103, 411–416. [Google Scholar] [CrossRef]
  356. Bhattacharjee, B.; Islam, S.S. Effects of plant growth regulators on multiple shoot induction in Vanda tessellata (Roxb.) Hook. Ex G. Don an endangered medicinal orchid. Int. J. Sci. Nat. 2014, 5, 707–712. [Google Scholar]
  357. Roy, A.R.; Patel, R.S.; Patel, V.V.; Sajeev, S.; Deka, B.C. Asymbiotic seed germination, mass propagation and seedling development of Vanda coerulea Griff ex. Lindl. (Blue Vanda): An in vitro protocol for an endangered orchid. Sci. Hortic. 2011, 128, 325–331. [Google Scholar] [CrossRef]
  358. Decruse, S.W.; Gangaprasad, A.; Seeni, S.; Menon, V.S. A protocol for shoot multiplication from foliar meristem of Vanda spathulata (L.) Spreng. Indian J. Exp. Biol. 2003, 41, 924–927. [Google Scholar]
  359. Naing, A.H.; Myint, K.T.; Hwang, Y.J.; Park, I.S.; Chung, J.D.; Lim, K.B. Micropropagation and conservation of the wild medicinal orchid, Coelogyne cristata. Horti. Environ. Biotechnol. 2010, 51, 109–114. [Google Scholar]
  360. Singh, N.; Kumaria, S. A combinational phytomolecular-mediated assessment in micropropagated plantlets of Coelogyne ovalis Lindl.: A horticultural and medicinal orchid. Proc. Natl. Acad. Sci. India Sect. B Biol. Sci. 2020, 90, 455–466. [Google Scholar] [CrossRef]
  361. Kaur, S.; Bhutani, K.K. In vitro mass propagation of ornamentally and medicinally important Coelogyne flaccida Lindl. through pseudobulb segments. Plant Tissue Cult. Biotech. 2013, 23, 39–47. [Google Scholar] [CrossRef] [Green Version]
  362. Kalyan, K.D.; Sil, S. Protocorm-like bodies and plant regeneration from foliar explants of Coelogyne flaccida, a horticulturally and medicinally important endangered orchid of eastern himalaya. Lankesteriana 2015, 15, 151–158. [Google Scholar]
  363. Aung, W.T.; Bang, K.S.; Yoon, S.A.; Ko, B.; Bae, J.H. Effects of different natural extracts and plant growth regulators on plant regeneration and callus induction from pseudobulbs explants through in vitro seed germination of endangered orchid Bulbophyllum auricomum Lindl. J. Bio. Environ. Con. 2022, 31, 133–141. [Google Scholar] [CrossRef]
  364. Prasad, G.; Seal, T.; Mao, A.A.; Vijayan, D.; Lokho, A. Assessment of clonal fidelity and phytomedicinal potential in micropropagated plants of Bulbophyllum odoratissimum-An endangered medicinal orchid of Indo Burma megabiodiversity hotspot. S. Afr. J. Bot. 2021, 141, 487–497. [Google Scholar] [CrossRef]
  365. Ng, C.Y.; Saleh, N.M. In vitro propagation of Paphiopedilum orchid through formation of protocorm-like bodies. Plant Cell Tissue Organ Cult. 2011, 105, 193–202. [Google Scholar] [CrossRef]
  366. Masnoddin, M.; Repin, R.; Abd Aziz, Z. Micropropagation of an endangered Borneo orchid, Paphiopedilum rothschildianum callus using temporary immersion bioreactor system. Thai Agric. Res. J. 2016, 34, 161–171. [Google Scholar]
  367. Coello, C.Y.; Miceli, C.L.; Orantes, C.; Dendooven, L.; Gutiérrez, F.A. Plant growth regulators optimization for in vitro cultivation of the orchid Guarianthe skinneri (Bateman) Dressier & WE Higgins. Gayana Bot. 2010, 67, 19–26. [Google Scholar]
  368. Baker, A.; Kaviani, B.; Nematzadeh, G.; Negahdar, N. Micropropagation of Orchis catasetum—A rare and endangered orchid. Acta Sci. Pol. Hortorum Cultus 2014, 13, 197–205. [Google Scholar]
  369. Chauhan, S.; Promila Pathak, A.; Sharma, S.K. Teepol regeneration of Eulophia dabia through rhizome explants and flowering: A study in vitro. J. Orchid Soc. India 2015, 29, 61–65. [Google Scholar]
  370. Sopalun, K.; Thammasiri, K.; Ishikawa, K. Micropropagation of the Thai orchid Grammatophyllum speciosum blume. Plant Cell Tissue Organ Cult. 2010, 101, 143–150. [Google Scholar] [CrossRef]
  371. Jainol, J.E.; Gansau, J.A. Effect of growth regulators and explant orientation on shoot tip culture of Borneo endemic orchid, Dimorphorchis lowii. Trans. Sci. Technol. 2016, 3, 306–312. [Google Scholar]
  372. Acemi, A. Chitosan versus plant growth regulators: A comparative analysis of their effects on in vitro development of Serapias vomeracea (Burm.f.) Briq. Plant Cell Tissue Organ Cult. 2020, 141, 327–338. [Google Scholar] [CrossRef]
  373. Sunitibala, D.Y.; Neelashree, N. Micropropagation of the monopodial orchid, Rhynchostylis retusa (L.). Int. J. Life Sci. 2018, 6, 181–186. [Google Scholar]
  374. Gantait, S.; Sinniah, U.R. Rapid micropropagation of monopodial orchid hybrid (Aranda Wan Chark Kuan ‘Blue’ × Vanda coerulea Grifft. ex. Lindl.) through direct induction of protocorm-like bodies from leaf segments. Plant Growth Regul. 2012, 68, 129–140. [Google Scholar] [CrossRef]
  375. Paudel, M.R.; Pant, B. In vitro micropropagation of rare orchid (Esmeralda clarkei Rchb. f.) from shoot tip section. Int. J. Biol. Pharm. Allied Sci. 2012, 1, 1587–1597. [Google Scholar]
  376. Sherif, N.A.; Senthil Kumar, T.; Rao, M.V. DNA barcoding and genetic fidelity assessment of micropropagated Aenhenrya rotundifolia (Blatt.) C.S. Kumar and F.N. Rasm.: A critically endangered jewel orchid. Physiol. Mol. Biol. Plants 2020, 26, 2391–2405. [Google Scholar] [CrossRef] [PubMed]
  377. Bustam, B.M.; Dixon, K.; Bunn, E. Ex situ germplasm preservation and plant regeneration of a threatened terrestrial orchid, Caladenia huegelii, through micropropagation and cryopreservation. Aust. J. Bot. 2016, 64, 659–663. [Google Scholar] [CrossRef]
  378. Picolotto, D.R.N.; Paiva, V.B.D.; Barros, F.D.; Padilha, D.R.C.; Cruz, A.C.F.D.; Otoni, W.C. Micropropagation of Cyrtopodium paludicolum (Orchidaceae) from root tip explants. Crop Breed. Appl. Biotechnol. 2017, 17, 191–197. [Google Scholar] [CrossRef] [Green Version]
  379. Saleh-E-In, M.M.; Bhattacharyya, P.; Van Staden, J. Chemical composition and cytotoxic activity of the essential oil and oleoresins of in vitro micropropagated Ansellia africana Lindl: A vulnerable medicinal orchid of Africa. Molecules 2021, 26, 4556. [Google Scholar] [CrossRef]
  380. Chookoh, N.; Chiu, Y.T.; Chang, C.; Hu, W.H.; Dai, T.E. Micropropagation of Tolumnia orchids through induction of protocorm-like bodies from leaf segments. Hort. Sci. 2019, 54, 1230–1236. [Google Scholar] [CrossRef]
  381. Guo, W.L.; Chang, Y.C.A.; Kao, C.Y. Protocorm-like bodies initiation from root tips of Cyrtopodium paranaense (Orchidaceae). Hort. Sci. 2010, 45, 1365–1368. [Google Scholar] [CrossRef] [Green Version]
  382. Xu, J.; Beleski, D.G.; Vendrame, W.A. Effects of culture methods and plant growth regulators on in vitro propagation of Brassavola nodosa (L.) Lindl. hybrid. Vitr. Cell Dev. Biol. Plant 2022. [Google Scholar] [CrossRef]
  383. Ncube, B.; Finnie, J.F.; Van Staden, J. In vitro regeneration of Cyrtanthus species: Ornamental plants with medicinal benefits. Vitr. Cell Dev. Biol. Plant 2015, 51, 42–51. [Google Scholar] [CrossRef]
  384. Matand, K.; Shoemake, M.; Li, C. High frequency in vitro regeneration of adventitious shoots in daylilies (Hemerocallis sp) stem tissue using thidiazuron. BMC Plant Biol. 2020, 20, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  385. Youssef, N.M.; Shaaban, S.A.; Ghareeb, Z.F.; Taha, L.S. In vitro bulb formation of direct and indirect regeneration of Lilium orientalis cv. “Starfighter” plants. Bull. Natl. Res. Cent. 2019, 43, 211. [Google Scholar] [CrossRef]
  386. Javaheri, N.; Kaviani, B. Effect of hormonal combination of auxin and cytokinin on micropropagation of eastern lily (Lilium oriental hybrid ‘Casablanca’) plant using bulb scale explant. J. Hort. Sci. 2022, 36, 57–69. [Google Scholar]
  387. Han, B.H.; Yae, B.W.; Yu, H.J.; Peak, K.Y. Improvement of in vitro micropropagation of Lilium oriental hybrid ‘Casablanca’by the formation of shoots with abnormally swollen basal plates. Sci. Hortic. 2005, 103, 351–359. [Google Scholar] [CrossRef]
  388. Ptak, A.; Bach, A. Somatic embryogenesis in tulip (Tulipa gesneriana L.) flower stem cultures. Vitr. Cell Dev. Biol. Plant 2007, 43, 35–39. [Google Scholar] [CrossRef]
  389. Kritskaya, T.A.; Kashin, A.S.; Kasatkin, M.Y. Micropropagation and somaclonal variation of Tulipa suaveolens (Liliaceae) in vitro. Russ. J. Dev. Biol. 2019, 50, 209–215. [Google Scholar] [CrossRef]
  390. Maślanka, M.; Bach, A. Induction of bulb organogenesis in in vitro cultures of tarda tulip (Tulipa tarda Stapf.) from seed-derived explants. Vitr. Cell Dev. Biol. Plant 2014, 50, 712–721. [Google Scholar] [CrossRef] [Green Version]
  391. Ibrahim, M.A.; Draaj, I.A. The effect of explant source and cytokinin concentration on the direct bulb formation of tulip (Tulipa gesnerina L.) by plant tissue culture technique. Plant Cell Biotechnol. Mol. Biol. 2020, 21, 111–119. [Google Scholar]
  392. Wang, G.Y.; Yuan, M.F.; Hong, Y. In vitro flower induction in roses. Vitr. Cell Dev. Biol. Plant 2002, 38, 513–518. [Google Scholar] [CrossRef]
  393. Oo, K.T.; Lwin, K.M.; Khai, A.A. In vitro micropropagation of rose (Hybrid Rosa spp.) through plant tissue culture technique. J. Sci. Innov. Res. 2021, 10, 1–4. [Google Scholar] [CrossRef]
  394. Tawfik, A.A.; Ibrahim, O.H.M.; Abdul-Hafeez, E.Y.; Ibrahim, S.A. Optimizing micropropagation protocol for Rosa hybrida cv. Eiffel Tower with improved in vitro rooting ability. Egypt. J. Hort. 2018, 45, 323–335. [Google Scholar]
  395. Tirkey, D.S.; Nirala, D.P.; Kumari, D.P.N.P. Micropropagation from nodal explants of rose (Rosa hybrida L.) at different concentration of BAP (6-Benzyl Amino Purine). Int. J. Chem. Stud. 2019, SP6, 427–430. [Google Scholar]
  396. Khaskheli, A.J.; Khaskheli, M.I.; Khaskheli, M.A.; Shar, T.; Ahmad, W.; Lighari, U.A.; Khaskheli, M.A.; Khaskheli, A.A.; Makan, F.H. Proliferation, multiplication and improvement of micro-propagation system for mass clonal production of rose through shoot tip culture. Am. J. Plant Sci. 2018, 9, 296–310. [Google Scholar] [CrossRef] [Green Version]
  397. Kanchanapoom, K.; Posayapisit, N.; Kanchanapoom, K. In vitro flowering from cultured nodal explants of rose (Rosa hybrida L.). Not. Bot. Horti Agrobot. Cluj Napoca 2009, 37, 261–263. [Google Scholar]
  398. Kanchanapoom, K.; Sakpeth, P.; Kanchanapoom, L. In vitro flowering of shoots regenerated from cultured nodal expiants of Rosa hybrida cv. ‘Heirloom’. ScienceAsia 2010, 36, 161–164. [Google Scholar] [CrossRef]
  399. Afrin, S.; Rahman, M.A.; Khalekuzzaman, M.; Hasan, M.M.; Fahim, A.H.F.; Alam, M.A. Study on in vitro micropropagation of Rosa sp. Bangladesh J. Agric. 2022, 47, 66–74. [Google Scholar] [CrossRef]
  400. Wojtania, A.; Matysiak, B. In vitro propagation of Rosa ‘Konstancin’ (R. rugosa × R. beggeriana), a plant with high nutritional and pro-health value. Folia Hort. 2018, 30, 259–267. [Google Scholar] [CrossRef] [Green Version]
  401. Ali, M.; Baloch, S.K.; Seema, N.; Yaeen, S.; Kaleri, A.A.; Kaleri, R.R.; Nizamani, G.S.; Subhapoto, G.F.; Kaleri, M.A.; Shahani, F.; et al. Influence of phytohormones on callus indication and micropropagation on rose (Rosa indica L.). J. Basic Appl. Sci. 2018, 14, 9–11. [Google Scholar]
  402. Shabbir, A.; Hameed, N.; Ali, A.; Bajwa, R. Effect of different cultural conditions on micropropagation of rose (Rosa indica L.). Pak. J. Bot. 2009, 41, 2877–2882. [Google Scholar]
  403. Chhalgri, M.A.; Khan, M.T.; Nizamani, G.S.; Yasmeen, S.; Khan, I.A.; Aslam, M.M.; Rajpar, A.A.; Tayyaba, T.; Nizamani, F.; Nizamani, M.R.; et al. Effect of plant growth hormones on shoot and root regeneration in rose under in vitro conditions. Adv. Life Sci. 2020, 8, 93–97. [Google Scholar]
  404. Quynh, N.P.D.; Pha, N.T. Effect of culture media on micropropagation and in vitro flowering of red Eden Rose (Rosa ‘Red Eden’). Dong Thap Univ. J. Sci. 2020, 9, 93–99. [Google Scholar]
  405. Maheswari, N.U.; Vaishnavi, K. In vitro micropropagation of Rosa damascena Mill. Asian J. Multidimen. Res. 2018, 7, 107–114. [Google Scholar]
  406. Nikbakht, A.; Kafi, M.; Mirmasoudi, M.; Babalar, M. Micropropagation of damask rose (Rosa damascena Mill.) cvs Azaran and Ghamsar. Int. J. Agric. Biol. 2005, 7, 535–538. [Google Scholar]
  407. Kumar, A.; Sood, A.; Palni, U.; Gupta, A.; Palni, L.M. Micropropagation of Rosa damascena Mill. from mature bushes using thidiazuron. J. Hort. Sci. Biotechnol. 2001, 76, 30–34. [Google Scholar] [CrossRef]
  408. Alsemaan, T. Micro-propagation of Damask rose (Rosa damascena Mill.) cv. Almarah. Int. J. Agric. Res. 2013, 8, 172–177. [Google Scholar] [CrossRef] [Green Version]
  409. Jabbarzadeh, Z.; Khosh-Khui, M. Factors affecting tissue culture of Damask rose (Rosa damascena Mill.). Sci. Hortic. 2005, 105, 475–482. [Google Scholar] [CrossRef]
  410. Mirzaei, S.; Zare, A.G.; Jafary, S. Evaluating micropropagation of Kashan Damask rose, Yasooj aromatic rose and their hybrid. Int. J. Environ. Agric. Biotech. 2019, 4, 1407–1413. [Google Scholar]
  411. Tibkwang, A.; Junkasiraporn, S.; Chotikadachanarong, K. Effects of cytokinnin and sucrose on tissue culture of Rosa chinensis Jacq. var. minima Voss. Burapha Sci. J. 2018, 23, 712–721. [Google Scholar]
  412. Kumar, M.; Sirohi, U.; Malik, S.; Kumar, S.; Ahirwar, G.K.; Chaudhary, V.; Yadav, M.K.; Singh, J.; Kumar, A.; Pal, V.; et al. Methods and factors influencing in vitro propagation efficiency of ornamental tuberose (Polianthes species): A systematic review of recent developments and future prospects. Horticulturae 2022, 8, 998. [Google Scholar] [CrossRef]
  413. Ali, M.R.; Akand, M.; Homayra, H.; Mehraj, H.; Uddin, A.F.M.J. In vitro regeneration and rapid multiplication of tuberose. Int. J. Bus. Soc. Sci. Res. 2015, 3, 35–38. [Google Scholar]
  414. Ali, M.R.; Mehraj, H.; Uddin, A.F.M.J. Kinetin (KIN) and indole-3-acetic acid (IAA) on in vitro shoot and root initiation of tuberose. Int. J. Sust. Agril. Technol. 2014, 10, 1–4. [Google Scholar]
  415. Daneshvar, M.H.; Havil, M.; Lotfi Jalal-Abadi, A. Micropropagation of Polianthes tuberosa L. through direct organogenesis. J. Plant Prod. 2022, 45. [Google Scholar]
  416. Singh, K.; Madhavan, J.; Sadhukhan, R.; Chandra, S.; Rao, U.; Mandal, P.K. Production of nematode free plantlets in Polianthes tuberosa using in vitro culture techniques. Hortic. Environ. Biotechnol. 2020, 61, 929–937. [Google Scholar] [CrossRef]
  417. Gajbhiye, S.S.; Tripathi, M.K.; Vidya, M.S.; Singh, M.; Baghel, B.S.; Tiwari, S. Direct shoot organogenesis from cultured stem disc explants of tuberose (Polianthes tuberosa Linn.). J. Agric. Technol. 2011, 7, 695–709. [Google Scholar]
  418. Raghuvanshi, S.; Tripathi, M.K.; Vidhya-Sankar, M.; Singh, O.P. Establishment of low-cost effective protocol for massive in vitro propagation in Polianthes tuberosa Linn. Plant Cell Biotech. Mol. Biol. 2013, 14, 49–59. [Google Scholar]
  419. Sangavai, C.; Chellapandi, P. In vitro propagation of a tuberose plant (Polianthes tuberosa L.). Electron. J. Biol. 2008, 4, 98–101. [Google Scholar]
  420. Khanchana, K.; Kannan, M.; Hemaprabha, K.; Ganga, M. Standardization of protocol for sterilization and in vitro regeneration in tuberose (Polianthes tuberosa L.). Int. J. Chem. Stu. 2019, 7, 236–241. [Google Scholar]
  421. Surendranath, R.; Ganga, M.; Jawaharlal, M. In vitro propagation of tuberose. Environ. Ecol. 2015, 34, 2556–2560. [Google Scholar]
  422. Hernández-Mendoza, F.; Carrillo-Castañeda, G.; García-Gaytán, V.; Pedraza-Santos, M.; de la Cruz-Torres, E.; Mendoza-Castillo, M. In vitro plant regeneration of Polianthes tuberosa L. from leaf and flower buds tissue. Trop. Subtrop. Agroecosyst. 2021, 24, 55. [Google Scholar]
  423. Memon, N.; Qasim, M.; Jaskani, M.J.; Ahmad, R. In vitro cormel production of gladiolus. Pak. J. Agric. Sci. 2010, 47, 115–123. [Google Scholar]
  424. Torabi-Giglou, M.; Hajieghrari, B. In vitro study on regeneration of Gladiolus grandiflorus corm calli as affected by plant growth regulators. Pak. J. Biol. Sci. 2008, 1, 1147–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
  425. Tripathi, M.K.; Malviya, R.K.; Vidhyashankar, M.; Patel, R.P. Effect of plant growth regulators on in vitro morphogenesis in gladiolus (Gladiolus hybridus Hort.) from cultured corm slice. Int. J. Agric. Tech. 2017, 13, 583–599. [Google Scholar]
  426. Deshmukh, V.D.; Kharde, A.V.; Talekar, B.K. Interactive effects of BA and IAA on shoot proliferation of gladiolus (Gladiolus grandiflorus) var. White Prosperity. J. Oriental. Res. Madras 2021, XC, II–VII. [Google Scholar]
  427. Mateen, R.M. Development and optimization of micro-propagation, in vitro methodology for gladiolus. BioSci. Rev. 2019, 1, 21–36. [Google Scholar] [CrossRef]
  428. Devi, P.; Kumar, P.; Sengar, R.S.; Yadav, M.K.; Kumar, M.; Singh, S.K.; Singh, S. In-vitro multiple shoots production from cormel shoot buds in gladiolus (Gladiolus hybrida). Int. J. Curr. Microbiol. Appl. Sci. 2019, 8, 1345–1350. [Google Scholar] [CrossRef]
  429. Kumar, A.; Kumar, A.; Sharma, V.; Mishra, A.; Singh, S.; Kumar, P. In vitro regeneration of gladiolus (Gladiolus hybrida L.): Optimization of growth media and assessment of genetic fidelity. Int. J. Curr. Microbiol. Appl. Sci. 2018, 7, 2900–2909. [Google Scholar] [CrossRef]
  430. Wang, H.Y.; He, S.L.; Tanaka, M.; Van, P.T.; Teixeira da Silva, J.A. Effect of IBA concentration, carbon source, substrate, and light source on root induction ability of tree peony (Paeonia suffruticosa Andr.) plantlets in vitro. Europ. J. Hort. Sci. 2012, 77, S122–S128. [Google Scholar]
  431. Parida, R.; Mohanty, S.; Nayak, S. In vitro propagation of Hedychium coronarium Koen. through axillary bud proliferation. Plant Biosyst. 2013, 147, 905–912. [Google Scholar] [CrossRef]
  432. Jalali, N.; Naderi, R.; Shahi-Gharahlar, A.; Teixeira da Silva, J.A. Tissue culture of Cyclamen spp. Sci. Hortic. 2012, 137, 11–19. [Google Scholar] [CrossRef]
  433. İzgü, T.; Sevindik, B.; Çürük, P.; Şimşek, Ö.; Kaçar, Y.A.; Teixeira da Silva, J.A.; Mendi, Y. Development of an efficient regeneration protocol for four Cyclamen species endemic to Turkey. Plant Cell Tissue Organ Cult. 2016, 127, 95–113. [Google Scholar] [CrossRef]
  434. Yamaner, Ö.; Erdag, B. Direct shoot formation and microtuberization from aseptic seedlings of Cyclamen mirabile Hildebr. Biotechnology 2008, 7, 328–332. [Google Scholar] [CrossRef] [Green Version]
  435. Abu-Qaoud, H. Direct regeneration in Cyclamen persicum Mill. using seedling tissues. An Najah Univ. J. Res.-A 2004, 18, 147–156. [Google Scholar]
  436. Kanwar, J.K.; Kumar, S. Influence of growth regulators and explants on shoot regeneration in carnation. Hort. Sci. 2009, 36, 140–146. [Google Scholar] [CrossRef] [Green Version]
  437. Lukatkin, A.S.; Mokshin, E.V.; Teixeira da Silva, J.A. Use of alternative plant growth regulators and carbon sources to manipulate Dianthus caryophyllus L. shoot induction in vitro. Rend. Fis. Acc. Lincei 2017, 28, 583–588. [Google Scholar] [CrossRef]
  438. Thokchom, R.; Maitra, S. Micropopagation of Anthurium andreanum cv. Jewel from leaf explants. J. Crop Weed 2017, 13, 23–27. [Google Scholar]
  439. Cardoso, J.C.; Habermann, G. Adventitious shoot induction from leaf segments in Anthurium andreanum is affected by age of explant, leaf orientation and plant growth regulator. Hortic. Environ. Biotechnol. 2014, 55, 56–62. [Google Scholar] [CrossRef]
  440. Gu, A.; Liu, W.; Ma, C.; Cui, J.; Henny, R.J.; Chen, J. Regeneration of Anthurium andraeanum from leaf explants and evaluation of microcutting rooting and growth under different light qualities. Hort. Sci. 2012, 47, 88–92. [Google Scholar] [CrossRef]
  441. Ülfer, R.; Türkoğlu, N.; Özdemir, F.A. Micropropagation of Zinnia elegans L. Int. J. Agric. For. Life Sci. 2020, 4, 161–166. [Google Scholar]
  442. Mei-Yin, C.; Sani, H. In vitro plantlet regeneration from nodal explant and callus induction of Vernonia amygdalina Delile. J. Plant Sci. 2018, 6, 1–6. [Google Scholar]
  443. Khalafalla, M.M.; Elgaali, E.I.; Ahmed, M.M. In vitro multiple shoot regeneration from nodal explants of Vernonia amygdalina-an important medicinal plant. Afr. Crop Sci. Confer. Proceed. 2007, 8, 747–752. [Google Scholar]
  444. Nasib, A.; Ali, K.; Khan, S. In vitro propagation of croton (Codiaeum variegatum). Pak. J. Bot. 2008, 40, 99–104. [Google Scholar]
  445. Marconi, P.L.; Radice, S. Organogenesis and somatic embryogenesis in Codiaeum variegatum (L.) Blume cv. "Corazón de Oro". Vitr. Cell Dev. Biol. Plant 1997, 33, 258–262. [Google Scholar] [CrossRef]
  446. Wei, A.; Xu, Y.; Yang, N.; Jiang, L.; Hu, J.; Yang, H.; Cai, C.; Chen, J.; Chen, G.; Pan, D. In vitro propagation of Codiaeum variegatum ‘Golden Queen’. Chinese J. Trop. Crops 2019, 40, 724–730. [Google Scholar]
  447. Bakheet, G.I.; Soliman, S.S.; Abdelkader, M.A.I.; Elashtokhy, M.M.A. Effects of different croton (Codiaeum variegatum L.) genotypes and growth regulators on callus induction, micro propagation and antibacterial activities. Zagazig J. Agric. Res. 2018, 45, 331–347. [Google Scholar] [CrossRef]
  448. Waseem, K.; Jilani, M.S.; Jaskani, M.J.; Khan, M.S.; Kiran, M.; Khan, G.U. Significance of different plant growth regulators on the regeneration of chrysanthemum plantlets (Dendranthema morifolium L.) through shoot tip culture. Pak. J. Bot. 2011, 43, 1843–1848. [Google Scholar]
  449. Naing, A.H.; Jeon, S.M.; Han, J.S.; Lim, S.H.; Lim, K.B.; Kim, C.K. Factors influencing in vitro shoot regeneration from leaf segments of Chrysanthemum. C. R. Biol. 2014, 337, 383–390. [Google Scholar] [CrossRef]
  450. Naing, A.H.; Park, K.I.; Chung, M.Y.; Lim, K.B.; Kim, C.K. Optimization of factors affecting efficient shoot regeneration in Chrysanthemum cv. Shinma. Braz. J. Bot. 2016, 39, 975–984. [Google Scholar] [CrossRef]
  451. Kazeroonian, R.; Mousavi, A.; Jari, S.K.; Tohidfar, M. Factors influencing in vitro organogenesis of Chrysanthemum morifolium cv. ‘Resomee Splendid’. Iranian J. Biotech. 2018, 16, e1454. [Google Scholar] [CrossRef] [Green Version]
  452. Parzymies, M.; Dąbski, M.; Pogorzelec, M.; Kozak, D.; Durlak, W.; Dudkiewicz, M. Rooting of a trumpet creeper (Campsis radicans (L.) seem.) microshoots in presence of auxins. Acta Sci. Pol. Hortorum Cultus 2014, 13, 187–196. [Google Scholar]
  453. Liberman, R.; Shahar, L.; Nissim-Levi, A.; Evenor, D.; Reuveni, M.; Oren-Shamir, M. Shoot regeneration from leaf explants of Brunfelsia calycina. Plant Cell Tissue Organ Cult. 2010, 100, 345–348. [Google Scholar] [CrossRef]
  454. Duhoky, M.M.; Al-Mizory, L.S. In vitro micropropagation of selected Bougainvillea sp. through callus induction. J. Agric. Vet. Sci. 2014, 6, 1–6. [Google Scholar]
  455. Papafotiou, M.; Skylourakis, A. In vitro propagation of Callistemon citrinus. Acta Hortic. 2010, 885, 267–270. [Google Scholar] [CrossRef]
  456. Farooq, I.; Qadri, Z.A.; Rather, Z.A.; Nazki, I.T.; Banday, N.; Rafiq, S.; Mansoor, S. Optimization of an improved, efficient and rapid in vitro micropropagation protocol for Petunia hybrida Vilm. Cv. “Bravo”. Saudi J. Biol. Sci. 2021, 28, 3701–3709. [Google Scholar] [CrossRef] [PubMed]
  457. Habas, R.R.; Turker, M.; Ozdemir, F.A. In vitro multiple shoot regeneration from Petunia hybrida. Turkish JAF Sci. Technol. 2019, 7, 1554–1560. [Google Scholar] [CrossRef] [Green Version]
  458. Panigrahi, J.; Dholu, P.; Shah, T.J.; Gantait, S. Silver nitrate-induced in vitro shoot multiplication and precocious flowering in Catharanthus roseus (L.) G. Don, a rich source of terpenoid indole alkaloids. Plant Cell Tissue Organ Cult. 2018, 132, 579–584. [Google Scholar] [CrossRef]
  459. Hoda, E. In vitro regeneration and somaclonal variation of Catharanthus roseus Don. using leaf and internodal explants. Alex. Sci. Exch. J. 2013, 34, 452–459. [Google Scholar]
  460. Plessis, H.J.D.; Nikolova, R.V.; Egan, B.A.; Kleynhans, R. Preliminary study on in vitro shoot culture of Hibiscus coddii subsp. barnardii, an indigenous South African flowering plant. Ornam. Hortic. 2021, 27, 408–416. [Google Scholar] [CrossRef]
  461. Seo, S.G.; Ryu, S.H.; Zhou, Y.; Kim, S.H. Development of an efficient protocol for high-frequency regeneration system in Hibiscus syriacus L. J. Plant Biotechnol. 2017, 44, 164–170. [Google Scholar] [CrossRef] [Green Version]
  462. Kumaria, S.; Kehie, M.; Bhowmik, S.S.D.; Singh, M.; Tandon, P. In vitro regeneration of Begonia rubrovenia var. meisneri CB Clarke—A rare and endemic ornamental plant of Meghalaya, India. Indian J. Biotechnol. 2012, 11, 300–303. [Google Scholar]
  463. Govindaraju, S.; Arulselvi, P.I. Effect of cytokinin combined elicitors (l-phenylalanine, salicylic acid and chitosan) on in vitro propagation, secondary metabolites and molecular characterization of medicinal herb—Coleus aromaticus Benth (L). J. Saudi Soc. Agric. Sci. 2018, 17, 435–444. [Google Scholar] [CrossRef] [Green Version]
  464. Saito, H.; Nakano, M. Plant regeneration from suspension cultures of Hosta sieboldiana. Plant Cell Tissue Organ Cult. 2002, 71, 23–28. [Google Scholar] [CrossRef]
  465. Choi, H.; Yang, J.C.; Ryu, S.H.; Yoon, S.M.; Kim, S.Y.; Lee, S.Y. In vitro multiplication of Hosta Tratt. species native to Korea by shoot-tip culture. Korean J. Plant Resour. 2019, 32, 53–62. [Google Scholar]
  466. Pe, P.P.W.; Naing, A.H.; Soe, M.T.; Kang, H.; Park, K.I.; Kim, C.K. Establishment of meristem culture for virus-free and genetically stable production of the endangered plant Hosta capitata. Sci. Hortic. 2020, 272, 109591. [Google Scholar] [CrossRef]
  467. Ku, B.S.; Cho, M.S. In vitro multiplication of Hosta plantaginea ‘Joseon’ by shoot-tip culture. Flower Res. J. 2016, 24, 328–336. [Google Scholar] [CrossRef]
  468. Song, K.; Kim, D.H.; Sivanesan, I. Effect of plant growth regulators on micropropagation of Hosta minor (Baker) Nakai through shoot tip culture. Propag. Ornam. Plants 2020, 20, 57–62. [Google Scholar]
  469. Sharma, U.; Kataria, V.; Shekhawat, N.S. In vitro propagation, ex vitro rooting and leaf micromorphology of Bauhinia racemosa Lam.: A leguminous tree with medicinal values. Physiol. Mol. Biol. Plants 2017, 23, 969–977. [Google Scholar] [CrossRef]
  470. Acemi, A.; Bayrak, B.; Çakır, M.; Demiryürek, E.; Gün, E.; Gueddari, N.E.E.; Özen, F. Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) Roth from nodal explants. Vitr. Cell Dev. Biol. Plant 2018, 54, 537–544. [Google Scholar] [CrossRef]
  471. Kher, M.M.; Nataraj, M.; Parmar, H.D.; Buchad, H. Micropropagation of Merremia quinquefolia (L.) Hallier F. from nodal explants. J. Hortic. Res. 2015, 23, 13–16. [Google Scholar] [CrossRef] [Green Version]
  472. Timofeeva, S.N.; Elkonin, L.A.; Tyrnov, V.S. Micropropagation of Laburnum anagyroides Medic. through axillary shoot regeneration. Vitr. Cell Dev. Biol. Plant 2014, 50, 561–567. [Google Scholar] [CrossRef]
  473. Chavan, J.J.; Nimbalkar, M.S.; Adsul, A.A.; Kamble, S.S.; Gaikwad, N.B.; Dixit, G.B.; Gurav, R.V.; Bapat, V.A.; Yadav, S.R. Micropropagation and in vitro flowering of endemic and endangered plant Ceropegia attenuata Hook. J. Plant Biochem. Biotechnol. 2011, 20, 276–282. [Google Scholar] [CrossRef]
  474. Dhir, R.; Shekhawat, G.S. Ecorehabilitation and biochemical studies of Ceropegia bulbosa Roxb.: A threatened medicinal succulent. Acta Physiol. Plant 2014, 36, 1335–1343. [Google Scholar] [CrossRef]
  475. Dhir, R.; Shekhawat, G.S. Production, storability and morphogenic response of alginate encapsulated axillary meristems and genetic fidelity evaluation of in vitro regenerated Ceropegia bulbosa: A pharmaceutically important threatened plant species. Ind. Crops Prod. 2013, 47, 139–144. [Google Scholar] [CrossRef]
  476. Krishnareddy, P.V.; Pullaiah, T. In vitro conservation of Ceropegia elegans, an endemic plant of South India. Afr. J. Biotechnol. 2012, 11, 12443–12449. [Google Scholar] [CrossRef]
  477. Reddy, M.C.; Bramhachari, P.V.; Murthy, K.S.R. Optimized plant tissue culture protocol for in vitro morphogenesis of an endangered medicinal herb Ceropegia ensifolia Bedd. Trop. Subtrop. Agroecosystems 2015, 18, 95–101. [Google Scholar]
  478. Chavan, J.J.; Gaikwad, N.B.; Kshirsagar, P.R.; Umdale, S.D.; Bhat, K.V.; Dixit, G.B.; Yadav, S.R. Highly efficient in vitro proliferation and genetic stability analysis of micropropagated Ceropegia evansii by RAPD and ISSR markers: A critically endangered plant of Western Ghats. Plant Biosyst. 2015, 149, 442–450. [Google Scholar] [CrossRef]
  479. Chavan, J.J.; Nalawade, A.S.; Gaikwad, N.B.; Gurav, R.V.; Dixit, G.B.; Yadav, S.R. An efficient in vitro regeneration of Ceropegia noorjahaniae: An endemic and critically endangered medicinal herb of the Western Ghats. Physiol. Mol. Biol. Plants 2014, 20, 405–410. [Google Scholar] [CrossRef] [Green Version]
  480. Chavan, J.J.; Gaikwad, N.B.; Yadav, S.R. High multiplication frequency and genetic stability analysis of Ceropegia panchganiensis, a threatened ornamental plant of Western Ghats: Conservation implications. Sci. Hortic. 2013, 161, 134–142. [Google Scholar] [CrossRef]
  481. Aslam, J.; Mujib, A.; Sharma, M.P. In vitro micropropagation of Dracaena sanderiana Sander ex Mast: An important indoor ornamental plant. Saudi J. Biol. Sci. 2013, 20, 63–68. [Google Scholar] [CrossRef]
  482. Doğan, S.; Çağlar, G.; Palaz, E.B. The effect of different applications on in vitro bulb development of an endemic hyacinth plant (Hyacinthus orientalis L. subsp. chionophyllus Wendelbo) grown in Turkey. Turkish JAF Sci. Technol. 2020, 8, 1713–1719. [Google Scholar] [CrossRef]
  483. Shen, X.; Kane, M.E.; Chen, J. Effects of genotype, explant source, and plant growth regulators on indirect shoot organogenesis in Dieffenbachia cultivars. Vitr. Cell Dev. Biol. Plant 2008, 44, 282–288. [Google Scholar] [CrossRef]
  484. Onsa, R.A.H.; Abdellatif, I.A.; Osman, M.G.; Abdullah, T.L. Effect of growth regulators in in vitro micropropagation of Ixora coccinea. Int. J. Sci. Res. Pub. 2018, 8, 144–149. [Google Scholar] [CrossRef]
  485. Wei, X.; Chen, J.; Zhang, C.; Wang, Z. In vitro shoot culture of Rhododendron fortunei: An important plant for bioactive phytochemicals. Ind. Crops Prod. 2018, 126, 459–465. [Google Scholar] [CrossRef]
  486. Veraplakorn, V. In vitro micropropagation and allelopathic effect of lantana (Lantana camara L.). Agric. Nat. Resour. 2017, 51, 478–484. [Google Scholar] [CrossRef]
  487. Vila, I.; Sales, E.; Ollero, J.; Munoz-Bertomeu, J.; Segura, J.; Arrillaga, I. Micropropagation of oleander (Nerium oleander L.). Hort. Sci. 2010, 45, 98–102. [Google Scholar] [CrossRef] [Green Version]
  488. Rahman, M.S.; Mouri, N.J.; Nandi, N.C.; Akter, S.; Khan, M.S. In vitro micropropagation of Jasminum grandiflorum L. Bangladesh J. Sci. Ind. Res. 2018, 53, 277–282. [Google Scholar] [CrossRef]
  489. Rathod, H.P.; Pohare, M.B.; Bhor, S.A.; Jadhav, K.P.; Batule, B.S.; Shahakar, S.B.; Wagh, S.G.; Wadekar, H.B.; Kelatkar, S.K.; Kulkarni, M.R. In vitro micro propagation of blue passion flower (Passiflora caerulea L.). Trends Biosci. 2014, 7, 3079–3082. [Google Scholar]
  490. Osburn, L.D.; Yang, X.; Li, Y.; Cheng, Z.M. Micropropagation of Japanese honeysuckle (Lonicera japonica) and Amur honeysuckle (L. maackii) by shoot tip culture. J. Environ. Hort. 2009, 27, 195–199. [Google Scholar] [CrossRef]
  491. Souza, E.H.; Soares, T.L.; Souza, F.V.D.; Santos-Serejo, J.A. Micropropagation of Heliconia rostrata and Heliconia bihai from mature zygotic embryos. Acta Hort. 2008, 865, 315–320. [Google Scholar] [CrossRef]
  492. Winhelmann, M.C.; Tedesco, M.; Lucchese, J.R.; Fior, C.S.; Schafer, G. In vitro propagation of Angelonia integerrima. Rodriguésia 2019, 70, e02232017. [Google Scholar] [CrossRef]
  493. Amer, E.M.; Fetouh, M.I.; Rasha, S.E. Micropropagation and acclimatization of Gardenia jasminoides Ellis. J. Biol. Chem. Environ. Sci. 2019, 14, 107–120. [Google Scholar]
  494. Minerva, G.; Kumar, S. Micropropagation of gerbera (Gerbera jamesonii Bolus). In Protocols for Micropropagation of Selected Economically-important Horticultural Plants; Lambardi, M., Ozudogru, E., Jain, S., Eds.; Humana Press: Totowa, NJ, USA, 2012; Chapter 24; pp. 305–316. [Google Scholar]
  495. Yalcın-Mendı, Y.; Unek, C.; Eldogan, S.; Akakacar, Y.; Serce, S.; Curuk, P.; Kocaman, E. The effects of different hormones on regeneration of gazania (Gazania rigens). Rom. Biotechnol. Lett. 2009, 14, 4728–4732. [Google Scholar]
  496. Haque, S.M.; Ghosh, B. In vitro completion of sexual life cycle: Production of R1 plants of Ipomoea quamoclit L. Propag. Ornam. Plants 2013, 13, 19–24. [Google Scholar]
  497. Kulus, D.; Miler, N. Application of plant extracts in micropropagation and cryopreservation of bleeding heart: An ornamental-medicinal plant species. Agriculture 2021, 11, 542. [Google Scholar] [CrossRef]
  498. Ghareeb, Z.F.; Taha, L.S. Micropropagation protocol for Antigonon leptopus an important ornamental and medicinal plant. J. Genet. Eng. Biotechnol. 2018, 16, 669–675. [Google Scholar] [CrossRef]
  499. Tour, J.; Ikram, U.; Bilal, M.; Ali, M.; Zaheer, U.; Nawaz, M.A. Efficient in vitro propagation of Amaranthus viridis L. using node explants. Acta Sci. Pol. Hortorum Cultus 2020, 19, 41–51. [Google Scholar]
  500. Bhatt, A.; Stanly, C.; Keng, C.L. In vitro propagation of five Alocasia species. Hortic. Bras. 2013, 31, 210–215. [Google Scholar] [CrossRef] [Green Version]
  501. Belokurova, V.; Lystvan, K.; Volga, D.; Vasylenko, M.; Kuchuk, M. In vitro culture and some biochemical characteristics of Fittonia albivenis (Lindl. ex Veitch) Brummitt. Agrbiodiv. Impr. Nut. Health Life Qual. 2019, 3, 186–194. [Google Scholar]
  502. Qu, L.; Chen, J.; Henny, R.J.; Huang, Y.; Caldwell, R.D.; Robinson, C.A. Thidiazuron promotes adventitious shoot regeneration from pothos (Epipremnum aureum) leaf and petiole explants. Vitr. Cell Dev. Biol. Plant 2014, 50, 561–567. [Google Scholar] [CrossRef]
  503. Hung, C.Y.; Zhang, J.; Bhattacharya, C.; Li, H.; Kittur, F.S.; Oldham, C.E.; Wei, X.; Burkey, K.O.; Chen, J.; Xie, J. Transformation of long-lived albino Epipremnum aureum ‘Golden Pothos’ and restoring chloroplast development. Front. Plant Sci. 2021, 12, 647507. [Google Scholar] [CrossRef]
  504. Khatri, P.; Rana, J.S.; Sindhu, A.; Jamdagni, P. Effect of additives on enhanced in-vitro shoot multiplication and their functional group identification of Chlorophytum borivilianum Sant. Et Fernand. SN Appl. Sci. 2019, 1, 1105. [Google Scholar] [CrossRef] [Green Version]
  505. Faisal, M.; Ahmad, N.; Anis, M.; Alatar, A.A.; Qahtan, A.A. Auxin-cytokinin synergism in vitro for producing genetically stable plants of Ruta graveolens using shoot tip meristems. Saudi J. Biol. Sci. 2018, 25, 273–277. [Google Scholar] [CrossRef] [PubMed]
  506. Faisal, M.; Ahmad, N.; Anis, M. In vitro regeneration and mass propagation of Ruta graveolens L.—A multipurpose shrub. Hort. Sci. 2005, 40, 1478–1480. [Google Scholar] [CrossRef] [Green Version]
  507. Nowakowska, K.; Pacholczak, A.; Tepper, W. The effect of selected growth regulators and culture media on regeneration of Daphne mezereum L. ‘Alba’. Rend. Fis. Acc. Lincei 2019, 30, 197–205. [Google Scholar] [CrossRef] [Green Version]
  508. Nahar, S.J.; Shimasaki, K. Application of 5-aminolevulinic acid for the in vitro micropropagation of Cymbidium as a potential novel plant regulator. Environ. Control Biol. 2014, 52, 117–121. [Google Scholar] [CrossRef]
  509. Nahar, S.J.; Syed, M.H.; Shimasaki, K. Organogenesis of Cymbidium orchid using elicitors. J. Plant Develop 2015, 22, 13–20. [Google Scholar]
  510. Teixeira da Silva, J.A. The effect of ethylene inhibitors (AgNO3, AVG), an ethylene-liberating compound (CEPA) and aeration on the formation of protocorm-like bodies of hybrid Cymbidium (Orchidaceae). Front. Biol. 2013, 8, 606–610. [Google Scholar] [CrossRef]
  511. Restanto, D.P.; Santoso, B.; Kriswanto, B.; Supardjono, S. The application of chitosan for protocorm like bodies (PLB) induction of orchid (Dendrobium sp) in vitro. Agric. Agric. Sci. Procedia 2016, 9, 462–468. [Google Scholar] [CrossRef] [Green Version]
  512. Pornpienpakdee, P.; Singhasurasak, R.; Chaiyasap, P.; Pichyangkura, R.; Bunjongrat, R.; Chadchawan, S.; Limpanavech, P. Improving the micropropagation efficiency of hybrid Dendrobium orchids with chitosan. Sci. Hortic. 2010, 124, 490–499. [Google Scholar] [CrossRef]
  513. Nge, K.L.; Nwe, N.; Chandrkrachang, S.; Stevens, W.F. Chitosan as a growth stimulator in orchid tissue culture. Plant Sci. 2006, 170, 1185–1190. [Google Scholar] [CrossRef]
  514. Kananont, N.; Pichyangkura, R.; Chanprame, S.; Chadchawan, S.; Limpanavech, P. Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Sci. Hortic. 2010, 124, 239–247. [Google Scholar] [CrossRef]
  515. Soares, J.D.R.; Pasqual, M.; Rodrigues, F.A.; Villa, F.; Araujo, A.G.D. Silicon sources in the micropropagation of the Cattleya group orchid. Acta Sci. Agron. 2011, 33, 503–507. [Google Scholar]
  516. Matos, A.V.C.D.S.D.; Oliveira, B.S.D.; Oliveira, M.E.B.S.D.; Cardoso, J.C. AgNO3 improved micropropagation and stimulate in vitro flowering of rose (Rosa x hybrida) cv. Sena. Ornam. Hortic. 2020, 27, 33–40. [Google Scholar] [CrossRef]
  517. Cardoso, J.C. Silver nitrate enhances in vitro development and quality of shoots of Anthurium andraeanum. Sci. Hortic. 2019, 253, 358–363. [Google Scholar] [CrossRef]
  518. Zahara, M.; Datta, A.; Boonkorkaew, P.; Mishra, A. The effects of different media, sucrose concentrations and natural additives on plantlet growth of Phalaenopsis hybrid ‘Pink’. Braz. Arch. Biol. Technol. 2017, 60, 1–15. [Google Scholar] [CrossRef] [Green Version]
  519. Pyati, A.N.; Murthy, H.N.; Hahn, E.J.; Paek, K.Y. In vitro propagation of Dendrobium macrostachym Lindl.—A threatened orchid. Indian J. Exp. Biol. 2002, 40, 620–623. [Google Scholar]
  520. Pant, B.; Chand, K.; Paudel, M.R.; Joshi, P.R.; Thapa, B.B.; Park, S.Y.; Shakya, S.; Thakuri, L.S.; Rajbahak, S.; Sah, A.K.; et al. Micropropagation, antioxidant and anticancer activity of pineapple orchid: Dendrobium densiflorum Lindl. J. Plant Biochem. Biotechnol. 2022, 31, 399–409. [Google Scholar] [CrossRef]
  521. Sinha, P.; Roy, S.K. Regeneration of an indigenous orchid, Vanda teres (Roxb.) Lindl. through In vitro culture. Plant Tissue Cult. 2004, 14, 55–61. [Google Scholar]
  522. Samiei, L.; Pahnehkolayi, M.D.; Tehranifar, A.; Karimian, Z. Organic and inorganic elicitors enhance in vitro regeneration of Rosa canina. J. Genet. Eng. Biotechnol. 2021, 19, 60. [Google Scholar] [CrossRef]
  523. Zayed, R.; El-Shamy, H.; Berkov, S.; Bastida, J.; Codina, C. In vitro micropropagation and alkaloids of Hippeastrum vittatum. Vitr. Cell Dev. Biol. Plant 2011, 47, 695–701. [Google Scholar] [CrossRef]
  524. Le, V.T.; Tanaka, M. Effects of red and blue light-emitting diodes on callus induction, callus proliferation, and protocorm-like body formation from callus in Cymbidium orchid. Environ. Control Biol. 2004, 42, 57–64. [Google Scholar]
  525. Kaewjampa, N.; Shimasaki, K. Effects of green LED lighting on organogenesis and superoxide dismutase (SOD) activities in protocorm-like bodies (PLBs) of Cymbidium cultured in vitro. Environ. Control Biol. 2012, 50, 247–254. [Google Scholar] [CrossRef] [Green Version]
  526. Teixeira da Silva, J.A. The response of protocorm-like bodies of nine hybrid Cymbidium cultivars to light-emitting diodes. Environ. Exp. Biol. 2014, 12, 155–159. [Google Scholar]
  527. Wongnok, A.; Piluek, C.; Techasilpitak, T.; Tantivivat, S. Effects of light emitting diodes on micropropagation of Phalaenopsis orchids. Acta Hortic. 2008, 788, 149–156. [Google Scholar] [CrossRef]
  528. Billore, V.; Jain, M.; Suprasanna, P. Monochromic radiation through light-emitting diode (LED) positively augments in vitro shoot regeneration in Orchid (Dendrobium sonia). Can. J. Biotech. 2017, 1, 50. [Google Scholar] [CrossRef] [Green Version]
  529. Billore, V.; Mirajkar, S.J.; Suprasanna, P.; Jain, M. Gamma irradiation induced effects on in vitro shoot cultures and influence of monochromatic light regimes on irradiated shoot cultures of Dendrobium sonia orchid. Biotechnol. Rep. 2019, 22, e00343. [Google Scholar] [CrossRef] [PubMed]
  530. Cybularz-Urban, T.; Hanus-Fajerska, E.; Swiderski, A. Effect of light wavelength on in vitro organogenesis of a Cattleya hybrid. Acta Biol. Crac. Ser. Bot. 2007, 49, 113–118. [Google Scholar]
  531. Mengxi, L.; Zhigang, X.; Yang, Y.; Yijie, F. Effects of different spectral lights on Oncidium PLBs induction, proliferation, and plant regeneration. Plant Cell Tissue Organ Cult. 2011, 106, 1–10. [Google Scholar] [CrossRef]
  532. Luan, V.Q.; Huy, N.P.; Nam, N.B.; Huong, T.T.; Hien, V.T.; Hien, N.T.T.; Hai, N.T.; Thinh, D.K.; Nhut, D.T. Ex vitro and in vitro Paphiopedilum delenatii Guillaumin stem elongation under light-emitting diodes and shoot regeneration via stem node culture. Acta Physiol. Plant 2015, 37, 1–11. [Google Scholar] [CrossRef]
  533. Godo, T.; Fujiwara, K.; Guan, K.; Miyoshi, K. Effects of wavelength of LED-light on in vitro asymbiotic germination and seedling growth of Bletilla ochracea Schltr. (Orchidaceae). Plant Biotechnol. 2011, 28, 398–400. [Google Scholar] [CrossRef] [Green Version]
  534. Baque, A.M.; Shin, Y.K.; Elshmari, T.; Lee, E.J.; Paek, K.Y. Effect of light quality, sucrose and coconut water concentration on the microporpagation of Calanthe hybrids (‘Bukduseong’ ‘Hyesung’ and ‘Chunkwang’ ‘Hyesung’). Aust. J. Crop Sci. 2011, 5, 1247–1254. [Google Scholar]
  535. Shin, K.S.; Murthy, H.N.; Heo, J.W.; Hahn, E.J.; Paek, K.Y. The effect of light quality on the growth and development of in vitro cultured Doritaenopsis plants. Acta Physiol. Plant. 2008, 30, 339–343. [Google Scholar] [CrossRef]
  536. Favetta, V.; Colombo, R.C.; Mangili Júnior, J.F.; de Faria, R.T. Light sources and culture media in the in vitro growth of the Brazilian orchid Microlaelia lundii. Semin. Cienc. Agrar. 2017, 38, 1775–1784. [Google Scholar] [CrossRef]
  537. Azmi, N.S.; Ahmad, R.; Ibrahim, R. Fluorescent light (FL), red led and blue led spectrums effects on in vitro shoots multiplication. J. Teknol. 2016, 78, 6. [Google Scholar] [CrossRef] [Green Version]
  538. Azmi, N.S.; Ahmad, R.; Ibrahim, R. Effects of red and blue (RB) LED on the in vitro growth of Rosa kordesii in multiplication phase. In 2nd International Conference on Agriculture and Biotechnology; IACSIT Press: Singapore, 2014; Volume 79. [Google Scholar]
  539. Miler, N.; Kulus, D.; Woźny, A.; Rymarz, D.; Hajzer, M.; Wierzbowski, K.; Nelke, R.; Szeffs, L. Application of wide-spectrum light-emitting diodes in micropropagation of popular ornamental plant species: A study on plant quality and cost reduction. Vitr. Cell Dev. Biol. Plant 2019, 55, 99–108. [Google Scholar] [CrossRef] [Green Version]
  540. Kurilčik, A.; Miklušytė-Čanova, R.; Dapkūnienė, S.; Žilinskaitė, S.; Kurilčik, G.; Tamulaitis, G.; Duchovskis, P.; Žukauskas, A. In vitro culture of Chrysanthemum plantlets using light-emitting diodes. Cent. Eur. J. Biol. 2008, 3, 161–167. [Google Scholar] [CrossRef]
  541. Kim, S.J.; Hahn, E.J.; Heo, J.W.; Paek, K.Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hortic. 2004, 101, 143–151. [Google Scholar] [CrossRef]
  542. Cioć, M.; Kalisz, A.; Żupnik, M.; Pawłowska, B. Different LED light intensities and 6-benzyladenine concentrations in relation to shoot development, leaf architecture, and photosynthetic pigments of Gerbera jamesonii Bolus in vitro. Agronomy 2019, 9, 358. [Google Scholar] [CrossRef] [Green Version]
  543. Pawłowska, B.; Cioć, M.; Prokopiuk, B. How LED light rooting in vitro affected Gerbera acclimatization efficiency. Acta Hortic. 2018, 1201, 583–590. [Google Scholar] [CrossRef]
  544. Pawłowska, B.; Żupnik, M.; Szewczyk-Taranek, B.; Cioć, M. Impact of LED light sources on morphogenesis and levels of photosynthetic pigments in Gerbera jamesonii grown in vitro. Hortic. Environ. Biotechnol. 2018, 59, 115–123. [Google Scholar] [CrossRef]
  545. Martínez-Estrada, E.; Caamal-Velázquez, J.H.; Morales-Ramos, V.; Bello-Bello, J.J. Light emitting diodes improve in vitro shoot multiplication and growth of Anthurium andreanum Lind. Propag. Ornam. Plants 2016, 16, 3–8. [Google Scholar]
  546. Budiarto, K. Spectral quality affects morphogenesis on anthurium plantlet during in vitro culture. AGRIVITA J. Agric. Sci. 2010, 32, 234–240. [Google Scholar]
  547. Rodrigues, P.H.V.; Arruda, F.; Forti, V.A. Slow-grown in vitro conservation of Heliconia champneiana cv. Splash under different light spectra. Sci. Agric. 2018, 75, 163–166. [Google Scholar] [CrossRef] [Green Version]
  548. Cho, K.H.; Laux, V.Y.; Wallace-Springer, N.; Clark, D.G.; Folta, K.M.; Colquhoun, T.A. Effects of light quality on vegetative cutting and in vitro propagation of coleus (Plectranthus scutellarioides). Hort. Sci. 2019, 54, 926–935. [Google Scholar] [CrossRef] [Green Version]
  549. Dewir, Y.H.; Chakrabarty, D.; Kim, S.J.; Hahn, E.J.; Paek, K.Y. Effect of light-emitting diode on growth and shoot proliferation of Euphorbia millii and Spathiphyllum cannifolium. J. Kor. Soc. Hort. Sci. 2005, 46, 375–379. [Google Scholar]
  550. Lian, M.L.; Murthy, H.N.; Paek, K.Y. Effects of light emitting diodes (LEDs) on the in vitro induction and growth of bulblets of Lilium oriental hybrid ‘Pesaro’. Sci. Hortic. 2002, 94, 365–370. [Google Scholar] [CrossRef]
  551. Wu, H.C.; Lin, C.C. Red light-emitting diode light irradiation improves root and leaf formation in difficult-to-propagate Protea cynaroides L. plantlets in vitro. Hort. Sci. 2012, 47, 1490–1494. [Google Scholar] [CrossRef] [Green Version]
  552. Pinheiro, M.V.M.; Schmidt, D.; Diel, M.I.; Santos, J.D.; Thiesen, L.A.; Azevedo, G.C.V.D.; Holz, E. In vitro propagation of alpinia cultivars in different light sources. Ornam. Hortic. 2019, 25, 49–54. [Google Scholar] [CrossRef]
  553. Moon, H.K.; Park, S.Y.; Kim, Y.W.; Kim, C.S. Growth of Tsuru-rindo (Tripterospermum japonicum) cultured in vitro under various sources of light-emitting diode (LED) irradiation. J. Plant Biol. 2006, 49, 174–179. [Google Scholar] [CrossRef]
  554. Kwon, A.R.; Cui, H.Y.; Lee, H.; Lee, H.; Shin, H.; Kang, K.S.; Park, S.Y. Light quality affects shoot regeneration, cell division, and wood formation in elite clones of Populus euramericana. Acta Physiol. Plant 2015, 37, 65. [Google Scholar] [CrossRef]
  555. Nahar, S.J.; Haque, S.M.; Kazuhiko, S. Application of chondroitin sulfate on organogenesis of two Cymbidium spp. under different sources of lights. Not. Sci. Biol. 2016, 8, 156–160. [Google Scholar] [CrossRef] [Green Version]
  556. Nahar, S.J.; Haque, S.M.; Shimasaki, K. Effect of light quality and plant growth regulator on organogenesis of orkid Cymbidium dayanum. Bangladesh J. Agric. Res. 2017, 42, 185–190. [Google Scholar] [CrossRef] [Green Version]
  557. Gabryszewska, E.; Rudnicki, R. The influence of light quality on the shoot proliferation and rooting of Gerbera jamesonii in vitro. Acta Agrobot. 1995, 48, 105–111. [Google Scholar] [CrossRef] [Green Version]
  558. Cioć, M.; Szewczyk, A.; Żupnik, M.; Kalisz, A.; Pawłowska, B. LED lighting affects plant growth, morphogenesis and phytochemical contents of Myrtus communis L. in vitro. Plant Cell Tissue Organ Cult. 2018, 132, 433–447. [Google Scholar] [CrossRef] [Green Version]
  559. Zielińska, S.; Piątczak, E.; Kozłowska, W.; Bohater, A.; Jezierska-Domaradzka, A.; Kolniak-Ostek, J.; Matkowski, A. LED illumination and plant growth regulators’ effects on growth and phenolic acids accumulation in Moluccella laevis L. in vitro cultures. Acta Physiol. Plant 2020, 42, 72. [Google Scholar] [CrossRef]
Figure 1. The application of monochromatic white (a), red (b), blue (c), and green (d) LEDs with specific wavelengths (white LED; 420–750 nm, red LED; 580–670 nm, blue LED; 420–550 nm, and green LED; 460–610 nm) for in vitro PLB proliferation.
Figure 1. The application of monochromatic white (a), red (b), blue (c), and green (d) LEDs with specific wavelengths (white LED; 420–750 nm, red LED; 580–670 nm, blue LED; 420–550 nm, and green LED; 460–610 nm) for in vitro PLB proliferation.
Plants 11 03208 g001
Figure 2. A detailed scheme of protoplast isolation and establishment of an in vitro protoplast culture.
Figure 2. A detailed scheme of protoplast isolation and establishment of an in vitro protoplast culture.
Plants 11 03208 g002
Figure 3. Diagrammatic presentation of the steps involved in somatic embryogenesis for mass propagation in plants.
Figure 3. Diagrammatic presentation of the steps involved in somatic embryogenesis for mass propagation in plants.
Plants 11 03208 g003
Figure 4. Process of embryo rescue from immature (or non-viable) seed after hybridization.
Figure 4. Process of embryo rescue from immature (or non-viable) seed after hybridization.
Plants 11 03208 g004
Figure 5. Illustration of somatic hybrid or cybrid development through protoplast fusion. Here, NaNO3; sodium nitrate, Ca(NO3)2; calcium nitrate, PA; polyvinyl alcohol, DS; dextran sulfate, polyethylene glycol (PEG).
Figure 5. Illustration of somatic hybrid or cybrid development through protoplast fusion. Here, NaNO3; sodium nitrate, Ca(NO3)2; calcium nitrate, PA; polyvinyl alcohol, DS; dextran sulfate, polyethylene glycol (PEG).
Plants 11 03208 g005
Figure 6. Production and application of synthetic seeds. The numbers in the figure represent the ending point of each step, such as the production of synthetic seeds (1), short-term storage of synthetic seeds (2), synthetic seeds for transportation (3), long-term storage of synthetic seeds (4), and plantlet generation from synthetic seeds (5).
Figure 6. Production and application of synthetic seeds. The numbers in the figure represent the ending point of each step, such as the production of synthetic seeds (1), short-term storage of synthetic seeds (2), synthetic seeds for transportation (3), long-term storage of synthetic seeds (4), and plantlet generation from synthetic seeds (5).
Plants 11 03208 g006
Figure 7. In vitro chromosome doubling (ploidy manipulation) for genetic diversification.
Figure 7. In vitro chromosome doubling (ploidy manipulation) for genetic diversification.
Plants 11 03208 g007
Figure 8. Prospects for advanced molecular research in plant tissue culture using orchid plants as an example. Here, Tc; Tissue culture regenerated plants, Vs; traditional vegetatively propagated plants.
Figure 8. Prospects for advanced molecular research in plant tissue culture using orchid plants as an example. Here, Tc; Tissue culture regenerated plants, Vs; traditional vegetatively propagated plants.
Plants 11 03208 g008
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Mehbub, H.; Akter, A.; Akter, M.A.; Mandal, M.S.H.; Hoque, M.A.; Tuleja, M.; Mehraj, H. Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application. Plants 2022, 11, 3208. https://doi.org/10.3390/plants11233208

AMA Style

Mehbub H, Akter A, Akter MA, Mandal MSH, Hoque MA, Tuleja M, Mehraj H. Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application. Plants. 2022; 11(23):3208. https://doi.org/10.3390/plants11233208

Chicago/Turabian Style

Mehbub, Hasan, Ayasha Akter, Mst. Arjina Akter, Mohammad Shamim Hasan Mandal, Md. Ashraful Hoque, Monika Tuleja, and Hasan Mehraj. 2022. "Tissue Culture in Ornamentals: Cultivation Factors, Propagation Techniques, and Its Application" Plants 11, no. 23: 3208. https://doi.org/10.3390/plants11233208

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop