Magnetic Iron–Improved Growth, Leaf Chemical Content, Yield, and Fruit Quality of Chinese Mandarin Trees Grown under Soil Salinity Stress
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Magnetic Iron on Tree Canopy Volume
2.2. Effect of Magnetic Iron on Leaf Chemical Content
2.3. Effect of Magnetic Iron on Leaf Nutrient Contents
2.4. Effect of Magnetic Iron on Yield kg.Tree−1
2.5. Effect of Magnetic Iron on Some Fruit Physical Properties
2.5.1. Fruit Weight and Volume
2.5.2. Fruit Firmness
2.5.3. Fruit Juice Volume
2.6. Effect of Magnetic Iron on Some Fruit Chemical Properties
2.6.1. Total Soluble Solids (T.S.S.%)
2.6.2. Total Acidity% and TSS/Acid Ratio
2.6.3. Vitamin C
2.7. Principal Components Analysis (PCA)
3. Materials and Methods
3.1. Experimental Site
3.2. Experimental Design
3.3. Field and Laboratory Measurements
3.3.1. Vegetative Growth
3.3.2. Leaf Chemical Contents
Total Chlorophyll
Leaf Proline Content
Relative Water Content
Total Phenolic Content
Nutrient Contents of Leaves
3.4. Tree Yield
3.5. Physical Characteristics of Fruits
3.6. Fruit Chemical Characteristics
Fruit Total Soluble Solids (TSS Percentage) and Total Fruit Acidity Percentage
3.7. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cheng, C.; Jia, M.; Gui, Y.; Ma, Y. Comparison of the Effects of Novel Processing Technologies and Conventional Thermal Pasteurisation on the Nutritional Quality and Aroma of Mandarin (Citrus Unshiu) Juice. Innov. Food Sci. Emerg. Technol. 2020, 64, 102425. [Google Scholar] [CrossRef]
- Cirmi, S.; Navarra, M.; Woodside, J.V.; Cantwell, M.M. Citrus Fruits Intake and Oral Cancer Risk: A Systematic Review and Meta-Analysis. Pharmacol. Res. 2018, 133, 187–194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haleblian, G.E.; Leitao, V.A.; Pierre, S.A.; Robinson, M.R.; Albala, D.M.; Ribeiro, A.A.; Preminger, G.M. Assessment of Citrate Concentrations in Citrus Fruit-Based Juices and Beverages: Implications for Management of Hypocitraturic Nephrolithiasis. J. Endourol. 2008, 22, 1359–1366. [Google Scholar] [CrossRef] [PubMed]
- Holford, P.; Carr, A.C.; Jovic, T.H.; Ali, S.R.; Whitaker, I.S.; Marik, P.E.; Smith, A.D. Vitamin C—An Adjunctive Therapy for Respiratory Infection, Sepsis and COVID-19. Nutrients 2020, 12, 3760. [Google Scholar] [CrossRef] [PubMed]
- Goldenberg, L.; Yaniv, Y.; Porat, R.; Carmi, N. Mandarin Fruit Quality: A Review: Mandarin Fruit Quality. J. Sci. Food Agric. 2018, 98, 18–26. [Google Scholar] [CrossRef]
- Ennab, H.A. Effect of nitrogen and GA3 on growth, yield and fruit quality of Chinese mandarin trees. Menoufia J. Plant Prod. 2017, 2, 117–128. [Google Scholar] [CrossRef]
- Pagán, E.; Robles, J.M.; Temnani, A.; Berríos, P.; Botía, P.; Pérez-Pastor, A. Effects of Water Deficit and Salinity Stress on Late Mandarin Trees. Sci. Total Environ. 2022, 803, 150109. [Google Scholar] [CrossRef]
- Alvarez-Gerding, X.; Espinoza, C.; Inostroza-Blancheteau, C.; Arce-Johnson, P. Molecular and Physiological Changes in Response to Salt Stress in Citrus Macrophylla W Plants Overexpressing Arabidopsis CBF3/DREB1A. Plant Physiol. Biochem. 2015, 92, 71–80. [Google Scholar] [CrossRef]
- Syvertsen, J.P.; Garcia-Sanchez, F. Multiple Abiotic Stresses Occurring with Salinity Stress in Citrus. Environ. Exp. Bot. 2014, 103, 128–137. [Google Scholar] [CrossRef]
- Hamed, N. Effect of Some Applications on the Performance of Mandarin Trees under Soil Salinity Conditions. NIDOC-ASRT 2017, 30, 141–153. [Google Scholar] [CrossRef]
- He, S.; Feng, Y.; Ren, H.; Zhang, Y.; Gu, N.; Lin, X. The Impact of Iron Oxide Magnetic Nanoparticles on the Soil Bacterial Community. J. Soils Sediments 2011, 11, 1408–1417. [Google Scholar] [CrossRef]
- Likhtenshtein, G. Electron Spin Interactions in Chemistry and Biology; Springer : Berlin/Heidelberg, Germany; New York, NY, USA, 2016; ISBN 978-3-319-33926-9. [Google Scholar]
- Joseph, S.; Anawar, H.M.; Storer, P.; Blackwell, P.; Chia, C.; Lin, Y.; Munroe, P.; Donne, S.; Horvat, J.; Wang, J.; et al. Effects of Enriched Biochars Containing Magnetic Iron Nanoparticles on Mycorrhizal Colonisation, Plant Growth, Nutrient Uptake and Soil Quality Improvement. Pedosphere 2015, 25, 749–760. [Google Scholar] [CrossRef]
- Patel, H.K.; Kalaria, R.K.; Khimani, M.R. Nanotechnology: A Promising Tool for Bioremediation. In Removal of Toxic Pollutants Through Microbiological and Tertiary Treatment; Elsevier: Amsterdam, The Netherlands, 2020; pp. 515–547. ISBN 978-0-12-821014-7. [Google Scholar]
- Soliman, M.A.M.; Abo-Ogiela, H.M.; El-Saedony, N.A. Reducing Adverse Effects of Salinity in Peach Trees Grown in Saline Clay Soil. Alex. Sci. Exch. J. 2017, 38, 800–809. [Google Scholar] [CrossRef]
- Akhtar, N.; Ilyas, N.; Meraj, T.A.; Pour-Aboughadareh, A.; Sayyed, R.Z.; Mashwani, Z.-R.; Poczai, P. Improvement of Plant Responses by Nanobiofertilizer: A Step towards Sustainable Agriculture. Nanomaterials 2022, 12, 965. [Google Scholar] [CrossRef]
- Mahmoud, A.W.M.; Taha, S.S. Main Sulphur Content in Essential Oil of Eruca Sativa as Affected by Nano Iron and Nano Zinc Mixed with Organic Manure. Agric. Pol’nohospodárstvo 2018, 64, 65–79. [Google Scholar] [CrossRef] [Green Version]
- El-Desouky, H.S.; Islam, K.R.; Bergefurd, B.; Gao, G.; Harker, T.; Abd-El-Dayem, H.; Ismail, F.; Mady, M.; Zewail, R.M.Y. Nano Iron Fertilization Significantly Increases Tomato Yield by Increasing Plants’ Vegetable Growth and Photosynthetic Efficiency. J. Plant Nutr. 2021, 44, 1649–1663. [Google Scholar] [CrossRef]
- EL Ghayaty, S.; Abdrabboh, G.; Hamdy, A.; Ahmed, A. Effect of Soil Applications Anti-Salinity Agent on Growth, Yield and Fruit Quality of Superior Seedless Grapevines (Vitis Vinifera L.). Al Azhar J. Agric. Res. 2019, 44, 24–34. [Google Scholar] [CrossRef]
- Abo-Gabien, M.G. Effect of Magnetic Iron and Potassium Humate on Some Flowering and Fruiting Characteristics of “Aggizi” Olive Trees Grown under Salt Stress Conditions in South Sinai. Ann. Agric. Sci. Moshtohor 2021, 59, 711–722. [Google Scholar] [CrossRef]
- Abou-Baker, N.H.; Hamed, N.A.; Abdel-Aziz, R.A.; Salem, A.S. Reducing Salinity Stress in Murcott Mandarin Orchards Using Different Soil Amendments. Asian J. Agric. Hortic. Res. 2019, 4, 48913. [Google Scholar] [CrossRef]
- Abobatta, W. Impact of Hydrogel Polymer in Agricultural Sector. Adv. Agric. Environ. Sci. Open Access 2018, 1, 59–64. [Google Scholar] [CrossRef]
- Sharma, A.; Shahzad, B.; Kumar, V.; Kohli, S.K.; Sidhu, G.P.S.; Bali, A.S.; Handa, N.; Kapoor, D.; Bhardwaj, R.; Zheng, B. Phytohormones Regulate Accumulation of Osmolytes Under Abiotic Stress. Biomolecules 2019, 9, 285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abobatta, W.F. Influence of Magnetic Iron and K-Humate on Productivity of Valencia Orange Trees (Citrus Sinensis L.) under Salinity Conditions. Int. J. Sci. Res. Agric. Sci. 2015, 2, 108–119. [Google Scholar]
- Esitken, A.; Karlidag, H.; Ercisli, S.; Turan, M.; Sahin, F. The Effect of Spraying a Growth Promoting Bacterium on the Yield, Growth and Nutrient Element Composition of Leaves of Apricot (Prunus Armeniaca L. Cv. Hacihaliloglu). Aust. J. Agric. Res. 2003, 54, 377. [Google Scholar] [CrossRef]
- Mahdavian, A.R.; Mirrahimi, M.A.-S. Efficient Separation of Heavy Metal Cations by Anchoring Polyacrylic Acid on Superparamagnetic Magnetite Nanoparticles through Surface Modification. Chem. Eng. J. 2010, 159, 264–271. [Google Scholar] [CrossRef]
- Ahmed, Y.M.; Shalaby, E.A.; Shanan, N.T. The Use of Organic and Inorganic Cultures in Improving Vegetative Growth, Yield Characters and Antioxidant Activity of Roselle Plants (Hibiscus Sabdariffa L.). Afr. J. Biotechnol. 2011, 10, 1988–1996. [Google Scholar]
- Mostafazadeh-Fard, B.; Khoshravesh, M.; Mousavi, S.-F.; Kiani, A.-R. Effects of Magnetized Water and Irrigation Water Salinity on Soil Moisture Distribution in Trickle Irrigation. J. Irrig. Drain Eng. 2011, 137, 398–402. [Google Scholar] [CrossRef]
- El-Merghany, S.; El-Desouky, M.I.; El-Hameid, S.A.A. Improving Productivity and Fruit Quality of Ferehy Date Palm Cultivar under Siwa Oasis Conditions. Egypt. J. Hortic. 2019, 46, 179–193. [Google Scholar] [CrossRef] [Green Version]
- Dave, P.N.; Chopda, L.V. Application of Iron Oxide Nanomaterials for the Removal of Heavy Metals. J. Nanotechnol. 2014, 2014, 398569. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, S.; Fayed, T.; Esmail, A.; Abdou, N. Growth, Nutrient Status and Yield of Le-Conte Pear Trees as Influenced by Some Organic and Biofertilizer Rates Compared with Chemical Fertilizer. Egypt. J. Agric. Sci. 2010, 61, 17–32. [Google Scholar] [CrossRef]
- Mengel, K. Iron Availability in Plant Tissues-Iron Chlorosis on Calcareous Soils. Plant Soil 1994, 165, 275–283. [Google Scholar] [CrossRef]
- Pérez-Martín, L.; Busoms, S.; Tolrà, R.; Poschenrieder, C. Transcriptomics Reveals Fast Changes in Salicylate and Jasmonate Signaling Pathways in Shoots of Carbonate-Tolerant Arabidopsis Thaliana under Bicarbonate Exposure. IJMS 2021, 22, 1226. [Google Scholar] [CrossRef]
- Li, J.; Chang, P.R.; Huang, J.; Wang, Y.; Yuan, H.; Ren, H. Physiological Effects of Magnetic Iron Oxide Nanoparticles Towards Watermelon. J. Nanosci. Nanotech. 2013, 13, 5561–5567. [Google Scholar] [CrossRef]
- El-Sayed, A.E.-R.; Mohamed, S. Enhancing olive trees growth and productivity by using hydrogel and potassium humate under rain-fed condition in northern western coastal zone. Egypt. J. Desert Res. 2017, 67, 137–151. [Google Scholar] [CrossRef]
- Mohamed, S.M.M. Response of Mango Trees to Application of Magnetite, Natural Mixture Compound and Selenium under Drip Irrigation System in Sandy Soil. Ph.D. Thesis, Faculty of Agriculture-Ain Shams University, Kheimah, Egypt, 2017. [Google Scholar]
- Hamdy, A.E.; Khalifa, S.M.; Abdeen, S.A. Effect of Magnetic Water on Yield and Fruit Quality of Some Mandarin Varieties. Ann. Agric. Sci. Moshtohor 2015, 53, 657–666. [Google Scholar] [CrossRef]
- Reina, F.G.; Pascual, L.A.; Fundora, I.A. Influence of a Stationary Magnetic Field on Water Relations in Lettuce Seeds. Part II: Experimental Results. Bioelectromagnetics 2001, 22, 596–602. [Google Scholar] [CrossRef]
- Abd El-Monem, E.A.; El-Ashry, S.M.; Mostafa, E.A.M. Performance of Coratina Olive Seedlings as Affected by Spraying Humic Acid and Some Micro Elements. J. Appl. Sci. Res 2011, 7, 1467–1471. [Google Scholar]
- El-Dengawy, E.; Mustafa, M.; Abo El-Enien, M.; Barakat, R. Impact of Magnetization and Organic Acids on the Growth and Productivity of ‘Washington Navel Orange’ Trees under Irrigation with Salty Water. J. Plant Prod. 2019, 10, 469–475. [Google Scholar] [CrossRef]
- Hoda, M.M.; Faten, A.K.; Azza, A.M.A. Effect of Magnetite and Some Biofertilizer Application on Growth and Yield of Valencia Orange Trees Under El—Bustan Condition. Nat. Sci. 2013, 11, 35–42. [Google Scholar]
- Vashisth, A.; Nagarajan, S. Exposure of Seeds to Static Magnetic Field Enhances Germination and Early Growth Characteristics in Chickpea (Cicer Arietinum L.). Bioelectromagnetics 2008, 29, 571–578. [Google Scholar] [CrossRef]
- Shabrangi, A.; Majd, A. Effect of Magnetic Fields on Growth and Antioxidant Systems in Agricultural Plants. In Proceedings of the Progress in Electromagnetics Research Symposium, Beijing, China, 23–27 March 2009; pp. 23–27. [Google Scholar]
- Vargas, M.; Albors, A.; Chiralt, A.; González-Martínez, C. Quality of Cold-Stored Strawberries as Affected by Chitosan–Oleic Acid Edible Coatings. Postharv. Biol. Technol. 2006, 41, 164–171. [Google Scholar] [CrossRef]
- Eşitken, A.; Turan, M. Alternating Magnetic Field Effects on Yield and Plant Nutrient Element Composition of Strawberry (Fragaria x Ananassa Cv. Camarosa). Acta Agric. Scand. Sect. B Soil Plant Sci. 2004, 54, 135–139. [Google Scholar] [CrossRef]
- Ataya, S.; Osman, S.; Diab, S.; Wassif, O. Improving of Hayany Date Palm Production by Using K-Humate as Soil Application and Magnetic Water Irrigation at South Sinai Governorate Egypt. Egypt. J. Hortic. 2022, 49, 129–146. [Google Scholar] [CrossRef]
- Ercan, I.; Tombuloglu, H.; Alqahtani, N.; Alotaibi, B.; Bamhrez, M.; Alshumrani, R.; Ozcelik, S.; Kayed, T.S. Magnetic Field Effects on the Magnetic Properties, Germination, Chlorophyll Fluorescence, and Nutrient Content of Barley (Hordeum Vulgare L.). Plant Physiol. Biochem. 2022, 170, 36–48. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Bian, C.; Long, A.; Wang, Z.; Cao, M.; Luo, J. Impacts of Root Pruning and Magnetized Water Irrigation on the Phytoremediation Efficiency of Celosia Argentea. Ecotoxicol. Environ. Saf. 2021, 211, 111963. [Google Scholar] [CrossRef] [PubMed]
- Zekri, M. 594 Citrus Rootstocks Affect Scion Nutrition, Fruit Quality, Growth, Yield, and Economical Return. HortScience 2000, 35, 499C. [Google Scholar] [CrossRef]
- Wood, C.W.; Reeves, D.W.; Himelrick, D.G. Relationships between Chlorophyll Meter Readings and Leaf Chlorophyll Concentration, N Status, and Crop Yield: A Review. Agron. Soc. N. Z. 1993, 23, 1–9. [Google Scholar]
- Malik, N.S.A.; Perez, J.L.; Kunta, M.; Patt, J.M.; Mangan, R.L. Changes in Free Amino Acids and Polyamine Levels in Satsuma Leaves in Response to Asian Citrus Psyllid Infestation and Water Stress: Changes in Free Amino Acids and Polyamine Levels. Insect Sci. 2014, 21, 707–716. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Teare, I.D. Rapid Determination of Free Proline for Water-Stress Studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- Claussen, W. Proline as a Measure of Stress in Tomato Plants. Plant Sci. 2005, 168, 241–248. [Google Scholar] [CrossRef]
- Casquete, R.; Castro, S.M.; Villalobos, M.C.; Serradilla, M.J.; Queirós, R.P.; Saraiva, J.A.; Córdoba, M.G.; Teixeira, P. High Pressure Extraction of Phenolic Compounds from Citrus Peels†. High Press. Res. 2014, 34, 447–451. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu Reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. ISBN 978-0-12-182200-2. [Google Scholar]
- Adams, W.E.; Pearson, R.W.; Jackson, W.A.; McCreery, R.A. Influence of Limestone and Nitrogen on Soil PH and Coastal Bermudagrass Yield 1. Agron. J. 1967, 59, 450–453. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A Modified Single Solution Method for the Determination of Phosphate in Natural Waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Thomas, M.I.; Saunders, R.A. An Inexpensive System of Automated Flame Photometry of Serum Sodium and Potassium. Ann Clin Biochem. 1974, 11, 238–241. [Google Scholar] [CrossRef]
- Cheng, K.L.; Bray, R.H. Determination of calcium and magnesium in soil and plant material. Soil Sci. 1951, 72, 449–458. [Google Scholar] [CrossRef]
- Abd El-Naby, S.K.M.; Mohamed, A.A.A.; El-Naggar, Y.I.M. Effect of melatonin, ga3 and naa on vegetative growth, yield and quality of ‘canino’ apricot fruits. Acta Sci. Pol. Hortorum Cultus 2019, 18, 167–174. [Google Scholar] [CrossRef]
- McKie, V.A.; McCleary, B.V. A Novel and Rapid Colorimetric Method for Measuring Total Phosphorus and Phytic Acid in Foods and Animal Feeds. J. Aoac Int. 2016, 99, 738–743. [Google Scholar] [CrossRef]
- Snedecor, G.W.; Cochran, W.G. Statistical Methods, 7th ed.; The Iowa State University Press: Ames, IA, USA, 1990. [Google Scholar]
Variable | PC1 | PC2 | PC3 | PC1 | PC2 | PC3 |
---|---|---|---|---|---|---|
Yield kg.tree−1 | 0.218 | 0.27 | 0.208 | 0.249 | 0.028 | 0.21 |
Yield increasing (%) | 0.218 | 0.27 | 0.208 | 0.213 | 0.261 | 0.235 |
Fruit weight (g) | 0.244 | 0.001 | 0.101 | 0.192 | −0.332 | 0.127 |
Fruit volume (cm3) | 0.222 | −0.243 | 0.215 | 0.247 | 0.099 | −0.134 |
Fruit firmness (lb/in2) | 0.223 | 0.255 | 0.17 | 0.005 | −0.482 | −0.458 |
Pulp weight (g) | 0.245 | 0.007 | 0.02 | 0.173 | −0.378 | −0.038 |
Juice (cm3) | 0.081 | 0.038 | −0.809 | 0.246 | −0.103 | −0.147 |
Canopy volume (m3) | 0.237 | −0.176 | 0.07 | 0.237 | −0.05 | 0.425 |
Leaf N% content (dr.wt.) | 0.242 | −0.038 | −0.129 | 0.249 | 0.049 | −0.199 |
Leaf P% content (dr.wt.) | 0.24 | −0.024 | −0.139 | 0.252 | −0.03 | −0.079 |
Leaf K% content (dr.wt.) | 0.242 | −0.024 | −0.139 | 0.251 | 0.023 | −0.16 |
Leaf Fe ppm content (dr.wt.) | 0.217 | −0.276 | 0.215 | 0.238 | −0.119 | 0.308 |
Leaf Na content (%) | −0.245 | 0.03 | 0.009 | −0.251 | −0.065 | 0.039 |
Leaf Cl content (%) | −0.242 | 0.062 | 0.12 | −0.251 | 0.021 | 0.144 |
Total chlorophyll | −0.226 | 0.256 | 0.127 | 0.249 | −0.086 | 0.092 |
R.W.C. (%) | 0.237 | −0.181 | −0.032 | 0.246 | −0.11 | 0.109 |
Total acidity (%) | −0.196 | −0.39 | 0.197 | −0.198 | −0.274 | 0.416 |
TSS/acid ratio | 0.192 | 0.434 | −0.059 | 0.183 | 0.342 | −0.256 |
Vitamin C g/100 mL | 0.218 | −0.314 | −0.093 | 0.236 | −0.188 | −0.001 |
Peel thickness (mm) | 0.23 | 0.241 | 0.044 | 0.165 | 0.391 | 0.072 |
Yield kg.tree−1 | Yield Increasing | Fruit Weight (g) | Fruit Volume (cm3) | Fruit Firmness (lb/inch2) | Pulp Weight (g) | Juice (cm3) | Canopy Volume (m3) | Leaf N% Content (dr.wt.) | Leaf P% Content (dr.wt.) | Leaf K% Content (dr.wt.) | Leaf Fe ppm Content (dr.wt.) | Leaf Na Content (%) | Leaf Cl Content (%) | Total Chlorophyll | R.W.C. (%) | Total Acidity (%) | TSS/Acid Ratio | Vitamin C | Peel Thickness (mm) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield kg.tree−1 | 1 | |||||||||||||||||||
Yield increasing (%) | 1.000 ** | 1 | ||||||||||||||||||
Fruit weight (g) | 0.912 ** | 0.912 ** | 1 | |||||||||||||||||
Fruit volume | 0.729 ** | 0.729 ** | 0.926 ** | 1 | ||||||||||||||||
Fruit firmness (lb/inch2) | 0.999 ** | 0.999 ** | 0.926 ** | 0.744 ** | 1 | |||||||||||||||
Pulp weight (g) | 0.899 ** | 0.899 ** | 0.995 ** | 0.905 ** | 0.916 ** | 1 | ||||||||||||||
Juice (cm3) | 0.087 * | 0.088 * | 0.218 * | 0.045 ** | 0.127 * | 0.310 * | 1 | |||||||||||||
Canopy volume (m3) | 0.780 ** | 0.780 ** | 0.967 ** | 0.979 ** | 0.800 ** | 0.963 ** | 0.229 * | 1 | ||||||||||||
Leaf N% content (dr.wt.) | 0.820 ** | 0.820 ** | 0.963 ** | 0.874 ** | 0.845 ** | 0.983 ** | 0.464 * | 0.954 ** | 1 | |||||||||||
Leaf P% content (dr.wt.) | 0.787 ** | 0.787 ** | 0.967 ** | 0.937 ** | 0.811 ** | 0.977 ** | 0.367 * | 0.988 ** | 0.987 ** | 1 | ||||||||||
Leaf K% content (dr.wt.) | 0.823 ** | 0.823 ** | 0.959 ** | 0.861 ** | 0.848 ** | 0.981 ** | 0.480 * | 0.946 ** | 1.000 ** | 0.982 ** | 1 | |||||||||
Leaf Fe ppm content (dr.wt.) | 0.693 ** | 0.693 ** | 0.906 ** | 0.999 ** | 0.709 ** | 0.885 ** | 0.036 * | 0.972 ** | 0.858 ** | 0.927 ** | 0.843 ** | 1 | ||||||||
Leaf Na content (%) | −0.870 ** | −0.870 ** | −0.991 ** | −0.914 ** | −0.889 ** | −0.998 ** | −0.338 * | −0.973 ** | −0.990 ** | −0.988 ** | −0.988 ** | −0.897 ** | 1 | |||||||
Leaf Cl content (%) | −0.809 ** | −0.809 ** | −0.963 ** | −0.887 ** | −0.834 ** | −0.982 ** | −0.454 * | −0.962 ** | −0.999 ** | −0.992 ** | −0.998 ** | −0.872 ** | 0.990 ** | 1 | ||||||
Total chlorophyll | −0.639 ** | −0.639 ** | −0.894 ** | −0.921 ** | −0.670 ** | −0.911 ** | −0.423 * | −0.966 ** | −0.950 ** | −0.978 ** | −0.942 ** | −0.920 ** | 0.935 ** | 0.959 ** | 1 | |||||
R.W.C. (%) | 0.748 ** | 0.748 ** | 0.953 ** | 0.953 ** | 0.773 ** | 0.961 ** | 0.341 * | 0.993 ** | 0.973 ** | 0.997 ** | 0.966 ** | 0.946 ** | −0.975 ** | −0.980 ** | −0.987 ** | 1 | ||||
Total acidity (%) | −0.870 ** | −0.870 ** | −0.765 ** | −0.467 * | −0.881 ** | −0.797 ** | −0.510 ** | −0.608 ** | −0.789 ** | −0.690 ** | −0.804 ** | −0.425 * | 0.775 ** | 0.768 ** | 0.561 ** | −0.632 ** | 1 | |||
TSS/acid ratio | 0.918 ** | 0.918 ** | 0.767 ** | 0.470 * | 0.921 ** | 0.784 ** | 0.357 * | 0.589 ** | 0.745 ** | 0.653 ** | 0.759 ** | 0.426 * | −0.753 ** | −0.724 ** | −0.498 ** | 0.593 ** | −0.985 ** | 1 | ||
Vitamin C | 0.587 ** | 0.587 ** | 0.867 ** | 0.931 ** | 0.618 ** | 0.879 ** | 0.371 * | 0.959 ** | 0.916 ** | 0.959 ** | 0.907 ** | 0.935 ** | −0.906 ** | −0.929 ** | −0.995 ** | 0.976 ** | −0.479 * | 0.418 * | 1 | |
Peel thickness (mm) | 0.980 ** | 0.980 ** | 0.937 ** | 0.738 ** | 0.988 ** | 0.941 ** | 0.281 * | 0.820 ** | 0.898 ** | 0.852 ** | 0.903 ** | 0.704 ** | −0.921 ** | −0.886 ** | −0.726 ** | 0.812 ** | −0.928 ** | 0.942 ** | 0.669 ** | 1 |
Yield kg.tree−1 | Yield Increasing | Fruit Weight g | Fruit Volume (cm3) | Fruit Firmness (lb/inch2) | Pulp Weight (g) | Juice (cm3) | Canopy Volume (m3) | Leaf N% Content (dr.wt.) | Leaf P% Content (dr.wt.) | Leaf K% Content (dr.wt.) | Leaf Fe ppm Content (dr.wt.) | Leaf Na Content (%) | Leaf Cl Content (%) | Total Chlorophyll | R.W.C. (%) | Total Acidity (%) | TSS/Acid Ratio | Vitamin C | Peel Thickness (mm) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Yield kg.tree−1 | 1 | |||||||||||||||||||
Yield increasing (%) | 0.888 ** | 1 | ||||||||||||||||||
Fruit weight (g) | 0.731 ** | 0.336 * | 1 | |||||||||||||||||
Fruit volume | 0.953 ** | 0.899 ** | 0.608 ** | 1 | ||||||||||||||||
Fruit firmness (lb/inch2) | −0.097 ** | −0.526 ** | 0.571 ** | −0.124 * | 1 | |||||||||||||||
Pulp weight (g) | 0.627 ** | 0.200 * | 0.984 ** | 0.528 ** | 0.701 ** | 1 | ||||||||||||||
Juice (cm3) | 0.927 ** | 0.697 ** | 0.855 ** | 0.924 ** | 0.243 * | 0.812 ** | 1 | |||||||||||||
Canopy volume (m3) | 0.973 ** | 0.804 ** | 0.807 ** | 0.859 ** | −0.022 * | 0.698 ** | 0.890 ** | 1 | ||||||||||||
Leaf N% content (dr.wt.) | 0.947 ** | 0.850 ** | 0.666 ** | 0.995 ** | −0.022 * | 0.601 ** | 0.954 ** | 0.858 ** | 1 | |||||||||||
Leaf P% content (dr.wt.) | 0.969 ** | 0.812 ** | 0.773 ** | 0.974 ** | 0.069 * | 0.706 ** | 0.984 ** | 0.915 ** | 0.987 ** | 1 | ||||||||||
Leaf K% content (dr.wt.) | 0.957 ** | 0.834 ** | 0.712 ** | 0.989 ** | 0.019 * | 0.647 ** | 0.970 ** | 0.881 ** | 0.998 ** | 0.995 ** | 1 | |||||||||
Leaf Fe ppm content (dr.wt.) | 0.956 ** | 0.724 ** | 0.888 ** | 0.849 ** | 0.136 * | 0.802 ** | 0.933 ** | 0.987 ** | 0.864 ** | 0.931 ** | 0.893 ** | 1 | ||||||||
Leaf Na content (%) | −0.977 ** | −0.894 ** | −0.669 ** | −0.995 ** | 0.091 * | −0.585 ** | −0.943 ** | −0.906 ** | −0.992 ** | −0.987 ** | −0.992 ** | −0.897 ** | 1 | |||||||
Leaf Cl content (%) | −0.956 ** | −0.795 ** | −0.768 ** | −0.973 ** | −0.094 * | −0.709 ** | −0.987 ** | −0.894 ** | −0.989 ** | −0.999 ** | −0.996 ** | −0.916 ** | 0.983 ** | 1 | ||||||
Total chlorophyll | 0.971 ** | 0.758 ** | 0.862 ** | 0.920 ** | 0.142 * | 0.790 ** | 0.981 ** | 0.961 ** | 0.938 ** | 0.981 ** | 0.958 ** | 0.982 ** | −0.952 ** | −0.974 ** | 1 | |||||
R.W.C. (%) | 0.962 ** | 0.730 ** | 0.884 ** | 0.900 ** | 0.179 * | 0.816 ** | 0.979 ** | 0.961 ** | 0.922 ** | 0.972 ** | 0.945 ** | 0.987 ** | −0.936 ** | −0.965 ** | 0.999 ** | 1 | ||||
Total acidity (%) | −0.741 ** | −0.863 ** | −0.221 * | −0.899 ** | 0.358 * | −0.156 * | −0.694 ** | −0.569 ** | −0.873 ** | −0.783 ** | −0.839 ** | −0.533 ** | 0.852 ** | 0.793 ** | −0.656 ** | −0.620 ** | 1 | |||
TSS/acid ratio | 0.711 ** | 0.904 ** | 0.103 * | 0.852 ** | −0.529 ** | 0.014 * | 0.594 ** | 0.543 ** | 0.807 ** | 0.711 ** | 0.770 ** | 0.478 * | −0.805 ** | −0.713 ** | 0.584 ** | 0.545 ** | −0.981 ** | 1 | ||
Vitamin C | 0.898 ** | 0.602 ** | 0.941 ** | 0.840 ** | 0.351 * | 0.901 ** | 0.979 ** | 0.907 ** | 0.879 ** | 0.941 ** | 0.907 ** | 0.961 ** | −0.878 ** | −0.939 ** | 0.977 ** | 0.984 ** | −0.536 ** | 0.432 * | 1 | |
Peel thickness (mm) | 0.692 ** | 0.942 ** | 0.017 * | 0.775 ** | −0.714 ** | −0.109 * | 0.478 * | 0.558 ** | 0.709 ** | 0.623 ** | 0.673 ** | 0.456 * | −0.741 ** | −0.611 ** | 0.520 ** | 0.481 ** | −0.890 ** | 0.959 ** | 0.334 * | 1 |
Soil Physical Analysis | Soil Chemical Analysis | ||||||
---|---|---|---|---|---|---|---|
Sand (%) ± SD | Silt (%) ± SD | Clay (%) ± SD | Soiltexture | EC (ds/m) ± SD | pH ± SD | ||
93.53 ± 1.115 | 4.22 ± 0.06083 | 2.25 ± 0.17474 | Sand | 4.30 ± 0.20817 | 8.15 ± 0.14189 | ||
Soil Chemical Analysis | |||||||
Cations (meq/L) | Anions (meq/L) | ||||||
Ca++ ± SD | Mg++ ± SD | Na+ ± SD | K+ ± SD | So4= ± SD | CI− ± SD | HCo3− ± SD | Co3= ± SD |
12.50 ± 0.955 | 9.50 ± 0.4817 | 18.85 ± 0.5437 | 1.12 ± 0.05508 | 15.47 ± 0.4087 | 24.50 ± 0.96043 | 2.00 ± 0.61011 | 0.00 ± 00 |
Available nutrients Macro and micro elements (mg.kg−1) | |||||||
N ± SD | P ± SD | K ± SD | Cu ± SD | Fe ± SD | Mn ± SD | Zn ± SD | |
179.0 ± 9.53939 | 8.48 ± 0.61011 | 94.00 ± 1.0 | 0.06 ± 0.01 | 1.07 ± 0.02 | 0.34 ± 0.05508 | 0.16 ± 0.96043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, K.; Alshallash, K.S.; Hamdy, A.E.; Khalifa, S.M.; Abdel-Aziz, H.F.; Sharaf, A.; Abobatta, W.F. Magnetic Iron–Improved Growth, Leaf Chemical Content, Yield, and Fruit Quality of Chinese Mandarin Trees Grown under Soil Salinity Stress. Plants 2022, 11, 2839. https://doi.org/10.3390/plants11212839
Alharbi K, Alshallash KS, Hamdy AE, Khalifa SM, Abdel-Aziz HF, Sharaf A, Abobatta WF. Magnetic Iron–Improved Growth, Leaf Chemical Content, Yield, and Fruit Quality of Chinese Mandarin Trees Grown under Soil Salinity Stress. Plants. 2022; 11(21):2839. https://doi.org/10.3390/plants11212839
Chicago/Turabian StyleAlharbi, Khadiga, Khalid S. Alshallash, Ashraf E. Hamdy, Sobhy M. Khalifa, Hosny F. Abdel-Aziz, Ahmed Sharaf, and Walid F. Abobatta. 2022. "Magnetic Iron–Improved Growth, Leaf Chemical Content, Yield, and Fruit Quality of Chinese Mandarin Trees Grown under Soil Salinity Stress" Plants 11, no. 21: 2839. https://doi.org/10.3390/plants11212839
APA StyleAlharbi, K., Alshallash, K. S., Hamdy, A. E., Khalifa, S. M., Abdel-Aziz, H. F., Sharaf, A., & Abobatta, W. F. (2022). Magnetic Iron–Improved Growth, Leaf Chemical Content, Yield, and Fruit Quality of Chinese Mandarin Trees Grown under Soil Salinity Stress. Plants, 11(21), 2839. https://doi.org/10.3390/plants11212839