Indoor Vegetable Production: An Alternative Approach to Increasing Cultivation
Abstract
:1. Introduction
2. Facilities Used for Indoor Vegetable Production
2.1. Greenhouse
2.2. High Tunnels or Hoop Houses
2.3. Screenhouse
2.4. Indoor Vertical Farms/Gardens
3. Growing Systems/Techniques Used in Indoor Farming
3.1. Soilless Mixes
3.2. Hydroponics
3.3. Advantages and Disadvantages of Hydroponics
4. Plant Growth Factors Affecting Indoor Production
4.1. Light Quality and Photoperiod
4.2. Carbon Dioxide
4.3. Relative Humidity
4.4. Temperature
5. Impacts of Plant Nutrition on Produce Quality
6. Economics of Indoor Vegetable Production
7. Challenges and Future of Indoor Production
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- United Nations (UN). World Population Prospects, the 2015 Revision. 2015. Available online: https://esa.un.org/unpd/wpp/Download/Standard/Population/ (accessed on 1 March 2016).
- Shi, H.; Chen, J.; Liu, S.; Sivakumar, B. The role of large dams in promoting economic development under the pressure of population growth. Sustainability 2019, 11, 2965. [Google Scholar] [CrossRef] [Green Version]
- United States Department of Agriculture (USDA). World Grain Consumption and Stocks, 1960–2009. 2009. Available online: https://apps.fas.usda.gov/psdonline/app/index.html#/app/home (accessed on 12 December 2020).
- Food and Agriculture Organization (FAO). Database on Arable Land. 2016. Available online: https://data.worldbank.org/indicator/AG.LND.ARBL.HA.PC?end=2018&start=1961&view=chart (accessed on 23 June 2022).
- HLPE. Food security and nutrition: Building a global narrative towards 2030. In A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; HLPE: Rome, Italy, 2020. [Google Scholar]
- Federico, G. Feeding the World: An Economic History of Agriculture, 1800–2000; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Newbean Capital. Indoor Crop Production Feeding the Future. Available online: https://docplayer.net/15068939-Indoor-crop-production-feeding-the-future.html (accessed on 26 April 2021).
- Ceres Partners. White Paper: Indoor Growing. Available online: https://www.cerespartners.com/files/o9K7dm/Indoor%20Growing%20Whitepaper.pdf (accessed on 26 April 2021).
- Wong, C.E.; Teo, Z.W.N.; Shen, L.; Yu, H. Seeing the lights for leafy greens in indoor vertical farming. Trends Food Sci. Technol. 2020, 106, 48–63. [Google Scholar] [CrossRef]
- Agrilyst. The State of Indoor Farming. Available online: https://www.cropscience.bayer.com/sites/cropscience/files/inline-files/stateofindoorfarming-report-2017_0.pdf (accessed on 26 April 2021).
- Choi, H.G.; Moon, B.Y.; Kang, N.J. Effects of LED light on the production of strawberry during cultivation in a plastic greenhouse and in a growth chamber. Sci. Hortic. 2015, 189, 22–31. [Google Scholar] [CrossRef]
- Pinstripes-Andersen, P. Is it time to take vertical indoor farming seriously? Glob. Food Sec. 2018, 17, 233–235. [Google Scholar] [CrossRef]
- Aneja, V.P.; Schlesinger, W.H.; Erisman, J.W. Farming pollution. Nat. Geosci. 2008, 1, 409–411. [Google Scholar] [CrossRef]
- Besthorn, F.H. Vertical Farming: Social Work and Sustainable Urban Agriculture in an Age of Global Food Crises. Aust. Soc. Work 2013, 66, 187–203. [Google Scholar] [CrossRef]
- Kalantari, F.; Tahir, O.M.; Joni, R.A.; Fatemi, E. Opportunities and challenges in sustainability of vertical farming: A review. J. Landsc. Ecol. 2018, 11, 35–60. [Google Scholar] [CrossRef] [Green Version]
- Miller, A. Scaling Up or Selling Out? A Critical Appraisal of Current Development in Vertical Farming. Master’s Thesis, Carleton University, Ottawa, ON, Canada, 2011. [Google Scholar]
- Banerjee, C.; Adenaeuer, L. Up, Up and Away! The Economics of Vertical Farming. J. Agric. Stud. 2014, 2, 40. [Google Scholar] [CrossRef]
- Mendez Perez, V. Study of the Sustainability Issues of Food Production Using Vertical Farm Methods in an Urban Environment within the State of Indiana. Open Access Theses. 219. 2014. Available online: https://docs.lib.purdue.edu/open_access_theses/219 (accessed on 10 May 2022).
- Platt, P. Vertical Farming: An Interview with Dickson Despommier. Gastronomica 2007, 7, 80–87. [Google Scholar] [CrossRef]
- Sivamani, S.; Bae, N.; Cho, Y. A Smart Service Model Based on Ubiquitous Sensor Networks Using Vertical Farm Ontology. Int. J. Distrib. Sens. Netw. 2013, 9, 161495. [Google Scholar] [CrossRef]
- Cicekli, M.; Barlas, N.T. Transformation of today greenhouses into high technology vertical farming systems for metropolitan regions. J. Environ. Prot. Ecol. 2014, 15, 1779–1785. [Google Scholar]
- Dalai, S.; Tripathy, B.; Mohanta, S.; Sahu, B.; Palai, J.B. Green-houses: Types and Structural Components. In Protected Cultivation and Smart Agriculture; Maitra, S., Gaikwad, D.J., Shankar, T., Eds.; New Delhi Publishers: New Delhi, India, 2020. [Google Scholar]
- Papadopoulos, A.P.; Bar-Tal, A.; Silber, A.; Saha, U.K.; Raviv, M. Inorganic and synthetic organic components of soilless culture and potting mixes. In Soilless Culture: Theory and Practice; Raviv, R., Heinrich Lieth, J., Eds.; Academic Press: San Diego, CA, USA, 2008; pp. 505–544. [Google Scholar]
- Engler, N.; Krarti, M. Review of energy efficiency in controlled environment agriculture. Renew. Sust. Energ. Rev. 2021, 141, 110786. [Google Scholar] [CrossRef]
- Lefers, R.M.; Tester, M.; Lauersen, K.J. Emerging Technologies to Enable Sustainable Controlled Environment Agriculture in the Extreme Environments of Middle East-North Africa Coastal Regions. Front. Plant Sci. 2020, 11, 801. [Google Scholar] [CrossRef] [PubMed]
- McCartney, L.; Lefsrud, M.G. Protected agriculture in extreme environments: A review of controlled environment agriculture in tropical, arid, polar and urban locations. Appl. Eng. Agric. 2018, 34, 455–473. [Google Scholar] [CrossRef]
- Neo, D.C.J.; Ong, M.M.X.; Lee, Y.Y.; Teo, E.J.; Ong, Q.; Tanoto, H.; Xu, J.; Ong, K.S.; Suresh, V. Shaping and Tuning Lighting Conditions in Controlled Environment Agriculture: A Review. ACS Agric. Sci. Technol. 2022, 2, 3–16. [Google Scholar] [CrossRef]
- Velazquez-Gonzalez, R.S.; Garcia-Garcia, A.L.; Ventura-Zapata, E.; Barceinas-Sanchez, J.D.O.; Sosa-Savedra, J.C. A Review on hydroponics and the technologies associated for medium- and small-scale operations. Agriculture 2022, 12, 646. [Google Scholar] [CrossRef]
- Lakhiar, I.A.; Jianmin, G.; Syed, T.N.; Chandio, F.A.; Buttar, N.A.; Qureshi, W.A. Monitoring and control systems in agriculture using intelligent sensor techniques: A Review of the aeroponic system. J. Sens. 2018, 2018, 8672769. [Google Scholar] [CrossRef] [Green Version]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of sustainable and commercial aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef] [Green Version]
- Ragaveena, S.; Edward, A.S.; Surendran, U. Smart controlled environment agriculture methods: A holistic review. Rev. Environ. Sci. Biotechnol. 2021, 20, 887–913. [Google Scholar] [CrossRef]
- Mir, M.S.; Naikoo, N.B.; Kanth, R.H.; Bahar, F.A.; Bhat, M.A.; Nazir, A.; Mahdi, S.S.; Amin, Z.; Singh, L.; Raja, W.; et al. Vertical farming: The future of agriculture: A review. Pharma Innov. J 2022, 1175–1195. [Google Scholar]
- World Wildlife Fund. Indoor Soilless Farming: Phase I: Examining the Industry and Impacts of Controlled Environment Agriculture. Available online: https://www.worldwildlife.org/publications/indoor-soilless-farming-phase-i-examining-the-industry-and-impacts-of-controlled-environment-agriculture (accessed on 4 May 2021).
- Vatistas, C.; Avgoustaki, D.D.; Bartzanas, T.A. Systematic literature review on controlled-environment agriculture: How vertical farms and greenhouses can Influence the sustainability and footprint of urban microclimate with local food production. Atmosphere 2022, 13, 1258. [Google Scholar] [CrossRef]
- Van Gerrewey, T.; Boon, N.; Geelen, D. Vertical Farming: The only way Is up? Agronomy 2022, 12, 2. [Google Scholar] [CrossRef]
- Smith, T.; Lopes, P. Greenhouse BMPs: A Handbook for the Greenhouse Industry in Massachusetts; University of Massachusetts Extension: Amherst, MA, USA, 2010; pp. 1–2. [Google Scholar]
- Hamm, M. Feeding Cities—With Indoor Vertical Farms? FCRN Blogs 2015. Available online: https://www.canr.msu.edu/news/feeding_cities_with_indoor_vertical_farms (accessed on 10 May 2022).
- Jensen, M.H.; Malter, A.J. Protected Agriculture: A Global Review; World Bank Technical Paper, No. WTP 253; World Bank: Washington, DC, USA, 1995. [Google Scholar]
- Hu, W.; Zhang, Y.; Huang, B.; Teng, Y. Soil environmental quality in greenhouse vegetable production systems in eastern China: Current status and management strategies. Chemosphere 2017, 170, 183–195. [Google Scholar] [CrossRef]
- Ito, T. The greenhouse and hydroponic industries of Japan. Int. Symp. Grow. Media Hydroponics 1997, 481, 761–764. [Google Scholar] [CrossRef]
- Zhang, N.M. Theory and Practice of Horticulture Agriculture; Chemical Industry Press: Beijing, China, 2005. [Google Scholar]
- Liu, L. Present development of facility agriculture in China and countermeasures. Agric. Sci. Technol. Equip. 2013, 4, 57–58. [Google Scholar]
- Teng, Y.; Luo, Y. Phthalate Esters Pollution and Bioremediation of Greenhouse Soils; Science Press: Beijing, China, 2014. [Google Scholar]
- Qin, H.; Jia, B. China’s greenhouse agriculture development. Agric. Mach. Mark 2013, 2, 20–22. [Google Scholar]
- Martinović, G.; Simon, J. Greenhouse microclimatic environment controlled by a mobile measuring station. Njas-Wagening. J. Life Sci. 2014, 70, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Sammons, P.J.; Furukawa, T.; Bulgin, A. Autonomous pesticide spraying robot for use in a greenhouse. In Proceedings of the Australian Conference on Robotics and Automation, Sydney, Australia, 9 September 2005. [Google Scholar]
- Kondo, N.; Yata, K.; Iida, M.; Shiigi, T.; Monta, M.; Kurita, M.; Omori, H. Development of an end-effector for a tomato cluster harvesting robot. Eng. Agric. Environ. Food 2010, 3, 20–24. [Google Scholar] [CrossRef]
- Feng, Q.C.; Cheng, W.; Zhou, J.J.; Wang, X. Design of structured-light vision system for tomato harvesting robot. Int. J. Agric. Biol. Eng. 2014, 7, 19–26. [Google Scholar]
- Lili, W.; Bo, Z.; Jinwei, F.; Xiaoan, H.; Shu, W.; Yashuo, L.; Zhou, Q.; Chongfeng, W. Development of a tomato harvesting robot used in greenhouse. Int. J. Agric. Biol. Eng. 2017, 10, 140–149. [Google Scholar] [CrossRef]
- Tyson, R.V.; Hochmuth, R.C.; Lamb, E.M.; Hochmuth, G.J.; Sweat, M.S. A decade of change in Florida’s greenhouse vegetable industry: 1991–2001. Proc. Fla. State Hortic. Soc. 2001, 114, 280–282. [Google Scholar]
- Jovicich, E.; VanSickle, J.J.; Cantliffe, D.J.; Stoffella, P.J. Greenhouse-grown colored peppers: A profitable alternative for vegetable production in Florida? HortTechnology 2005, 15, 355–369. [Google Scholar] [CrossRef]
- Ebert, A.W.; Wu, T.H.; Yang, R.Y. Amaranth sprouts and microgreens—A homestead vegetable production option to enhance food and nutrition security in the rural-urban continuum. In Proceedings of the Regional Symposium on Sustaining Small-Scale Vegetable Production and Marketing Systems for Food and Nutrition Security (SEAVEG 2014), Bangkok, Thailand, 25–27 February 2014; pp. 25–27. [Google Scholar]
- Kyriacou, M.C.; Rouphael, Y.; Di Gioia, F.; Kyratzis, A.; Serio, F.; Renna, M.; De Pascale, S.; Santamaria, P. Micro-scale vegetable production and the rise of microgreens. Trends Food Sci. Technol. 2016, 57, 103–111. [Google Scholar] [CrossRef]
- Ampim, P.A.; Obeng, E.; Gonzalez, E.O.; Weerasooriya, A.; Osuji, G.O.; Myers Sr, D.J. The Response of Egyptian Spinach and Vegetable Amaranth Microgreens to Different Light Regimes. Sci. J. Biol. Sci. 2020, 1, 3. [Google Scholar] [CrossRef]
- Rocchetti, G.; Tomas, M.; Zhang, L.; Zengin, G.; Lucini, L.; Capanoglu, E. Red beet (Beta vulgaris) and amaranth (Amaranthus sp.) microgreens: Effect of storage and in vitro gastrointestinal digestion on the untargeted metabolomic profile. Food Chem. 2020, 332, 127415. [Google Scholar] [CrossRef]
- Murphy, C.; Pill, W. Cultural practices to speed the growth of microgreen arugula (roquette; Eruca vesicaria subsp. sativa). J. Hortic. Sci. Biotechnol. 2010, 85, 171–176. [Google Scholar] [CrossRef]
- Berba, K.J.; Uchanski, M.E. Post-harvest physiology of microgreens. J. Young Investig. 2012, 24, 5. [Google Scholar]
- Wuang, S.C.; Khin, M.C.; Chua, P.Q.D.; Luo, Y.D. Use of Spirulina biomass produced from treatment of aquaculture wastewater as agricultural fertilizers. Algal Res. 2016, 15, 59–64. [Google Scholar] [CrossRef]
- Ying, Q.; Kong, Y.; Jones-Baumgardt, C.; Zheng, Y. Responses of yield and appearance quality of four Brassicaceae microgreens to varied blue light proportion in red and blue light-emitting diodes lighting. Sci. Hortic. 2020, 259, 108857. [Google Scholar] [CrossRef]
- Pennisi, G.; Sanyé-Mengual, E.; Orsini, F.; Crepaldi, A.; Nicola, S.; Ochoa, J.; Fernandez, J.A.; Gianquinto, G. Modelling Environmental Burdens of Indoor-Grown Vegetables and Herbs as Affected by Red and Blue LED Lighting. Sustainability 2019, 11, 4063. [Google Scholar] [CrossRef] [Green Version]
- Pennisi, G.; Orsini, F.; Landolfo, M.; Pistillo, A.; Crepaldi, A.; Nicola, S.; Fernández, J.A.; Marcelis, L.F.M.; Gianquinto, G. Optimal photoperiod for indoor cultivation of leafy vegetables and herbs. Eur. J. Hortic. Sci. 2020, 85, 329–338. [Google Scholar] [CrossRef]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; ElSohly, M.A.; Khan, I.A. Assessment of total phenolic and flavonoid content, antioxidant properties, and yield of aeroponically and conventionally grown leafy vegetables and fruit crops: A comparative study. Evid. Based Complement. Altern. Med. 2014, 2014, 253875. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piovene, C.; Orsini, F.; Bosi, S.; Sanoubar, R.; Bregola, V.; Dinelli, G.; Gianquinto, G. Optimal red: Blue ratio in led lighting for nutraceutical indoor horticulture. Sci. Hortic. 2015, 193, 202–208. [Google Scholar] [CrossRef]
- Sun, J.; Kou, L.; Geng, P.; Huang, H.; Yang, T.; Luo, Y.; Chen, P. Metabolomic assessment reveals an elevated level of glucosinolate content in CaCl2 treated broccoli microgreens. J. Agric. Food Chem. 2015, 63, 1863–1868. [Google Scholar] [CrossRef] [PubMed]
- Borrelli, K.; Koenig, R.T.; Jaeckel, B.M.; Miles, C.A. Yield of leafy greens in high tunnel winter production in the northwest United States. HortScience 2013, 48, 183–188. [Google Scholar] [CrossRef] [Green Version]
- Niu, G.; Sun, Y.; Masabni, J.G. Impact of low and moderate salinity water on plant performance of leafy vegetables in a recirculating NFT system. Horticulturae 2018, 4, 6. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.K.; Goenadie, V.; Lee, H.W.; Liang, X.; Loh, C.S.; Ong, C.N.; Tan, H.T.W. Growth and glucosinolate profiles of a common Asian green leafy vegetable, Brassica rapa subsp. chinensis var. parachinensis (choy sum), under LED lighting. Sci. Hortic. 2020, 261, 108922. [Google Scholar] [CrossRef]
- He, J.; Qin, L.; Chow, W.S. Impacts of LED spectral quality on leafy vegetables: Productivity closely linked to photosynthetic performance or associated with leaf traits? Int. J. Agric. Biol. 2019, 12, 16–25. [Google Scholar] [CrossRef]
- Maucieri, C.; Nicoletto, C.; Zanin, G.; Birolo, M.; Trocino, A.; Sambo, P.; Borin, M.; Xiccato, G. Effect of stocking density of fish on water quality and growth performance of European Carp and leafy vegetables in a low-tech aquaponic system. PLoS ONE 2019, 14, e0217561. [Google Scholar] [CrossRef] [Green Version]
- Ngilah, E.I.; Ying, T.F.; Yap, B.K. Growth and Yield of organic Lactuca sativa cv. fire red under irradiation of LED in controlled environment. Int. J. Agric. For. Plant. 2015, 1. [Google Scholar]
- Pinto, E.; Almeida, A.A.; Aguiar, A.A.; Ferreira, I.M. Comparison between the mineral profile and nitrate content of microgreens and mature lettuces. J. Food Compos. Anal. 2015, 37, 38–43. [Google Scholar] [CrossRef]
- Loconsole, D.; Cocetta, G.; Santoro, P.; Ferrante, A. Optimization of LED lighting and quality evaluation of romaine lettuce grown in an innovative indoor cultivation system. Sustainability 2019, 11, 841. [Google Scholar] [CrossRef] [Green Version]
- Gómez, C.; Jiménez, J. Effect of End-of-production High-energy Radiation on Nutritional Quality of Indoor-grown Red-leaf Lettuce. HortScience 2020, 55, 1055–1060. [Google Scholar] [CrossRef]
- Su, Y.L.; Wang, Y.F.; Ow, D.W. Increasing effectiveness of urban rooftop farming through reflector-assisted double-layer hydroponic production. Urban For. Urban Green. 2020, 54, 126766. [Google Scholar] [CrossRef]
- Muchjajib, U.; Muchjajib, S.; Suknikom, S.; Butsai, J. Evaluation of organic media alternatives for the production of microgreens in Thailand. In Proceedings of the XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), Brisbane, Australia, 17 August 2014; Volume 1102, pp. 157–162. [Google Scholar]
- Saaid, M.F.; Fadhil, N.S.M.; Ali, M.M.; Noor, M.Z.H. Automated indoor Aquaponic cultivation technique. In Proceedings of the 2013 IEEE 3rd International Conference on System Engineering and Technology, Shah Alam, Malaysia, 19–20 August 2013; pp. 285–289. [Google Scholar]
- Murphy, C.J.; Llort, K.F.; Pill, W.G. Factors affecting the growth of microgreen table beet. Int. J. Veg. Sci. 2010, 16, 253–266. [Google Scholar] [CrossRef]
- Wells, O.S. Rowcover and high tunnel growing systems in the United States. HortTechnology 1996, 6, 172–176. [Google Scholar] [CrossRef] [Green Version]
- Lamont, W.J.; McGann, M.R.; Orzolek, M.D.; Mbugua, N.; Dye, B.; Reese, D. Design and construction of the Penn State high tunnel. HortTechnology 2002, 12, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Lamont, W.J. Overview of the use of high tunnels worldwide. HortTechnology 2009, 19, 25–29. [Google Scholar] [CrossRef]
- Grubinger, V. High Tunnels and Other Season Extension Techniques; Sustainable Agriculture Research & Education: College Park, MD, USA, 2016. [Google Scholar]
- Manja, K.; Aoun, M. The use of nets for tree fruit crops and their impact on the production: A review. Sci. Hortic. 2019, 246, 110–122. [Google Scholar] [CrossRef]
- Tanny, J. Microclimate and evapotranspiration of crops covered by agricultural screens: A review. Biosyst. Eng. 2013, 114, 26–43. [Google Scholar] [CrossRef]
- Romero-Gámez, M.; Suárez-Rey, E.M.; Antón, A.; Castilla, N.; Soriano, T. Environmental impact of screenhouse and open-field cultivation using a life cycle analysis: The case study of green bean production. J. Clean Prod. 2012, 28, 63–69. [Google Scholar] [CrossRef]
- Santos, B.; Rios, D.; Nazco, R. Climatic conditions in tomato screenhouses in Tenerife (Canary Islands). Int. Symp. Greenh. Cool. 2006, 719, 215–222. [Google Scholar] [CrossRef]
- Eigenbrod, C.; Gruda, N. Urban vegetable for food security in cities. A review. Agron. Sustain. Dev. 2015, 35, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Despommiers, D. Farming up the city: The rise of urban vertical farms. Trends Biotechnol. 2013, 7, 388–389. [Google Scholar] [CrossRef] [PubMed]
- Despommiers, D. The Vertical Farm: Feeding the World in the 21st Century; St Martin’s Press: New York, NY, USA, 2010. [Google Scholar]
- Peck, S.W.; Callaghan, C.; Kuhn, M.E.; Bass, B. Greenbacks from Green Roofs: Forging a New Industry in Canada; Canada Mortgage and Housing Corporation: Toronto, Canada, 1999. [Google Scholar]
- Relf, D. Vegetable Gardening in Containers. Virginia Cooperative Extension Publication 426–336. 2015. Available online: https://www.pubs.ext.vt.edu/426/426-336/426-336.html (accessed on 27 April 2021).
- Pennisi, G.; Pistillo, A.; Orsini, F.; Cellini, A.; Spinelli, F.; Nicola, S.; Fernandez, J.A.; Crepaldi, A.; Gianquinto, G.; Marcelis, L.F. Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Sci. Hortic. 2020, 272, 109508. [Google Scholar] [CrossRef]
- Di Gioia, F.; De Bellis, P.; Mininni, C.; Santamaria, P.; Serio, F. Physicochemical, agronomical and microbiological evaluation of alternative growing media for the production of rapini (Brassica rapa L.) microgreens. J. Sci. Food Agric. 2017, 97, 1212–1219. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, A.; Dunn, B. Hydroponics; HLA-6442; Oklahoma State University: Stillwater, OK, USA, 2013; Available online: https://extension.okstate.edu/fact-sheets/hydroponics.html (accessed on 10 May 2022).
- Roberto, K. How to Hydroponics, 4th ed.; The Futuregarden Press: Farmingdale, NY, USA, 2003; p. 100. [Google Scholar]
- Son, J.E.; Kim, H.J.; Ahn, T.I. Hydroponic systems. In Plant Factory; Academic Press: Cambridge, MA, USA, 2020; pp. 273–283. [Google Scholar]
- Jones Benton, J., Jr. Complete Guide for Growing Plant Hydroponically; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: New York, NY, USA, 2014. [Google Scholar]
- The Hydroponics Guru. Available online: https://thehydroponicsguru.com/types-of-hydroponics-systems/ (accessed on 10 May 2022).
- NoSoilSolutions. The Different Types of Hydroponic Systems. Available online: https://www.nosoilsolutions.com/6-different-types-hydroponic-systems/ (accessed on 23 June 2022).
- Knaus, U.; Palm, H.W. Effects of the fish species choice on vegetables in aquaponics under spring-summer conditions in northern Germany (Mecklenburg Western Pomerania). Aquaculture 2017, 473, 62–73. [Google Scholar] [CrossRef]
- Somerville, C.; Cohen, M.; Pantanella, E.; Stankus, A.; Lovatelli, A. Small-scale aquaponic food production. In Integrated Fish and Plant Farming; FAO Fisheries and Aquaculture Technical Paper No. 589; FAO: Rome, Italy, 2014; p. 262. [Google Scholar]
- Gooley, G.J.; Gavine, F.M. Integrated Agri-Aquaculture Systems: A Resource Handbook for Australian Industry Development; RIRDC Publication No. 03/012; RIRDC: Kingston, Australia, 2003. [Google Scholar]
- Lennard, W. Commercial Aquaponic Systems: Integrating Recirculating Fish Culture with Hydroponic Plant Production; Wilson Lennard: Adelaide, Australia, 2017; p. 375. [Google Scholar]
- Beecher, L. Aquaponics, System Layout and Components. 2021. Available online: https://lgpress.clemson.edu/publication/aquaponics-system-layout-and-components/ (accessed on 23 June 2022).
- Bumgarner, N.; Hochmuth, R. An Introduction to Small-Scale Soilless and Hydroponic Vegetable Production; W 844-A; University of Tennessee Institute of Agriculture: Knoxville, TN, USA, 2019. [Google Scholar]
- Resh, H.M. Hydroponics for the Home Grower; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Abingdon, UK, 2015; p. 319. [Google Scholar]
- Sorenson, R.; Relf, D. Home Hydroponics, Virginia Cooperative Extension; Publication 426-084; Virginia Polytechnic Institute and State University: Blacksbury, VA, USA, 2009. [Google Scholar]
- MarketsandMarkets. Available online: https://www.marketsandmarkets.com/Market-Reports/hydroponic-market-94055021.html (accessed on 10 May 2022).
- Allied Market Research. Available online: https://www.alliedmarketresearch.com/aeroponics-market (accessed on 10 May 2022).
- McCree, K.J. The action spectrum, absorptance and quantum yield of photosynthesis in crop plants. Agric. Meteorol. 1971, 9, 191–216. [Google Scholar] [CrossRef]
- Yun, Y.J.; Kim, J.K.; Ju, J.Y.; Choi, S.K.; Park, W.I.; Suh, J.Y.; Jung, H.K.; Kim, Y.; Choi, S. Dual spectra band emissive Eu2+/Mn2+ co-activated alkaline earth phosphates for indoor plant growth novel phosphor converted-LEDs. Phys. Chem. Chem. Phys. 2017, 19, 11111–11119. [Google Scholar] [CrossRef]
- Li, Q.; Kubota, C. Effects of supplemental light quality on growth and phytochemicals of baby leaf lettuce. Environ. Exp. Bot. 2009, 67, 59–64. [Google Scholar] [CrossRef]
- Lin, K.H.; Huang, M.Y.; Huang, W.D.; Hsu, M.H.; Yang, Z.W.; Yang, C.M. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. 2013, 150, 86–91. [Google Scholar] [CrossRef]
- Dumas, Y.; Dadomo, M.; Di Lucca, G.; Grolier, P. Effects of environmental factors and agricultural techniques on antioxidant content of tomatoes. J. Sci. Food Agric. 2003, 83, 369–382. [Google Scholar] [CrossRef]
- Gruda, N. Impact of environmental factors on product quality of greenhouse vegetables for fresh consumption impact of environmental factors on product quality. Crit. Rev. Plant Sci. 2005, 24, 227–247. [Google Scholar] [CrossRef]
- Rouphael, Y.; Kyriacou, M.C.; Petropoulos, S.A.; De Pascale, S.; Colla, G. Improving vegetable quality in controlled environments. Sci. Hortic. 2018, 234, 275–289. [Google Scholar] [CrossRef]
- Mickens, M.A. A strategic approach for investigating light recipes for ‘Outredgeous’ red romaine lettuce using white and monochromatic LEDs. Life Sci. Space Res. 2018, 19, 53–62. [Google Scholar] [CrossRef]
- Naznin, M.; Lefsrud, M.; Gravel, V.; Azad, M. Blue Light added with Red LEDs Enhance Growth Characteristics, Pigments Content, and Antioxidant Capacity in Lettuce, Spinach, Kale, Basil, and Sweet Pepper in a Controlled Environment. Plants 2019, 8, 93. [Google Scholar] [CrossRef] [Green Version]
- Jung, W.S.; Chung, I.M.; Hwang, M.H.; Kim, S.H.; Yu, C.Y.; Ghimire, B.K. Application of light-emitting diodes for improving the nutritional quality and bioactive compound levels of some crops and medicinal plants. Molecules 2021, 26, 1477. [Google Scholar] [CrossRef]
- Cocetta, G.; Casciani, D.; Bulgari, R.; Musante, F.; Kołton, A.; Rossi, M.; Ferrante, A. Light use efficiency for vegetables production in protected and indoor environments. Eur. Phys. J. Plus. 2017, 132, 43. [Google Scholar] [CrossRef]
- Folta, K.M.; Maruhnich, S.A. Green light: A signal to slow down or stop. J. Exp. Bot. 2007, 58, 3099–3111. [Google Scholar] [CrossRef]
- Terashima, I.; Fujita, T.; Inoue, T.; Chow, W.S.; Oguchi, R. Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 2009, 50, 684–697. [Google Scholar] [CrossRef] [Green Version]
- Cope, K.R.; Snowden, M.C.; Bugbee, B. Photobiological interactions of blue light and photosynthetic photon flux: Effects of monochromatic and broad-spectrum light sources. Photochem. Photobiol. 2014, 90, 574–584. [Google Scholar] [CrossRef] [PubMed]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; van Ieperen, W.; Harbinson, J. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.-J.; Son, K.-H.; Oh, M.-M. Increase in biomass and bioactive compounds in lettuce under various ratios of red to far-red LED light supplemented with blue LED light. Hortic. Environ. Biotechnol. 2016, 57, 139–147. [Google Scholar] [CrossRef]
- Wang, J.; Lu, W.; Tong, Y.X.; Yang, Q.C. Leaf morphology, photosynthetic performance, chlorophyll fluorescence, stomata development of lettuce (Lactuca sativa L.) exposed to different ratios of red light to blue light. Front. Plant Sci. 2016, 7, 250. [Google Scholar]
- Yang, D.; Seaton, D.D.; Krahmer, J.; Halliday, K.J. Photoreceptor effects on plant biomass, resource allocation, and metabolic state. Proc. Natl. Acad. Sci. USA 2016, 113, 7667–7672. [Google Scholar] [CrossRef] [Green Version]
- Azad, M.O.K.; Kjaer, K.H.; Adnan, M.; Naznin, M.T.; Lim, J.D.; Sung, I.J.; Park, C.H.; Lim, Y.S. The evaluation of growth performance, photosynthetic capacity, and primary and secondary metabolite content of leaf lettuce grown under limited irradiation of blue and red LED light in an urban plant factory. Agriculture 2020, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Zeiger, E.; Talbott, L.D.; Frechilla, S.; Srivastava, A.; Zhu, J. The guard cell chloroplast: A perspective for the twenty-first century. New Phytol. 2002, 153, 415–424. [Google Scholar] [CrossRef]
- Bao, S.; Hua, C.; Huang, G.; Cheng, P.; Gong, X.; Shen, L.; Yu, H. Molecular basis of natural variation in photoperiodic flowering responses. Dev. Cell 2019, 50, 90–101. [Google Scholar] [CrossRef]
- Chen, Y.; Song, S.; Gan, Y.; Jiang, L.; Yu, H.; Shen, L. SHAGGY-like kinase 12 regulates flowering through mediating CONSTANS stability in Arabidopsis. Sci. Adv. 2020, 6, eaaw0413. [Google Scholar] [CrossRef]
- Li, C.; Liu, L.; Teo, Z.W.N.; Shen, L.; Yu, H. Nucleoporin 160 regulates flowering through anchoring HOS1 for destabilizing CO in Arabidopsis. Plant Commun. 2020, 1, 100033. [Google Scholar] [CrossRef]
- Kang, J.H.; KrishnaKumar, S.; Atulba, S.L.S.; Jeong, B.R.; Hwang, S.J. Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Hortic. Environ. Biotechnol. 2013, 54, 501–509. [Google Scholar] [CrossRef]
- Viršilė, A.; Brazaitytė, A.; Vaštakaitė-Kairienė, V.; Jankauskienė, J.; Miliauskienė, J.; Samuolienė, G.; Novičkovas, A.; Duchovskis, P. Nitrate, nitrite, protein, amino acid contents, and photosynthetic and growth characteristics of tatsoi cultivated under various photon flux densities and spectral light compositions. Sci. Hortic. 2019, 258, 108781. [Google Scholar] [CrossRef]
- Chalabi, Z.S.; Biro, A.; Bailey, B.J.; Aikman, D.P.; Cockshull, K.E. Optimal control strategies for carbon dioxide enrichment in greenhouse tomato crops*Part 1: Using pure carbon dioxide. Biosyst. Eng. 2002, 81, 421–431. [Google Scholar] [CrossRef]
- Becker, C.; Kläring, H. CO2 enrichment can produce high red leaf lettuce yield while increasing most flavonoid glycoside and some caffeic acid derivative concentrations. Food Chem. 2016, 199, 736–745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sgherri, C.; Pérez-López, U.; Micaelli, F.; Miranda-Apodaca, J.; Mena-Petite, A.; Muñoz-Rueda, A.; Quartacci, M.F. Elevated CO2 and salinity are responsible for phenolics-enrichment in two differently pigmented lettuces. Plant Physiol. Biochem. 2017, 115, 269–278. [Google Scholar] [CrossRef] [PubMed]
- Baslam, M.; Garmendia, I.; Goicoechea, N. Elevated CO2 may impair the beneficial effect of arbuscular mycorrhizal fungi on the mineral and phytochemical quality of lettuce. Ann. Appl. Biol. 2012, 161, 180–191. [Google Scholar] [CrossRef]
- Khan, I.; Azam, A.; Mahmood, A. The impact of enhanced atmospheric carbon dioxide on yield, proximate composition, elemental concentration, fatty acid and vitamin C contents of tomato (Lycopersicon esculentum). Environ. Monit. Assess. 2013, 185, 205–214. [Google Scholar] [CrossRef]
- Jin, C.; Du, S.; Wang, Y.; Condon, J.; Lin, X.; Zhang, Y. Carbon dioxide enrichment by composting in greenhouses and its effect on vegetable production. J. Plant Nutr. Soil Sci. 2009, 172, 418–424. [Google Scholar] [CrossRef]
- Leyva, R.; Constán-Aguilar, C.; Blasco, B.; Sánchez-Rodríguez, E.; Romero, L.; Soriano, T.; Ruíz, J.M. Effects of climatic control on tomato yield and nutritional quality in Mediterranean screenhouse. J. Sci. Food Agric. 2014, 94, 63–70. [Google Scholar] [CrossRef]
- Leonardi, C.; Guichard, S.; Berti, N. High vapour pressure deficit influences growth, transpiration and quality of tomato fruits. Sci. Hortic. 2000, 88, 285–296. [Google Scholar] [CrossRef]
- Rosales, M.A.; Cervilla, L.M.; Eva, S.; Juan, J.R.; Rubio-wilhelmi, M.; Soriano, T. The effect of environmental conditions on nutritional quality of cherry tomato fruits: Evaluation of two experimental Mediterranean. J. Sci. Food Agric. 2011, 91, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Vanhassel, P.; Bleyaert, P.; Van Lommel, J.; Vandevelde, I.; Crappé, S.; Van Hese, N.; Hanssens, J.; Steppe, K.; Van Labeke, M.C. Rise of nightly air humidity as a measure for tipburn prevention in hydroponic cultivation of butterhead lettuce. Acta Hortic. 2015, 1107, 195–202. [Google Scholar] [CrossRef]
- Gent, M.P.N. Effect of shade on quality of greenhouse tomato. Acta Hortic. 2007, 747, 107–112. [Google Scholar] [CrossRef]
- Gent, M.P.N. Density and duration of shade affect water and nutrient use in greenhouse tomato. J. Am. Soc. Hortic. Sci. 2008, 133, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.L.; Iraqi, D.; Gosselin, A. Effect of ambient humidity on physiological activities and fruit yield and quality of greenhouse tomato. Acta Hortic. 2007, 761, 85–92. [Google Scholar] [CrossRef]
- Schonhof, I.; Kläring, H.P.; Krumbein, A.; Claußen, W.; Schreiner, M. Effect of temperature increase under low radiation conditions on phytochemicals and ascorbic acid in greenhouse grown broccoli. Agric. Ecosyst. Environ. 2007, 119, 103–111. [Google Scholar] [CrossRef]
- Mansour, A.; Ismali, H.M.; Ramadan, M.F.; Gyulai, G. Variations in tomato (Lycopersicon esculentum) cultivars grown under heat stress. J. Verbr. Leb. 2009, 4, 118–127. [Google Scholar] [CrossRef]
- Liu, L.; Wang, J.; Han, Z.; Sun, X.; Li, H.; Zhang, J.; Lu, Y. Molecular analyses of tomato GS, GOGAT and GDH gene families and their response to abiotic stresses. Acta Physiol. Plant. 2016, 38, 229. [Google Scholar] [CrossRef]
- Giri, A.; Heckathorn, S.; Mishra, S.; Krause, C. Heat stress decreases levels of nutrient-uptake and assimilation proteins in tomato roots. Plants 2017, 6, 6. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, J.; Yu, J.Q.; Chen, Z. Role and regulation of autophagy in heat stress responses of tomato plants. Front. Plant Sci. 2014, 5, 174. [Google Scholar] [CrossRef] [Green Version]
- Max, J.F.J.; Horst, W.J.; Mutwiwa, U.N. Effects of greenhouse cooling method on growth, fruit yield and quality of tomato (Solanum lycopersicum L.) in a tropical climate. Sci. Hortic. 2009, 122, 179–186. [Google Scholar] [CrossRef]
- Riga, P.; Anza, M.; Garbisu, C. Tomato quality is more dependent on temperature than on photosynthetically active radiation. J. Sci. Food Agric. 2008, 88, 158–166. [Google Scholar] [CrossRef]
- Kläring, H.P.; Krumbein, A. The effect of constraining the intensity of solar radiation on the photosynthesis, growth, yield and product quality of tomato. J. Agron. Crop Sci. 2013, 199, 351–359. [Google Scholar] [CrossRef]
- Gautier, H.; Diakou-Verdin, V.; Bénard, C.; Reich, M.; Buret, M.; Bourgaud, F.; Poëssel, J.L.; Caris-Veyrat, C.; Génard, M. How does tomato quality (sugar, acid, and nutritional quality) vary with ripening stage, temperature, and irradiance? J. Agric. Food Chem. 2008, 56, 1241–1250. [Google Scholar] [CrossRef] [PubMed]
- Urrestarazu, M.; Salas, M.d.C.; Valera, D.; Gómez, A.; Mazuela, P.C. Effects of heating nutrient solution on water and mineral uptake and early yield of two cucurbits under soilless culture. J. Plant Nutr. 2008, 31, 527–538. [Google Scholar] [CrossRef]
- Cabañero, F.J.; Martínez, V.; Carvaja, M. Does calcium determine water uptake under saline conditions in pepper plants, or is it water flux which determines calcium uptake? Plant Sci. 2004, 166, 443–450. [Google Scholar] [CrossRef]
- Adams, P. Plant nutrition demystified. Acta Hortic. 1999, 481, 341–344. [Google Scholar] [CrossRef]
- Kafkafi, U. Root zone parameters controlling plant growth in soilless culture. Acta Hortic. 2001, 554, 27–38. [Google Scholar] [CrossRef]
- Tindall, J.A.; Mills, H.A.; Radcliffe, D.E. The effect of root zone temperature on nutrient uptake of tomato. J. Plant Nutr. 1990, 13, 939–956. [Google Scholar] [CrossRef]
- Elad, Y.; Rav David, D.; Israeli, L.; Fogel, M. Passive heat treatment of sweet basil crops suppresses white mould and grey mould. Plant Pathol. 2017, 66, 105–114. [Google Scholar] [CrossRef]
- Roblero, M.J.M.; Pineda, J.P.; León, T.C.; Castellanos, J.S. Oxygen in the root zone and its effect on plants. Rev. Mexicana Cienc. Agríc. 2020, 11, 931–943. [Google Scholar]
- Al-Rawahy, M.S.; Al-Rawahy, S.A.; Al-Mulla, Y.A.; Nadaf, S.K. Influence of nutrient solution temperature on its oxygen level and growth, yield and quality of hydroponic cucumber. J. Agric. Sci. 2019, 11, 75–92. [Google Scholar] [CrossRef]
- Rouphael, Y.; Cardarelli, M.; Bassal, A.; Leonardi, C.; Giuffrida, F.; Colla, G. Vegetable quality as affected by genetic, agronomic and environmental factors. J. Food Agric. Environ. 2012, 10, 680–688. [Google Scholar]
- Flores, P.; Navarro, J.M.; Garrido, C.; Ribio, J.S.; Martinez, V. Influence of Ca2+, K+ and NO3− fertilisation on nutritional quality of pepper. J. Sci. Food Agric. 2004, 84, 569–574. [Google Scholar] [CrossRef]
- Yasuor, H.; Ben-Gal, A.; Yermiyahu, U.; Beit-Yannai, E.; Cohen, S. Nitrogen management of greenhouse pepper production: Agronomic, nutritional, and environmental implications. HortScience 2013, 48, 1241–1249. [Google Scholar] [CrossRef] [Green Version]
- Parisi, M.; Giordano, L.; Pentangelo, A.; D’Onofrio, B.; Villari, G. Effects of different levels of nitrogen fertilization on yield and fruit quality in processing tomato. Acta Hortic. 2006, 700, 129–132. [Google Scholar] [CrossRef]
- Dorais, M.; Ehret, D.L.; Papadopoulos, A.P. Tomato (Solanum lycopersicum) health components: From the seed to the consumer. Phytochem. Rev. 2008, 7, 231–250. [Google Scholar] [CrossRef]
- Wang, Z.H.; Li, S.X.; Malhi, S. Effects of fertilization and other agronomic measures on nutritional quality of crops. J. Sci. Food Agric. 2008, 88, 7–23. [Google Scholar] [CrossRef]
- Stefanelli, D.; Goodwin, I.; Jones, R. Minimal nitrogen and water use in horticulture: Effect on quality and content of selected nutrients. Food Res. Int. 2010, 43, 1833–1843. [Google Scholar] [CrossRef]
- Tomasi, N.; Pinton, R.; Dalla Costa, L.; Cortella, G.; Terzano, R.; Mimmo, T.; Scampicchio, M.; Cesco, S. New solutions for floating cultivation system of ready-to-eat salad: A review. Trends Food Sci. Technol. 2015, 46, 267–276. [Google Scholar] [CrossRef]
- Blom-Zandstra, M. Nitrate accumulation in vegetables and its relationship to quality. Ann. Appl. Biol. 1989, 115, 553–561. [Google Scholar] [CrossRef]
- Borgognone, D.; Rouphael, Y.; Cardarelli, M.; Lucini, L.; Colla, G. Changes in biomass, mineral composition, and quality of cardoon in response to NO3−:Cl− ratio and nitrate deprivation from the nutrient solution. Front. Plant Sci. 2016, 7, 978. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santamaria, P.; Elia, A.; Parente, A.; Serio, F. Fertilization strategies for lowering nitrate content in leafy vegetables. Chicory and rocket salad cases. J. Plant Nutr. 1998, 21, 1791–1803. [Google Scholar] [CrossRef]
- Kyriacou, M.C.; Rouphael, Y. Towards a new definition of quality for fresh fruits and vegetables. Sci. Hortic. 2018, 234, 463–469. [Google Scholar] [CrossRef]
- Gonnella, M.; Conversa, G.; Santamaria, P.; Serio, F. Production and nitrate content in lamb’s lettuce grown in floating system. Acta Hortic. 2004, 644, 61–68. [Google Scholar] [CrossRef]
- Bongue-Bartelsman, M.; Phillips, D.A. Nitrogen stress regulates gene expression of enzymes in the flavonoid biosynthetic pathway of tomato. Plant Physiol. Biochem. 1995, 33, 539–546. [Google Scholar]
- Takahama, U.; Oniki, T. A peroxidase/phenolics/ascorbate system can scavenge hydrogen peroxide in plant cells. Physiol. Planta. 1997, 101, 845–852. [Google Scholar] [CrossRef]
- Zhang, C.L.; Gao, Z.M.; Zhao, Y.D.; Tang, W.M. The effects of different nitrogen forms and their concentration combinations on the growth and quality of spinach. J. Nanjing Agric. Univ. 1990, 13, 70–74. [Google Scholar]
- Siddiqi, M.Y.; Malhotra, B.; Min, X.; Glass, A.D.M. Effects of ammonium and inorganic carbon enrichment on growth and yield of a hydroponic to-mato crop. J. Plant Nutr. Soil Sci. 2002, 165, 191–197. [Google Scholar] [CrossRef]
- Heeb, A.; Lundegårdh, B.; Ericsson, T.; Savage, G.P. Effects of nitrate-, ammonium-, and organic-nitrogen-based fertilizers on growth and yield of tomatoes. J. Plant Nutr. Soil Sci. 2005, 168, 123–129. [Google Scholar] [CrossRef]
- Bramley, P.M. Regulation of carotenoids formation during tomato fruit repining and development. J. Exp. Bot. 2002, 53, 2107–2113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trudel, M.J.; Ozbun, J.L. Influence of potassium on carotenoid content of tomato fruit. J. Am. Soc. Hortic. Sci. 1971, 96, 763–765. [Google Scholar] [CrossRef]
- Taber, H.; Perkins-Veazie, P.; Li, S.; White, W.; Rodermel, S.; Xu, Y. Enhancement of tomato fruit lycopene by potassium is cultivar dependent. HortScience 2008, 43, 159–165. [Google Scholar] [CrossRef]
- Almeselmani, M.; Pant, R.C.; Singh, B. Potassium level and physiological response and fruit quality in hydroponically grown tomato. Int. J. Veg. Sci. 2010, 16, 85–99. [Google Scholar] [CrossRef]
- Fanasca, S.; Colla, G.; Rouphael, Y.; Saccardo, F.; Maiani, G.; Venneria, E.; Azzini, E. Evolution of nutritional value of two tomato genotypes grown in soilless culture as affected by macrocation proportions. HortScience 2006, 41, 1584–1588. [Google Scholar] [CrossRef] [Green Version]
- Verified Market Research. Global LED Grow Light Market Size and Forecast to 2025. 2019. Available online: https://www.verifiedmarketresearch.com/product/global-led-grow-light-market-size-and-forecast-to-2025/ (accessed on 28 April 2021).
- Gómez, C.; Currey, C.J.; Dickson, R.W.; Kim, H.-J.; Hernández, R.; Sabeh, N.C.; Raudales, R.E.; Brumfield, R.G.; Laury-Shaw, A.; Wilke, A.K.; et al. Controlled environment food production for urban agriculture. HortScience 2019, 54, 1448–1458. [Google Scholar] [CrossRef]
- Manning, L. Seven Ways to Get Funding for Your Indoor Farm. 2016. Available online: https://agfundernews.com/seven-ways-get-funding-indoor-farm.html (accessed on 4 April 2021).
- Olvera-Gonzalez, E.; Escalante-Garcia, N.; Myers, D.; Ampim, P.; Obeng, E.; Alaniz-Lumbreras, D.; Castaño, V. Pulsed LED lighting as an Alternative Energy Savings Technique for Vertical Farms and Plant Factories. Energies 2021, 14, 1603. [Google Scholar] [CrossRef]
- Coyle, B.D.; Ellison, B. Will Consumers Find Vertically Farmed Produce “Out of Reach”? Choices 2017, 32, 1–8. [Google Scholar]
- Cox, S. Enough with the Vertical Farming Fantasies: There are Still too Many Unanswered Questions about the Trendy Practice. Salon 2016. Available online: http://www.salon.com/2016/02/17 (accessed on 1 May 2016).
- Avgoustaki, D.D.; Xydis, G. Indoor Vertical Farming in the Urban Nexus Context: Business Growth and Resource Savings. Sustainability 2020, 12, 1965. [Google Scholar] [CrossRef] [Green Version]
- National Academies of Sciences, Engineering, and Medicine (NASEM). Challenges and Opportunities for Precision and Personalized Nutrition: Proceedings of A workshop; The National Academies Press: Washington, DC, USA, 2022. [Google Scholar] [CrossRef]
- Song, X.P.; Tan, H.T.W.; Tan, P.Y. Assessment of light adequacy for vertical farming in a tropical city. Urban For. Urban Green. 2018, 29, 49–57. [Google Scholar] [CrossRef]
- Stein, E.W. The transformative environmental effects large-scale indoor farming may have on air, water, and soil. Air Soil Water Res. 2021, 14, 1178622121995819. [Google Scholar] [CrossRef]
- Benis, K.; Ferrão, P. Commercial farming within the urban built environment—Taking stock of an evolving field in northern countries. Glob. Food Sec. 2018, 17, 30–37. [Google Scholar] [CrossRef]
- Specht, K.; Weith, T.; Swoboda, K.; Siebert, R. Socially acceptable urban agriculture businesses. Agron. Sustain. Dev. 2016, 36, 17. [Google Scholar] [CrossRef]
- Al-Chalabi, M. Vertical farming: Skyscraper sustainability? Sustain. Cities Soc. 2015, 18, 74–77. [Google Scholar] [CrossRef]
- Bulgarelli, D.; Schlaeppi, K.; Spaepen, S.; van Themaat, E.V.L.; Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant Biol. 2013, 64, 807–838. [Google Scholar] [CrossRef] [Green Version]
- Toju, H.; Peay, K.G.; Yamamichi, M.; Narisawa, K.; Hiruma, K.; Nait, K.; Fukuda, S.; Ushio, M.; Nakaoka, S.; Onoda, Y.; et al. Core microbiomes for sustainable agroecosystems. Nat. Plants 2018, 4, 247–257. [Google Scholar] [CrossRef]
- Organifarms Blog. Available online: https://www.organifarms.de/post/vertical-farming-label (accessed on 10 May 2022).
- Association for Vertical Farming, Columbia University SPS, Earth Institute. Sustainability certification for indoor urban and vertical farms. A sustainable approach to addressing growth in vertical farming. A report developed by students of the Masters of Science in Sustainability Management Fall 2015 Capstone Workshop at the Columbia University School for Professional Studies in association with the Earth Institute. Available online: https://docslib.org/doc/2774855/sustainability-certification-for-indoor-urban-and-vertical-farms-a-sustainable-approach-to-addressing-growth-in-vertical-farming (accessed on 18 October 2020).
Vegetable Crop | Scientific Name | References |
---|---|---|
‡ Amaranth | Amaranthus spp. | Ebert et al. [52]; Kyriacou et al. [53]; Ampim et al. [54]; Rocchetti et al. [55] |
‡ Arugula/Garden Rocket | Eruca sativa L. | Murphy and Pill [56]; Berba and Uchanski [57]; Wuang et al. [58]; Ying et al. [59]; Pennisi et al. [60]; Pennisi et al. [61] |
‡ Basil | Ocimum basilicum | Chandra et al. [62]; Piovene et al. [63]; Pennisi et al. [60]; Pennisi et al. [61] |
Bayam Red | Amaranthus gangeticus | Wuang et al. [58] |
‡ Broccoli | Brassica oleracea var. italica | Kyriacou et al. [53]; Wuang et al. [58]; Sun et al. [64] |
‡ Broccoli/‡ Choy sum/‡ Pac Choi/Pak Choy | Brassica rapa subsp. chinensis var. parachinensis | Borrelli et al. [65]; Wuang et al. [58]; Niu et al. [66]; Niu et al. [67]; Kyriacou et al. [53] |
Chinese Broccoli | Brassica alboglabra | He et al. [68] |
‡ Cabbage | Brassica oleracea var. capitata | Ying et al. [59] |
‡ Chicory/ Catalogna | Cichorium intybus | Maucieri et al. [69]; Pennisi et al. [60]; Pennisi et al. [61] |
‡ Cilantro/Coriander/dhanial | Coriandrum sativum | Kyriacou et al. [53] |
‡ Egyptian spinach | Corchorus olitorius | Ampim et al. [54] |
‡ Ice plants | Mesembryanthem crystallinum | He et al. [68] |
‡ Kale/Red Kale Kale “Red Russian” | Brassica oleracea Brassica napus L. | Chandra et al. [62] Ying et al. [59] |
‡ Lettuce | Lactuca sativa | Borrelli et al. [65]; Ngilah et al. [70]; Pinto et al. [71]; Kyriacou et al. [53]; Niu et al. [66]; He et al. [68]; Loconsole et al. [72]; Maucieri et al. [69]; Gómez and Jiménez [73]; Pennisi et al. [60]; Pennisi et al. [61]; Su et al. [74] |
‡ Malabar spinach/ Vine spinach | Basella alba | Muchjajib et al. [75] |
‡ Mustard | Brassica juncea L. | Muchjajib et al. [75]; Ying et al. [59] |
‡ Parsley | Petroselinum crispum | Chandra et al. [62] |
‡ Radish/Rat-tail radish | Raphanus sativus L. | Berba and Uchanski [57]; Muchjajib et al. [75]; Kyriacou et al. [53] |
‡ Red beet | Beta vulgaris | Kyriacou et al. [53] |
‡ Red cabbage | Cabbage (B. oleracea var. capitata), Red and purplemustard (B. juncea Czem.), mizuna (B. rapa L. var. nipposinica), and purple kohlrabi (B. oleracea L. var. gongylodes L.) | Kyriacou et al. [53]; Berba and Uchanski [57] |
‡ Spinach | Spinacia oleracea | Borrelli et al. [65]; Saaid et al. [76] |
‡ Swiss Chard/Chard/Table beet | Beta vulgaris subsp. vulgaris var. vulgaris | Chandra et al. [62]; Maucieri et al. [69]; Murphy et al. [77] |
Water spinach/Kangkong | Ipomoea aquatica | Muchjajib et al. [75] |
Type of Infrastructure | References † |
---|---|
Air-conditioned laboratory | Ngilah et al. [70]; Berba and Uchanski [57] |
Greenhouse | Murphy and Pill [56]; Murphy et al. [77]; Ebert et al. [52]; Pinto et al. [71]; Kyriacou et al. [53]; Niu et al. [66]; Maucieri et al. [69] |
Growth chamber/Indoor | Piovene et al. [63]; Sun et al. [64]; Kyriacou et al. [53]; Niu et al. [66]; Loconsole et al. [72]; Penissi et al. [60]; Gómez and Jiménez [73]; Niu et al. [67]; Pennisi et al. [61]; Ying et al. [59] |
Grow tent (high tunnel) | Borrelli et al. [65] |
Rooftop farming | Su et al. [74] |
Grow Medium/System | References † |
---|---|
Aeroponics | Chandra et al. [62] |
Hydroponics | Murphy et al. [77]; Saaid et al. [76]; Kyriacou et al. [53]; Niu et al. [66]; Loconsole et al. [72]; Maucieri et al. [69]; Pennisi et al. [60]; Gómez and Jiménez [73]; Pennisi et al. [61] Pennisi et al. [91]; Su et al. [74] |
Blends/mixes: | |
Peat moss and vermiculite | Ebert et al. [52]; Kyriacou et al. [53]; Pennisi et al. [91] |
Compost, peat, coir, and perlite | Ying et al. [59] |
Coconut coir dust, peat | Muchjajib et al. [75] |
Coconut coir dust, sugarcane filter cake | Muchjajib et al. [75] |
Coconut coir dust, vermicompost | Muchjajib et al. [75] |
Coconut coir dust | Muchjajib et al. [75] |
Garden soil/Potting soil | Wuang et al. [58]; Niu et al. [67] |
Jute and kenaf fibers | Di Gioia et al. [92] |
Mats (Sure to Grow) consisting of polyethyleneterephthalate | Di Gioia et al. [92] |
Mats (Sure to Grow) consisting of polyethyleneterephthalate | Berba and Uchanski [57] |
Paper towel/pad | Murphy et al. [77]; Ebert et al. [52]; Sun et al. [64] |
Peat moss/Peat-lite | Murphy et al. [77]; Murphy and Pill [56]; Muchjajib et al. [75]; Di Gioia et al. [92] |
Rock wool | Loconsole et al. [72] |
Sand | Muchjajib et al. [75] |
Sugarcane filter cake | Muchjajib et al. [75] |
Textile fiber mat | Di Gioia et al. [92] |
Vermicompost | Muchjajib et al. [75] |
Vermiculite | Murphy and Pill [56]; Murphy et al. [77] |
Volcanic growing media | Piovene et al. [63] |
Component | Importance | Considerations | Example(s) |
---|---|---|---|
Fish tank | Fish culture | 1. The size and shape should be suitable for accommodating fish without stressing them 2. Tank condition and history (new or used) 3. Material used to manufacture the tank (e.g., polypropylene, high-density polyethylene, fiberglass, PVC or EPDM lining material, low-density polyethylene (LDPE)) 4. Budget 5. Color: light color preferred for practical reasons including viewing and reflection of sunlight for temperature moderation 6. Resistance to UV 7. Failsafe and redundancy | Liquid totes, animal watering tanks |
Fish tank cover | 1. Prevent growth of algae 2. Prevent fish from jumping out | Suitability and durability | 1. Cloth, 2. tarps, 3. woven palm fronds, 4. plastic lids, 5. shading nets |
Filtration system (mechanical or passive and biological) | 1. Mechanical solid removal 2. Conversion of ammonia from fish waste to nitrite and then nitrate for plant use thus maintaining the overall chemical steadiness of the aquaponic system | 1. Use a productive biofilter that maintains adequate levels of dissolved oxygen to support nitrification | 1. Solid separators: swirl (vortex), clarifier, radial flow, solid filters (mechanical), raft filters, bird netting, screen filters, filter socks 2. Biofilters: moving bed filters, static filters and drip |
Water flow and aeration | 1. Conveyance of wastes to filters and nutrient-rich water to plants (water flow) 2. Maintaining sufficient dissolved oxygen in the system to support the survival of fish, beneficial microbes and plant growth | Use proper size water and air pumps | 1. Water pump: small or large submersible or inline 2. Aeration: active aqua air pumps, alita linear diaphragm air pumps, cylinder air stone, air bubble diffuser |
Fish Type | Provide nutrients for plant growth | 1. adaptability, 2. resilience, 3. diets and 4. breeding habits | 1. Tilapia, 2. ornamental fish, 3. cat fish, 4. perch, 5. koi, 6. gold fish, 7. tropical fish |
Plants | Use nutrients from the system and therefore act as a natural filter | 1. suitability, 2. ease of cultivation | 1. Lettuce, 2. watercress, 3. basil, 4. tomatoes, 5. peppers, 6. cucumbers, 7. cauliflower, 8. strawberries |
Hydroponic System | Merits | Demerits |
---|---|---|
Aeroponics | Superior availability of oxygen to roots Economical in terms of water and nutrient use Provides higher growth rate Small space requirement Easy to move around | It can be costly to set up Requires high levels of knowledge and skill to manage Needs to be monitored all the time Needs constant power supply Technical system problems can lead to plant death and financial loss |
Drip | Relatively cheap to set up It is flexible and scalable It is low maintenance compared to other systems It is less likely to fail | This system can be complicated for small-scale operations. Similarly, maintenance can be high if water is recycled Use of non-recovery designs can be wasteful |
Nutrient Film Technique | Can be easily established Relatively low construction cost Availability of oxygen to plant roots. It is a low-waste system | Dense root mass can impede nutrient solution flow through the systems Disease can be easily spread Root death can be a problem |
Deep Water Culture | Faster plant growth because of superior nutrient and oxygen uptake Maintenance needs are little Easy to assemble since there are few moving parts Nutrient solution top up is easy | Air pump disfunction can impair aeration and affect plant growth Temperature moderation can be a challenge in a non-recirculatory system System cleanup requires taking it out of operation |
Ebb and Flow | Its construction cost is low Plants can easily access nutrients sufficiently The system is easy to use | High potential for spread of root diseases Water and nutrient use are inefficient Growing medium needs periodic replacement Managing pH of the system can be challenging Oxygen supply may be limited in the ebb or drain stage Plants that grow extensive root systems have a potential for tangling and this can be problematic during harvesting Breakdowns can occur often |
Wick | It is easy to build and maintain Presents opportunities for repurposing household items and materials It uses less water and nutrients It does not require the use of electricity | It is not suited for cultivating large and fruit bearing plants High nutrient build up in the growing medium is possible overtime Periodic monitoring is needed Uneven distribution of water and nutrients is possible |
Growing System | Scale of Use |
---|---|
Hydroponic | |
Aeroponics | Domestic and commercial |
Drip | Domestic and commercial |
Nutrient Film Technique | Domestic and commercial; most scalable hydroponic technique and one of the most adopted methods |
Deep Water Culture | Domestic and commercial; good starting techniques to explore for beginners |
Ebb and Flow | Domestic and commercial; first commercial hydroponic system |
Wick | Mostly domestic and not commercial |
Aquaponics | |
Nutrient Film Technique | Domestic and commercial, mostly used for lettuce production |
Deep Water Culture | Domestic and large-scale commercial |
Ebb and Flow | Domestic and commercial |
Research Focus | References † |
---|---|
Factors affecting growth: Light, photoperiod, water, temperature | Berba and Uchanski [57]; Borrelli et al. [65]; Saaid et al. [76]; Ngilah et al. [70]; Piovene et al. [63]; Wuang et al. [58]; Niu et al. [66]; He et al. [68]; Loconsole et al. [72]; Pennisi et al. [60]; Gómez and Jiménez [73]; Pennisi et al. [61]; Niu et al. [67]; Ying et al. [59] |
Growth parameters: Crop yield, plant size, leaf color | Murphy and Pill [56]; Murphy et al. [77]; Borrelli et al. [65]; Chandra et al. [62]; Ebert et al. [52]; Piovene et al. [63]; Ngilah et al. [70]; Wuang et al. [58]; Niu et al. [66]; He et al. [68]; Loconsole et al. [72]; Maucieri et al. (2019); Pennisi et al. [61]; Niu et al. [67]; Ying et al. [59] |
Phytochemical composition/nutrients | Chandra et al. [62]; Ebert et al. [52]; Muchjajib et al. (2014); Pinto et al. [71]; Sun et al. [64]; Piovene et al. [63]; Kyriacou et al. [53]; Niu et al. [66]; Rocchetti et al. [55]; Niu et al. [67] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampim, P.A.Y.; Obeng, E.; Olvera-Gonzalez, E. Indoor Vegetable Production: An Alternative Approach to Increasing Cultivation. Plants 2022, 11, 2843. https://doi.org/10.3390/plants11212843
Ampim PAY, Obeng E, Olvera-Gonzalez E. Indoor Vegetable Production: An Alternative Approach to Increasing Cultivation. Plants. 2022; 11(21):2843. https://doi.org/10.3390/plants11212843
Chicago/Turabian StyleAmpim, Peter A. Y., Eric Obeng, and Ernesto Olvera-Gonzalez. 2022. "Indoor Vegetable Production: An Alternative Approach to Increasing Cultivation" Plants 11, no. 21: 2843. https://doi.org/10.3390/plants11212843
APA StyleAmpim, P. A. Y., Obeng, E., & Olvera-Gonzalez, E. (2022). Indoor Vegetable Production: An Alternative Approach to Increasing Cultivation. Plants, 11(21), 2843. https://doi.org/10.3390/plants11212843