Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules
Abstract
:1. Introduction
2. UV-Radiation Skin Damage
3. Plant-Derived Molecules as Skin Photoprotection Agents
3.1. Phenolic Compounds
3.2. Carotenoids
3.3. Alkaloids
4. Mexican Plants
4.1. Buddleja Scordioides Kunth and Buddleja Cordata Kunth
4.2. Echinacea spp.
4.3. Galinsoga parviflora Cav. and Galinsoga quadriradiata Ruiz & Pav
4.4. Helianthus annuus L.
4.5. Larrea tridentata (DC.) Coville
4.6. Lippia graveolens Kunth
4.7. Malpighia glabra L.
4.8. Pipper umbellatum L.
4.9. Polypodium leucotomos (L.) J.Sm.
4.10. Portulaca olearacea L.
4.11. Solanum lycopersicum L.
4.12. Spondias purpurea L.
4.13. Theobroma cacao L.
4.14. Yucca periculosa Baker
4.15. Opuntia spp.
Plant | Photoprotective Activity | Photoprotective Agent | Biological Model Used | Reference |
---|---|---|---|---|
Buddleja scordioides | Reduction of skin damage, antioxidant activity, UVB absorption. | Methanolic extract Verbascoside, linarin, linarin acetate | E. coli, guinea pigs. | [83] |
Buddleja cordata | Reduction of skin damage, antioxidant activity, UVB absorption. | Methanolic extract Verbascoside | SKH-1 hairless mice, mouse fibroblasts. | [84,85,86] |
Echinacea spp. | Reduction of skin damage, antioxidant activity. | Methanolic extract, hydroxycinnamic acids, flavonoids | Clinical trials, in vitro antioxidant tests. | [90,91,92,93] |
Galinsoga parviflora and Galinsoga quadriradiata | Skin photoprotection, antioxidant activity | Aqueous extract, caffeic acid derivatives. | NHDF human skin fibroblasts. | [102,103] |
Helianthus annuus | UVB absorption, antioxidant activity, prevention of UVB damage and photoaging. | Flower ethanolic extract, chlorogenic and caffeic acid | Human dermal fibroblast, in vitro antioxidant and SPF tests. | [108] |
Larrea tridentata | Inhibition of UVB induced signaling pathways related to skin carcinogenesis, antioxidant activity | Nordihydroguayaric acid (NDGA) | Human keratinocyte cell line HaCaT, in vitro antioxidant tests. | [113,114,115,116,117,118] |
Lippia graveloens | UVB and UVC absorption, photochemopreventive and antioxidant activity. | Flavonoids, apigenin, pinocembrin and naringenin. | E.coli, SKH-1 mice, in vitro antioxidant assays. | [121,122] |
Malphigia glabra | Antioxidant activity | Dried extract | in vitro antioxidant and SPF tests | [127] |
Pipper umbellatum | Antioxidant activity, photoaging reduction, inhibition of metalloproteinases activity, reduction of skin cancer markers. | Ethanolic root extract, 4-nerolidylcatechol | Hairless mouse skin and SPF tests | [133,134,135,136,137] |
Polypodium leutocomos | Skin antioxidant, antiphotoaging and cytoprotective activity. | Hydroxycinnamic acids, hydrophilic extract. | Human fibroblasts and keratinocytes | [146,147,148,155] |
Oral photoprotective effect: antioxidant, increment of p53+ cells, reduce proliferating cells. Reduction of systemic UVR damage. | Hydrophilic extract. | Hairless rats, clinical studies | [149,150,151,152,153,154] | |
Portulaca oleacera | Antioxidant, photoprotective, anti-wrinkle, anti-aging | Methanolic extracts | Epithelial keratinocytes and fibroblasts. | [160,164,165,166] |
Solanum lycopersicum | Oral photoprotective and anticancer effect. | Tomato carotenoids enriched extract, lycopene. | Human volunteers, SKH-1 murine model. | [170,171,172] |
Skin photoprotection and antioxidant effect | Lycopene | Human dermal fibroblasts. | [173] | |
Spondias purpurea | UVA and UVB light protection, antioxidant effect | Methanolic extract, flavonoids, quercetin, rutin. | in vitro antioxidant and SPF tests | [176,178,180] |
Theobroma cacao | Oral photoprotective effect. Anti-wrinkle effect, UVB radiation absorption, antioxidant capacity. | Cocoa beverage flavonols enriched. Cocoa pods extract | Human clinical trials in vitro antioxidant, antiwrinkle and SPF test | [48,183,184] |
Yucca periculosa | Skin photoprotective effect, absorption of UVB radiation | Methanolic extract, polyphenols, resveratrol, methoxystilbene. | Guinea pigs | [186] |
Opuntia spp. | Antioxidant properties, reduced lipid peroxidation and GSH depletion, inhibit UVB-induced skin degeneration | Aqueous extract, eucomic and piscidic acids, opuntiol, flavonols. | Human keratinocytes, HaCaT cells and hairless mice, NIH-3T3 cells | [192,193,194] |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Narayanan, D.L.; Saladi, R.N.; Fox, J.L. Ultraviolet radiation and skin cancer. Int. J. Dermatol. 2010, 49, 978–986. [Google Scholar] [CrossRef] [PubMed]
- Matsumura, Y.; Ananthaswamy, H.N. Toxic effects of ultraviolet radiation on the skin. Toxicol. Appl. 2004, 195, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Young, C. Solar ultraviolet radiation and skin cancer. Occup. Med. 2009, 59, 82–88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guy, G.P.; Thomas, C.C.; Thompson, T.; Watson, M.; Massetti, G.M.; Richardson, L.C. Vital signs: Melanoma incidence and mortality trends and projections—United States, 1982–2030. Morb. Mortal. Wkly. Rep. 2015, 64, 591–596. [Google Scholar]
- American Cancer Society. Cancer Facts and Figures 2020; American Cancer Society: Atlanta, GA, USA, 2020. [Google Scholar]
- EEAP. Environmental Effects and Interactions of Stratospheric Ozone pletion, UV Radiation, and Climate Change. 2018 Assessment Report; United Nations Environment Programme (UNEP): Nairobi, Kenya, 2019; p. 390. [Google Scholar]
- World Health Organization. Available online: https://www.who.int/uv/faq/skincancer/en/index1.html (accessed on 13 March 2020).
- Guy, G.P.; Machlin, S.; Ekwueme, D.U.; Yabroff, K.R. Prevalence and costs of skin cancer treatment in the US, 2002–2006 and 2007–2011. Am. J. Prev. Med. 2015, 48, 183–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- U.S. Department of Health and Human Services. Skin cancer as a major public health problem. In The Surgeon General’s Call to Action to Prevent Skin Cancer; Office of the Surgeon General: Washington, DC, USA, 2014. [Google Scholar]
- Green, A.C.; Williams, G.M.; Logan, V.; Strutton, G.M. Reduced melanoma after regular sunscreen use: Randomized trial follow-up. J. Clin. Oncol. 2011, 29, 257–263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dinkova-Kostova, A.T. Phytochemicals as protectors against ultraviolet radiation: Versatility of effects and mechanisms. Plant. Med. 2008, 74, 1548–1559. [Google Scholar] [CrossRef] [Green Version]
- Mishra, A.K.; Mishra, A.; Chattopadhyay, P. Herbal cosmeceuticals for photoprotection from ultraviolet B radiation: A review. Tropical. J. Pharm. Res. 2011, 10. [Google Scholar] [CrossRef] [Green Version]
- Adhami, V.M.; Syed, D.N.; Khan, N.; Afaq, F. Phytochemicals for prevention of solar ultraviolet radiation-induced damages. Photochm. Photobiol. 2008, 84, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, M.; Waltenberger, B.; Baraldo, G.; Grade, C.V.; Stuppner, H.; Jansen-Dürr, P. Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontology 2017, 18, 499–516. [Google Scholar] [CrossRef]
- Radice, M.; Manfredini, S.; Ziosi, P.; Dissette, V.; Buso, P.; Fallacara, A.; Vertuani, S. Herbal extracts, lichens and biomolecules as natural photo-protection alternatives to synthetic UV filters. A systematic review. Fitoterapia 2016, 114, 144–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.Q.; Balagula, Y.; Osterwalder, U. Photoprotection: A review of the current and future technologies. Dermatol. Ther. 2010, 23, 31–47. [Google Scholar] [CrossRef]
- Watson, M.; Holman, D.M.; Maguire-Eisen, M. Ultraviolet radiation exposure and its impact on skin cancer risk. Semin. Oncol. Nurs. 2016, 32, 241–254. [Google Scholar] [CrossRef] [Green Version]
- D’Orazio, J.; Jarrett, S.; Amaro-Ortiz, A.; Scott, T. UV radiation and the skin. Int. J. Mol. Sci. 2013, 14, 12222–12248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hidaka, H.; Horikoshi, S.; Serpone, N.; Knowland, J. In vitro photochemical damage to DNA, RNA, and their bases by an inorganic sunscreen agent on exposure to UVA and UVB radiation. J. Photochem. Photobiol. A Chem. 1997, 111, 205–213. [Google Scholar] [CrossRef]
- Mergny, M.; Mergny, J.L.; Bertrand, F.; Santus, R.; Mazière, C.; Dubertret, L.; Mazière, J.C. Ultraviolet-A induces activation of AP-1 in cultured human keratinocytes. FEBS Lett. 1996, 384, 92–96. [Google Scholar] [CrossRef] [Green Version]
- Siwik, D.A.; Pagano, P.J.; Colucci, W.S. Oxidative stress regulates collagen synthesis and matrix metalloproteinase activity in cardiac fibroblasts. Am. J. Physiol. Cell. Physiol. 2001, 280, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, M.; Jansen-Dürr, P. Molecular mechanisms of UVB-induced senescence of dermal fibroblasts and its relevance for photoaging of the human skin. Exp. Gerontol. 2017, 94, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Cavinato, M.; Koziel, R.; Romani, N.; Weinmüllner, R.; Jenewein, B.; Hermann, M.; Dubrac, S.; Ratzinger, G.; Grialli, J.; Schmuth, M.; et al. UVB-induced senescence of human dermal fibroblasts involves impairment of proteasome and enhanced autophagic activity. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2016, 72, 632–639. [Google Scholar] [CrossRef] [Green Version]
- Solano, F. Photoprotection and skin pigmentation: Melanin-related molecules and some other new agents obtained from natural sources. Molecules 2020, 25, 1537. [Google Scholar] [CrossRef] [Green Version]
- Krutmann, J.; Passeron, T.; Gilaberte, Y.; Granger, C.; Leone, G.; Narda, M. Photoprotection of the future: Challenges and opportunities. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Parrado, C.; Philips, N.; Gilaberte, Y.; Juarranz, A.; González, S. Oral photoprotection: Effective agents and potential candidates. Front. Med. 2018, 5, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, A.C.; Damian, D.L.; Halliday, G.M. Oral and systemic photoprotection. Photodermatol. Photoimmunol. Photomed. 2014, 30, 102–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, S.; Gilaberte, Y.; Philips, N.; Juarranz, A. Current trends in photoprotection-A new generation of oral photoprotectors. Open Dermatol. J. 2011, 5, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Statista. Global Natural and Organic Beauty Forecasted Market Size 2016–2024. Available online: https://www.statista.com/statistics/750779/natural-organic-beauty-market-worldwide/ (accessed on 10 March 2020).
- Tundis, R.; Loizzo, M.R.; Bonesi, M.; Menichini, F. Potential role of natural compounds against skin aging. Curr. Med. Chem. 2015, 22, 1515–1538. [Google Scholar] [CrossRef]
- Sies, H.; Stahl, W. Nutritional protection against skin damage from sunlight. Annu. Rev. Nutr. 2004, 24, 173–200. [Google Scholar] [CrossRef] [Green Version]
- Allemann, I.B.; Baumann, L. Botanicals in skin care products. Int. J. Dermatol. 2009, 48, 923–934. [Google Scholar] [CrossRef]
- Chen, L.; Hu, J.Y.; Wang, S.Q. The role of antioxidants in photoprotection: A critical review. J. Am. Acad. Dermatol. 2012, 67, 1013–1024. [Google Scholar] [CrossRef]
- Dean, J.C.; Kusaka, R.; Walsh, P.S.; Allais, F.; Zwier, T.S. Plant sunscreens in the UV-B: Ultraviolet spectroscopy of jet-cooled sinapoyl malate, sinapic acid, and sinapate ester derivatives. J. Am. Chem. Soc. 2014, 136, 14780–14795. [Google Scholar] [CrossRef]
- Chopra, D.; Singh, J.; Srivastav, A.K.; Dubey, D.; Ray, R.S.; Gupta, K.C. Protective Role of Phytochemicals Against UVR. In Photocarcinogenesis & Photoprotection; Ray, R.S., Haldar, C., Dwivedi, A., Argawal, N., Singh, J., Eds.; Springer: Singapore, 2018; pp. 129–139. [Google Scholar]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. 2016, 17, 160. [Google Scholar] [CrossRef] [Green Version]
- Saewan, N.; Jimtaisong, A. Photoprotection of natural flavonoids. J. App. Pharm. Sci. 2013, 3, 129–141. [Google Scholar]
- Stahl, W.; Sies, H. Bioactivity and protective effects of natural carotenoids. Biochim. Biophys. Acta Mol. Basis Dis. 2005, 1740, 101–107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cefali, L.C.; Ataide, J.A.; Moriel, P.; Foglio, M.A.; Mazzola, P.G. Plant-based active photoprotectants for sunscreens. Int. J. Cosmet. Sci. 2016, 38, 346–353. [Google Scholar] [CrossRef] [Green Version]
- Svobodová, A.; Psotová, J.; Walterová, D. Natural phenolics in the prevention of UV-induced skin damage. A review. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech Repub. 2003, 147, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Nichols, J.A.; Katiyar, S.K. Skin photoprotection by natural polyphenols: Anti-inflammatory, antioxidant and DNA repair mechanisms. Arch. Dermatol. Res. 2010, 302, 71–83. [Google Scholar] [CrossRef] [Green Version]
- Soobrattee, M.A.; Neergheen, V.S.; Luximon-Ramma, A.; Aruoma, O.I.; Bahorun, T. Phenolics as potential antioxidant therapeutic agents: Mechanism and actions. Mutat. Res. 2005, 579, 200–213. [Google Scholar] [CrossRef]
- Cadet, J.; Sage, E.; Douki, T. Ultraviolet radiation-mediated damage to cellular DNA. Mutat. Res. 2005, 571, 3–17. [Google Scholar] [CrossRef] [PubMed]
- Alov, P.; Tsakovska, I.; Pajeva, I. Computational studies of free radical-scavenging properties of phenolic compounds. Curr. Top. Med. Chem. 2015, 15, 85–104. [Google Scholar] [CrossRef] [Green Version]
- Maroon, J.C.; Bost, J.W.; Maroon, A. Natural anti-inflammatory agents for pain relief. Surg. Neurol. Int. 2010, 1, 1–80. [Google Scholar]
- Alarcón de la Lastra, C.; Villegas, I. Resveratrol as an anti-inflammatory and antiaging agent: Mechanisms and clinical implications. Mol. Nut. Food Res. 2005, 49, 405–430. [Google Scholar] [CrossRef]
- Dudonne, S.; Coutiere, P.; Woillez, M.; Merillon, J.M.; Vitrac, X. DNA macro array study of skin aging-related genes expression modulation by antioxidant plant extracts on a replicative senescence model of human dermal fibroblasts. Phytother. Res. 2011, 25, 686–693. [Google Scholar] [CrossRef] [PubMed]
- Karim, A.A.; Azlan, A.; Ismail, A.; Hashim, P.; Abd Gani, S.S.; Zainudin, B.H.; Abdullah, N.A. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement. Altern. Med. 2014, 14, 381. [Google Scholar]
- Kaur, P.; Purewal, S.S.; Sandhu, K.S.; Kaur, M. DNA damage protection: An excellent application of bioactive compounds. Bioresour. Bioproces. 2019, 6, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Hwang, E.; Park, S.; Lee, H.J.; Lee, T.Y.; Sun, Z.; Yi, T.H. Gallic Acid Regulates Skin Photoaging in UVB-exposed Fibroblast and Hairless Mice. Phytother. Res. 2014, 28, 1778–1788. [Google Scholar] [CrossRef] [PubMed]
- Daré, R.G.; Nakamura, C.V.; Ximenes, V.F.; Lautenschlager, S.O.S. Tannic acid, a promising anti-photoaging agent: Evidences of its antioxidant and anti-wrinkle potentials, and its ability to prevent photodamage and MMP-1 expression in L929 fibroblasts exposed to UVB. Free Radic. Biol. Med. 2020, 160, 342–355. [Google Scholar] [CrossRef] [PubMed]
- Stevanato, R.; Bertelle, M.; Fabris, S. Photoprotective characteristics of natural antioxidant polyphenols. Regul. Toxicol. Pharm. 2014, 69, 71–77. [Google Scholar] [CrossRef]
- Saija, A.; Tomatino, A.; Lo Cascio, R.; Trombetta, D.; Proteggente, A.; De Pasquale, A.; Uccella, N.; Bonina, F. Ferulic and caffeic acids as potential protective agents against photooxidative skin damage. J. Sci. Food Agric. 1999, 79, 476–480. [Google Scholar] [CrossRef]
- Pluemsamran, T.; Onkoksoong, T.; Panich, U. Caffeic acid and ferulic acid inhibit UVA-induced matrix metalloproteinase-1 through regulation of antioxidant defense system in keratinocyte HaCaT cells. Photochem. Photobiol. 2012, 88, 961–968. [Google Scholar] [CrossRef]
- Chaiprasongsuk, A.; Onkoksoong, T.; Pluemsamran, T.; Limsaengurai, S.; Panich, U. Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol. 2016, 8, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Ross, J.A.; Kasum, C.M. Dietary flavonoids: Bioavailability, metabolic effects, and safety. Annu. Rev. Nutr. 2002, 22, 19–34. [Google Scholar] [CrossRef]
- Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural antioxidants: Multiple mechanisms to protect skin from solar radiation. Front. Pharmacol. 2018, 9, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katiyar, S.K.; Afaq, F.K.; Azizuddin, H.M. Inhibition of UVB-induced oxidative stress-mediated phosphorylation of mitogen-activated protein kinase signaling pathways in cultured human epidermal keratinocytes by green tea polyphenol (−)-epigallocatechin-3-gallate. Toxicol. Appl. Pharmacol. 2002, 176, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Afaq, F.; Adhami, V.M.; Ahmad, N.; Mukhtar, H. Inhibition of ultraviolet B-mediated activation of nuclear factor kappaB in normal human epidermal keratinocytes by green tea constituent (−)-epigallocatechin-3-gallate. Oncogene 2003, 22, 1035–1044. [Google Scholar] [CrossRef] [Green Version]
- Mittal, A.; Piyathilake, C.; Hara, Y.; Katiyar, S.K. Exceptionally high protection of photocarcinogenesis by topical application of (−)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: Relationship to inhibition of UVB-induced global DNA hypomethylation. Neoplasia 2003, 5, 555–565. [Google Scholar] [CrossRef] [Green Version]
- Britton, G. Structure and properties of carotenoids in relation to function. FASEB J. 1995, 9, 1551–1558. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; Sies, H. Beta-carotene and other carotenoids in protection from sunlight. Am. J. Clin. Nutr. 2012, 96, 1179S–1184S. [Google Scholar] [CrossRef] [PubMed]
- Fahey, J.W.; Stephenson, K.K.; Dinkova-Kostova, A.T.; Egner, P.A.; Kensler, T.W.; Talalay, P. Chlorophyll, chlorophyllin and related tetrapyrroles are significant inducers of mammalian phase 2 cytoprotective genes. Carcinogenesis 2005, 26, 1247–1255. [Google Scholar] [CrossRef] [Green Version]
- Stahl, W.; Sies, H. Photoprotection by dietary carotenoids: Concept, mechanisms, evidence and future development. Mol. Nutr. Food Res. 2012, 56, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Stahl, W.; Heinrich, U.; Wiseman, S.; Eichler, O.; Sies, H.; Tronnier, H. Dietary tomato paste protects against ultraviolet light-induced erythema in humans. J. Nutr. 2001, 131, 1449–1451. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, U.; Gartner, C.; Wiebusch, M.; Eichler, O.; Sies, H.; Tronnier, H.; Stahl, W. Supplementation with beta-carotene or a similar amount of mixed carotenoids protects humans from UV-induced erythema. J. Nutr. 2003, 133, 98–101. [Google Scholar] [CrossRef] [PubMed]
- Fazekas, Z.; Gao, D.; Saladi, R.N.; Lu, Y.; Lebwohl, M.; Wei, H. Protective effects of lycopene against ultraviolet B-induced photodamage. Nutr. Cancer 2003, 47, 181–187. [Google Scholar] [CrossRef] [PubMed]
- Sopyan, I.; Gozali, D.; Tiassetiana, S. Formulation of tomato extracts (Solanum lycopersicum L.) as a sunscreen lotion. Natl. J. Physiol. Pharm. Pharmacol. 2018, 8, 453–458. [Google Scholar] [CrossRef] [Green Version]
- Ziegler, J.; Facchini, P.J. Alkaloid biosynthesis: Metabolism and trafficking. Annu. Rev. Plant Biol. 2008, 59, 735–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scapagnini, G.; Davinelli, S.; Di Renzo, L.; De Lorenzo, A.; Olarte, H.H.; Micali, G.; Cicero, A.F.; Gonzalez, S. Cocoa bioactive compounds: Significance and potential for the maintenance of skin health. Nutrients 2014, 6, 3202–3213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zajdela, F.; Latarjet, R. Inhibition of skin carcinogenesis in vivo by caffeine and other agents. Natl. Cancer Inst. Monogr. 1978, 50, 33–40. [Google Scholar]
- Lu, Y.P.; Lou, Y.R.; Lin, Y.; Shih, W.J.; Huang, M.T.; Yang, C.S.; Conney, A.H. Inhibitory effects of orally administered green tea, black tea, and caffeine on skin carcinogenesis in mice previously treated with ultraviolet B light (high-risk mice): Relationship to decreased tissue fat. Cancer Res. 2001, 61, 5002–5009. [Google Scholar]
- Lu, Y.P.; Nolan, B.; Lou, Y.R.; Peng, Q.Y.; Wagner, G.C.; Conney, A.H. Voluntary exercise together with oral caffeine markedly stimulates UVB light-induced apoptosis and decreases tissue fat in SKH-1 mice. Proc. Natl. Acad. Sci. USA 2007, 104, 936–941. [Google Scholar] [CrossRef] [Green Version]
- Song, F.; Qureshi, A.A.; Han, J. Increased caffeine intake is associated with reduced risk of basal cell carcinoma of the skin. Cancer Res. 2012, 72, 3282–3289. [Google Scholar] [CrossRef] [Green Version]
- Lou, Y.; Peng, Q.; Li, T.; Nolan, B.; Bernard, J.J.; Wagner, G.C.; Lin, Y.; Shih, W.J.; Conny, A.H.; Lou, Y.P. Oral caffeine during voluntary exercise markedly inhibits skin carcinogenesis and decreases inflammatory cytokines in UVB-treated mice. Nutr. Cancer 2013, 65, 1002–1013. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.; Ming, M.; He, Y.Y. Caffeine promotes ultraviolet B-induced apoptosis in human keratinocytes without complete DNA repair. J. Biol. Chem. 2011, 286, 22825–22832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conney, A.H.; Kramata, P.; Lou, Y.R.; Lu, Y.P. Effect of caffeine on UVB-induced carcinogenesis, apoptosis, and the elimination of UVB-induced patches of p53 mutant epidermal cells in SKH-1 mice. Photochem. Photobiol. 2008, 84, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Rosado, C.; Tokunaga, V.K.; Sauce, R.; de Oliveira, C.A.; Sarruf, F.D.; Parise-Filho, R.; Maurício, E.; Santos de Almeida, T.; Robles, M.V.; Baby, A.R. Another reason for using caffeine in dermocosmetics: Sunscreen adjuvant. Front. Physiol. 2019, 10, 519. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, S.; Ullah, H.; Zhang, L. Review: Bioactive constituents from Buddleja species. Pak. J. Pharm. Sci. 2019, 32, 721–741. [Google Scholar]
- Norman, E.M. Flora Neotropica Monograph 81, 1st ed.; The Organization for Flora Neotropica: New York, NY, USA, 2000; pp. 2–61. [Google Scholar]
- Tatli, I.I.; Kahraman, C.; Akdemin, Z.S. Therapeutic activities of selected Scrophulariaceae and Buddlejaceae species and their secondary metabolites against neurodegenerative diseases. In Bioactive Nutraceuticals and Dietary Supplements in Neurological and Brain Disease. Prevention and Therapy, 1st ed.; Ross, R.W., Preedy, V.R., Eds.; Academic Press: London, UK, 2015; pp. 95–111. [Google Scholar]
- García-Bores, A.M.; Hernández, T.; Arcienegas, A.R.; Benítez, J.C.; González, M.R.; López, M.; Vivar, A.R.; Avila, J.G. Photoprotective activity of some Mexican plant. In Natural Antioxidants and Biocides from Wild Medicinal Plants, 1st ed.; Césped, C.L., Sampierto, D.A., Seigler, D.L., Rai, M., Eds.; CAB International: Wallingford, UK, 2013; pp. 254–266. [Google Scholar]
- Avila, J.G.A.; Castañeda, C.M.C.; Benitez, F.J.C.; Durán, D.A.; Barroso, V.R.; Martínez, C.G.; Muñoz, L.J.; Martínez, C.A.; Romo De Vivar, A. Photoprotective Activity of Buddleja scordioides. Fitoterapia 2005, 76, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Avila Acevedo, J.G.; Espinosa González, A.M.; Campos, D.M.D.M.; Benitez Flores, J.C.; Delgado, T.H.; Maya, S.F.; Contreras, J.C.; López, J.L.M.; García Bores, A.M. Photoprotection of Buddleja cordata extract against UVB-Induced skin damage in SKH-1 hairless mice. BMC Complement. Altern. Med. 2014, 14, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Espinoza-González, A.M.; García-Bores, A.M.; Benítez-Flores, J.C.; Sandoval-Pérez, E.; González-Valle, M.R.L.; Céspedes, C.; Avila-Acevedo, J.G. Photoprotective effect of verbascoside from Buddleja cordata in SKH-1 mice exposed to acute and chronic UV-B radiation. Lat. Am. Caribb. Bull. Med. Aromat. Plants 2016, 15, 288–300. [Google Scholar]
- Kostyuk, V.A.; Potapovich, A.I.; Lulli, D.; Stancato, A.; De Luca, C.; Pastore, S.; Korkina, L. Modulation of human keratinocyte responses to solar UV by plant polyphenols as a basis for chemoprevention of non-melanoma skin cancers. Curr. Med. Chem. 2013, 20, 869–879. [Google Scholar]
- Gómez-Hernández, M.A.; Flores-Merino, M.V.; Sánchez-Flores, J.E.; Burrola-Aguilar, C.; Zepeda-Gómez, C.; Nieto-Trujillo, A.; Estrada-Zúñiga, M.E. Photoprotective activity of Buddleja cordata cell culture methanolic extract on UVB-irradiated 3T3-swiss albino Fibroblasts. Plants 2021, 10, 266. [Google Scholar] [CrossRef] [PubMed]
- Flagel, L.E.; Rapp, R.A.; Grover, C.E.; Widrlechner, M.P.; Hawkins, J.; Grafenberg, J.L.; Álvarez, I.; Gyu, Y.C.; Wendel, J.F. Phylogenetic, Morphological, and chemotaxonomic incongruence in the north american endemic genus Echinacea. Am. J. Bot. 2008, 95, 756–765. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barrett, B. Medicinal Properties of Echinacea: A Critical Review. Phytomedicine 2003, 10, 66–86. [Google Scholar] [CrossRef]
- Huntley, A.L.; Coon, J.T.; Ernst, E. The Safety of herbal medicinal products derived from Echinacea species: A Systematic Review. Drug Saf. 2005, 28, 387–400. [Google Scholar] [CrossRef]
- Sparavigna, A.; Tenconi, B.; De Ponti, I. Preliminary open-label clinical evaluation of the soothing and reepithelialization properties of a novel topical formulation for rosacea. Clin. Cosmet. Investig. Dermatol. 2014, 7, 275–283. [Google Scholar] [CrossRef] [Green Version]
- Ropke, C.; Sawada, T.C.H.; Batista, I.G.V. Photoprotection Compositions Comprising Cynara scolymus and Echinacea purpurea extracts. WO Patent WO2010132969, 25 November 2010. [Google Scholar]
- Matsui, M.S.; Hsia, A.; Miller, J.D.; Hanneman, K.; Scull, H.; Cooper, K.D.; Baron, E. Non-Sunscreen photoprotection: Antioxidants add value to a sunscreen. J. Investig. Dermatol. Symp. Proc. 2009, 14, 56–59. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Matsui, M.S.; Chen, J.Z.S.; Jin, X.; Shu, C.M.; Jin, G.Y.; Dong, G.H.; Wang, Y.K.; Gao, X.H.; Chen, H.D.; et al. Antioxidants add protection to a broad-spectrum sunscreen. Clin. Exp. Dermatol. 2010, 36, 178–187. [Google Scholar] [CrossRef]
- Pellati, F.; Benvenuti, S.; Magro, L.; Melegari, M.; Soragni, F. Analysis of phenolic compounds and radical scavenging activity of Echinacea spp. J. Pharm. Biomed. Anal. 2004, 35, 289–301. [Google Scholar] [CrossRef]
- Fu, R.; Zhang, P.; Deng, Z.; Jin, G.; Zhang, Y. Chicoric acid provides better ultraviolet protection than the sum of its substrates in purple coneflower plants. Ind. Crop. Prod. 2021, 170, 113778. [Google Scholar] [CrossRef]
- Merali, S.; Binns, S.; Paulin-Levasseur, M.; Ficker, C.; Smith, M.; Baum, B.; Brovell, E.; Arnason, J.T. Antifungal and anti-inflammatory activity of the genus Echinacea. Pharm. Biol. 2003, 41, 412–420. [Google Scholar] [CrossRef]
- Yotsawimonwat, S.; Rattanadechsakul, J.; Rattanadechsakul, P.; Okonogi, S. Skin improvement and stability of Echinacea purpurea dermatological formulations. Int. J. Cosmet. Sci. 2010, 32, 340–346. [Google Scholar] [CrossRef]
- Konovalov, D.A. Polyacetylene compounds of plants of the Asteraceae family. Pharm. Chem. J. 2014, 48, 613–631. [Google Scholar] [CrossRef]
- Chen, L.Y.; Hu, A.; Chang, C.J. The degradation mechanism of toxic atractyloside in herbal medicines by decoction. Molecules 2013, 18, 2018–2028. [Google Scholar] [CrossRef]
- Oficial Journal of the European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32010D0030&qid=1641426346120 (accessed on 5 January 2021).
- Bazylko, A.; Borzym, J.; Parzonko, A. Determination of in vitro antioxidant and UV-protecting activity of aqueous and ethanolic extracts from Galinsoga parviflora and Galinsoga quadriradiata herb. J. Photochem. Photobiol. 2015, 149, 189–195. [Google Scholar] [CrossRef]
- Parzonko, A.; Kiss, A.K. Caffeic acid derivatives isolated from Galinsoga parviflora herb protected human dermal fibroblasts from UVA radiation. Phytomedicine 2019, 57, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Espinosa, F.J.; Villaseñor, R. Catálogo De Malezas De México; Consejo Nacional Consultivo Fitosanitario. Fondo de Cultura Económica, Universidad Nacional Autónoma de México: Mexico City, Mexico, 1998. [Google Scholar]
- Fowler, M.W. Plants, medicines and man. J. Sci. Food Agr. 2006, 86, 1797–1804. [Google Scholar] [CrossRef]
- Eichenfield, L.F.; McCollum, A.; Msika, P. The benefits of sunflower oleodistillate (SOD) in pediatric dermatology. Pediatr. Dermatol. 2009, 26, 669–675. [Google Scholar] [CrossRef] [PubMed]
- Msika, P.; De Belilovsky, C.; Piccardi, N.; Chebassier, N.; Baudouin, C.; Chadoutaud, B. New emollient with topical corticosteroid-sparing effect in treatment of childhood atopic dermatitis: SCORAD and quality of life improvement. Pediatr. Dermatol. 2008, 25, 606–612. [Google Scholar] [CrossRef] [PubMed]
- Hwang, E.; Gao, W.; Xiao, Y.K.; Ngo, H.T.T.; Yi, H.Y. Helianthus annuus L. flower prevents UVB-induced photodamage in human dermal fibroblasts by regulating the MAPK/AP-1, NFAT, and Nrf2 signaling pathways. J. Cell. Biochem. 2019, 120, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Arianto, A.; Cindy, C. Preparation and evaluation of sunflower oil nanoemulsion as a sunscreen. Maced. J. Med. Sci. 2019, 7, 3757–3761. [Google Scholar] [CrossRef] [Green Version]
- Francis, J.K. Larrea tridentata (Sesse’ and Moc. ex DC.) Coville. In Wildland Shrubs of the United States and Its Territories: Thamnic Descriptions; United States Department of Agriculture, International Institute of Tropical Forestry San Juan: Fort Collins, CO, USA, 2004; Volume 1, pp. 419–424. [Google Scholar]
- Arteaga, S.; Cetto, A.; Cardenas, R. Larrea tridentata (Creosote bush), an abundant plant of Mexican and US-American deserts and its metabolite nordihydroguaiaretic acid. J. Ethnopharmacol. 2005, 98, 231–239. [Google Scholar] [CrossRef]
- McCormick, D.L.; Spicer, A.M. Nordihydroguaiaretic acid suppression of rat mammary carcinogenesis induced by N-methyl-N-nitrosourea. Cancer Lett. 1987, 37, 139–146. [Google Scholar] [CrossRef]
- Athar, M.; Raza, H.; Bickers, D.R.; Mukhtar, H. Inhibition of benzoyl peroxide–mediated tumor promotion in 7,12-dimethylbenz(a)anthracene–initiated skin of Sencar mice by antioxidants nordihydroguaiaretic acid and diallyl sulfide. J. Investig. Dermatol. 1990, 94, 162–165. [Google Scholar] [CrossRef] [Green Version]
- Ohkawa, Y.; Iwata, K.; Shibuya, J.; Inui, N. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced nitroblue tetrazolium reduction in mouse peritoneal macrophages by various tumor promotion inhibitors. Cancer Lett. 1985, 27, 45–52. [Google Scholar] [CrossRef]
- Park, S.; Lee, D.K.; Yang, C.H. Inhibition of fos-jun-DNA complex formation by dihydroguaiaretic acid and in vitro cytotoxic effects on cancer cells. Cancer Lett. 1998, 127, 23–28. [Google Scholar] [CrossRef]
- Kemal, C.; Louis-Flamberg, P.; Krupinski-Olsen, R.; Shorter, A.L. Reductive inactivation of soybean lipoxygenase 1 by catechols: A possible mechanism for regulation of lipoxygenase activity. Biochemistry 1987, 26, 7064–7072. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Rosenstein, B.S.; Wang, Y.; Lebwohl, M.; Wei, H. Identification of possible reactive oxygen species involved in ultraviolet radiation–induced oxidative DNA damage. Free Radic. Biol. Med. 1997, 23, 980–985. [Google Scholar] [CrossRef]
- Gonzales, M.; Bowden, G.T. Nordihydroguaiaretic Acid–Mediated Inhibition of Ultraviolet B–Induced Activator Protein-1 Activation in Human Keratinocytes. Mol. Carcinog. 2002, 34, 102–111. [Google Scholar] [CrossRef]
- Pascual, M.E.; Slowing, K.; Carretero, E.; Sánchez Mata, D.; Villar, A. Lippia: Traditional uses, chemistry and pharmacology: A review. J. Ethnopharmacol. 2001, 76, 201–214. [Google Scholar] [CrossRef]
- Hernández, T.; Canales, M.; Avila, J.G.; Duran, A.; Caballero, J.; Romo de Vivar, A.; Lira, R. Ethnobotany and antibacterial activity of some plants used in traditional medicine of Zapotitlán de las Salinas, Puebla (México). J. Ethnopharmacol. 2003, 88, 181–188. [Google Scholar] [CrossRef]
- Leyva-López, N.; Nair, V.; Bang, W.Y.; Cisneros-Zevallos, L.; Heredia, J.B. Protective role of terpenes and polyphenols from three species of Oregano (Lippia graveolens, Lippia palmeri and Hedeoma patens) on the suppression of lipopolysaccharide-induced inflammation in RAW 264.7 macrophage cells. J. Ethnopharmacol. 2016, 187, 302–312. [Google Scholar] [CrossRef]
- García-Bores, A.M.; Espinosa-González, A.M.; Reyna-Campos, A.; Cruz-Toscano, S.; Benítez-Flores, J.C.; Hernández-Delgado, C.T.; Flores-Maya, S.; Urzúa-Meza, M.; Peñalosa-Castro, I.; Céspedes-Acuña, C.L.; et al. Lippia graveolens photochemopreventive effect against UVB radiation-induced skin carcinogenesis. J. Photochem. Photobiol. B Biol. 2017, 167, 72–81. [Google Scholar] [CrossRef]
- García Forero, A.; Villamizar Mantilla, D.A.; Núñez, L.A.; Ocazionez, R.E.; Stashenko, E.E.; Fuentes, J.L. Photoprotective and antigenotoxic effects of the flavonoids apigenin, naringenin and pinocembrin. Photochem. Photobiol. 2019, 95, 1010–1018. [Google Scholar] [CrossRef]
- Polonini, H.C.; Brandão, M.A.F.; Raposo, N.R.B. A natural broad-spectrum sunscreen formulated from the dried extract of Brazilian Lippia sericea as a single UV filter. RSC Adv. 2014, 4, 62566–62575. [Google Scholar] [CrossRef]
- Anderson, W.R. Origins of Mexican Malpighiaceae. Acta Bot. Mex. 2013, 104, 107–156. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Nunes, R.; Silva Kahl, V.F.; Da Silva Sarmento, M.; Richter, M.F.; Abin-Carriquiry, J.A.; Martinez, M.M.; De Barros Falcão Ferraz, A.; Da Silva, J. Genotoxic and antigenotoxic activity of acerola (Malpighia glabra L.) extract in relation to the geographic origin. Phytother. Res. 2013, 27, 1495–1501. [Google Scholar]
- Souza, F.P.; Campos, G.R.; Packer, J.F. Determinação da atividade fotoprotetora e antioxidante em emulsões contendo extrato de Malpighia glabra L.—Acerola. Rev. Ciênc. Farm. Básica Apl. 2013, 34, 69–77. [Google Scholar]
- Roersch, C.M.F.B. Piper umbellatum L.: A comparative cross cultural analysis of its medicinal uses and an eth-nopharmacological evaluation. J. Ethnopharmacol. 2010, 131, 522–537. [Google Scholar] [CrossRef]
- Rezende, K.R.; Barros, S.B.D.M. Quantification of 4-Nerolidylcatechol from Pothomorphe umbellata (Piperaceae) in rat plasma samples by HPLC-UV. Rev. Bras. Cienc. Farm. J. Pharm. Sci. 2004, 40, 373–380. [Google Scholar] [CrossRef]
- Desmarchelier, C.; Barros, S.; Repetto, M.; Latorre, L.R.; Kato, M.; Coussio, J.; Ciccia, G. 4-Nerolidylcatechol from Pothomorphe Spp. scavenges peroxyl radicals and inhibits Fe(II)-dependent DNA damage. Planta Med. 1997, 63, 561–563. [Google Scholar] [CrossRef]
- Kloss, L.C.; Albino, A.M.; Souza, R.G.; Lima, R.A. Identificação de classes de metabólitos secundários do extrato etanólico de Piper umbellatum L.(Piperaceae). S. Am. J. Basic Educ. Tech. Technol. 2016, 3, 27–36. [Google Scholar]
- Röpke, C.D.; Kaneko, T.M.; Rodrigues, R.M.; Da Silva, V.V.; Barros, S.; Sawada, T.C.H.; Kato, M.J.; Barros, S.B.M. Evaluation of percutaneous absorption of 4-Nerolidylcathecol from four topical formulations. Int. J. Pharm. 2002, 249, 109–116. [Google Scholar] [CrossRef]
- Ropke, C.D.; Meirelles, R.R.; Da Silva, V.V.; Sawada, T.C.; Barros, S.B. Pothomorphe umbellata extract prevents α-tocopherol depletion after UV-irradiation. Photochem. Photobiol. 2003, 78, 436–439. [Google Scholar] [CrossRef]
- Ropke, C.D.; Sawada, T.C.H.; Da Silva, V.V.; Michalany, N.S.; De Moraes Barros, S.B. Photoprotective effect of Pothomorphe umbellata root extract against ultraviolet radiation induced chronic skin damage in the hairless mouse. Exp. Dermatol. 2005, 30, 272–276. [Google Scholar] [CrossRef]
- Da Silva, V.V.; Ropke, C.D.; De Almeida, R.L.; Miranda, D.V.; Kera, C.Z.; Rivelli, D.P.; Sawada, T.C.H.; Barros, S.B.M. Chemical stability and SPF determination of Pothomorphe umbellata extract gel and photostability of 4-Nerolidylcathecol. Int. J. Pharm. 2005, 303, 125–131. [Google Scholar] [CrossRef]
- Ropke, C.D.; da Silva, V.V.; Kera, C.Z.; Miranda, D.V.; de Almeida, R.L.; Sawada, T.C.; Barros, S.B. In vitro and in vivo inhibition of skin matrix metalloproteinases by Pothomorphe umbellata root extract. Photochem. Photobiol. 2006, 82, 439–442. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, V.V.; Ropke, C.D.; Miranda, D.V.; de Almeida, R.L.; Sawada, T.C.H.; Rivelli, D.P.; Barros, S.B.d.M. Photoprotective effect of Pothomorphe umbellataon UVB radiation-induced biomarkers involved in carcinogenesis of hairless mouse epidermis. Cutan. Ocul. Toxicol. 2009, 28, 54–60. [Google Scholar] [CrossRef]
- Gobierno del Estado de Puebla. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). In La Biodiversidad En Puebla: Estudio De Estado. México; Benemérita Universidad Autónoma de Puebla: Puebla, Mexico, 2011. [Google Scholar]
- Berman, B.; Ellis, C.; Elmets, C. Polypodium leucotomos—An overview of basic investigative findings. J. Drugs Derma. 2016, 15, 224–228. [Google Scholar]
- Aguilera, P.; Carrera, C.; Puig-Butille, J.A.; Badenas, C.; Lecha, M.; González, S.; Malvehy, J.; Puig, S. Benefits of oral Polypodium leucotomos extract in MM high-risk patients. J. Eur. Acad. Dermatol. Venereol. 2013, 27, 1095–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palomino, O.M. Current knowledge in Polypodium leucotomos effect on skin protection. Arch. Dermatol. Res. 2015, 307, 199–209. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, S.; Gilaberte, Y.; Philips, N. Mechanistic insights in the use of a Polypodium leucotomos extract as an oral and topical photoprotective agent. Photochem. Photobio. Sci. 2010, 9, 559–563. [Google Scholar] [CrossRef] [PubMed]
- Pourang, A.; Dourra, M.; Ezekwe, N.; Kholi, I.; Hamzavi, I.; Lim, H.W. The potential effect of Polypodium leucotomos extract on ultraviolet- and visible light-induced photoaging. Photochem. Photobiol. Sci. 2021, 20, 1229–1238. [Google Scholar] [CrossRef] [PubMed]
- Segars, K.; McCarver, V.; Miller, R.A. Dermatologic Applications of Polypodium leucotomos: A Literature Review. J. Clin. Aesthet. Dermatol. 2021, 14, 50–60. [Google Scholar]
- Pourang, A.; Dourra, M.; Ezekwe, N.; Kholi, I.; Hamzavi, I.; Lim, H.W. The effect of Polypodium leucotomos extract (Fernblock) on visible light and UV-induced photoaging. J. Am. Acad. Dermatol. 2021, 85, AB26. [Google Scholar] [CrossRef]
- Gombau, L.; García, F.; Lahoz, A.; Fabre, M.; Roda-Navarro, P.; Majano, P.; Alonso-Lebrero, J.L.; Pivel, J.P.; Castell, J.V.; Gómez-Lechon, M.J.; et al. Polypodium leucotomos extract: Antioxidant activity and disposition. Toxicol. Vitr. 2006, 20, 464–471. [Google Scholar] [CrossRef]
- Philips, N.; Smith, J.; Séller, T.; Gonzalez, S. Predominant effect of Polypodium leucotomos on membrane integrity, lipid peroxidation expression of elastin and matrixmetalloproteinase-1 in ultraviolet radiation exposed fibroblasts, and keratinocytes. J. Dermatol. Sci. 2003, 32, 1–9. [Google Scholar] [CrossRef]
- Janczyk, A.; García-López, M.A.; Fernández-Penas, P.; Alonso-Lebrero, J.L.; Benedicto, I.; López-Cabrera, M.; Gonzalez, S. A Polypodium leucotomos extract inhibits solar-simulated radiation-induced TF-a and iNOS expression, transcriptional activation and apoptosis. Exp. Dermatol. 2007, 16, 823–829. [Google Scholar] [CrossRef]
- Mulero, M.; Rodríguez-Yanes, E.; Nogués, M.R.; Giralt, M.; Romeu, M.; Gonzalez, S.; Mallo, J. Polypodium leucotomos extract inhibits glutathione oxidation and prevents Langerhans cell depletion induced by UVB/UVA radiation in a hairless rat model. Exp. Dermatol. 2008, 17, 653–658. [Google Scholar]
- Rodríguez-Yanes, E.; Juarranz, A.; Cuevas, J.; Gonzalez, S.; Mallo, J. Polypodium leucotomos decreases UV-induced epidermal cell proliferation and enhances p53 expression and plasma antioxidant capacity in hairless mice. Exp. Dermatol. 2012, 21, 630–642. [Google Scholar] [CrossRef] [PubMed]
- Middelkamp-Hup, M.A.; Pathak, M.A.; Parrado, C.; Garcia-Caballero, T.; Rius-Diaz, F.; Fitzpatrick, T.B.; Gonzalez, S. Orally administered Polypodium leucotomos extract decreases psoralen-UVA-induced phototoxicity, pigmentation, and damage of human skin. J. Am. Acad. Dermatol. 2004, 50, 41–49. [Google Scholar] [CrossRef]
- Middelkamp-Hup, M.A.; Pathak, M.A.; Parrado, C.; Goukassian, D.; Rius-Diaz, F.; Mihm, M.C.; Fitzpatrick, T.B.; Gonzalez, S. Oral Polypodium leucotomos extract decreases ultraviolet-induced damage of human skin. J. Am. Acad. Dermatol. 2004, 50, 910–918. [Google Scholar] [CrossRef] [PubMed]
- Vill, A.; Viera, M.H.; Amini, S.; Huo, R.; Perez, O.; Ruiz, P.; Amador, A.; Elgart, G.; Berman, B. Decrease of ultraviolet A llight-induced “common deletion” in healthy volunteers after oral Polypodium leucotomos extract supplement in a randomized clinical trial. J. Am. Acad. Dermatol. 2010, 62, 511–513. [Google Scholar] [CrossRef]
- Gonzalez, S.; Gilaberte, Y.; Philips, N.; Juarranz, A. Fernblock, a nutriceutical with photoprotective properties and potential preventive agent for skin photoaging and photoinduced skin cancers. Int. J. Mol. Sci. 2011, 12, 8466–8475. [Google Scholar] [CrossRef] [Green Version]
- Aguilera, J.; Vicente-Manzanares, M.; de Gálvez, M.V.; Herrera-Ceballos, E.; Rodríguez-Luna, A.; González, S. Booster effect of a natural extract of Polypodium leucotomos (Fernblock®) that improves the UV barrier function and immune protection capability of sunscreen formulations. Front. Med. 2021, 8, 684665. [Google Scholar] [CrossRef]
- Lee, S.; Kim, K.H.; Park, C.; Lee, J.S.; Kim, Y.H. Portulaca oleracea extracts protect human keratinocytes and fibroblasts from UV-induced apoptosis. Exp. Dermatol. 2014, 23, 13–17. [Google Scholar] [CrossRef] [PubMed]
- Chapman, J.; Stewart, R.B.; Yarnell, R.A. Archaeological Evidence for Precolumbian Introduction of Portulaca oleracea and Mollugo verticillata into Eastern North America. Econ. Bot. 1974, 28, 411–412. [Google Scholar] [CrossRef]
- Martínez, M.A.; Evangelista, V.; Mendoza, M.; Morales, G.; Toledo, G.; Wong, A. Catálogo de plantas útiles de la Sierra Norte de Puebla. In Cuadernos Del instituto De Biología; Instituto de Biología, Universidad Nacional Autónoma de México: México City, Mexico, 1995; pp. 9–303. [Google Scholar]
- Iranshahy, M.; Javadi, B.; Iranshahi, M.; Jahanbakhsh, S.P.; Mahyari, S.; Hassani, F.V.; Karimi, G. A review of traditional uses, phytochemistry and pharmacology of Portulaca oleracea L. J. Ethnopharmacol. 2017, 205, 158–172. [Google Scholar] [CrossRef]
- Zhou, Y.X.; Xin, H.L.; Rahman, K.; Wang, S.J.; Peng, C.; Zhang, H. Portulaca oleracea L.: A review of phytochemistry and pharmacological effects. BioMed. Res. Int. 2015, 2015, 1–11. [Google Scholar]
- Petropoulos, S.; Karkanis, A.; Martins, N.; Ferreira, I.C. Phytochemical composition and bioactive compounds of common purslane (Portulaca oleracea L.) as affected by crop management practices. Trends Food Sci. Technol. 2016, 55, 1–10. [Google Scholar] [CrossRef]
- Kumar, B.S.A.; Prabhakarn, V.; Lakshman, K.; Nandeesh, R.; Subramanyam, P.; Khan, S.; Krishna, N.V. Pharmacognostical studies of Portulaca oleracea L. Rev. Bras. Farmacogn. 2008, 18, 527–531. [Google Scholar] [CrossRef]
- Rahimi, V.B.; Ajam, F.; Rakhshandeh, H.; Askari, V.R. A pharmacological review on Portulaca oleracea L.: Focusing on anti-inflammatory, anti-oxidant, immuno-modulatory and antitumor activities. J. Pharmacopunct. 2019, 22, 7. [Google Scholar] [CrossRef] [PubMed]
- Naeem, F.; Khan, S.H. Purslane (Portulaca oleracea L.) as phytogenic substance—A review. J. Herbs Spices Med. Plants 2013, 19, 216–232. [Google Scholar] [CrossRef]
- Sanja, S.D.; Sheth, N.R.; Patel, N.K.; Patel, D.; Patel, B. Characterization and evaluation of antioxidant activity of Portulaca oleracea. Int. J. Pharm. Pharm. Sci. 2009, 1, 5–10. [Google Scholar]
- Zhang, R.; Lee, H.J.; Yoon, Y.M.; Kim, S.M.; Kim, H.S.; Li, S.H.; An, S.K. The melanin inhibition, anti-aging and anti-inflammation effects of Portulaca oleracea extracts on cells. KSBB J. 2009, 24, 397–402. [Google Scholar]
- González, C.E.; Torres, V.C. La sustentabilidad agrícola de las chinampas en el valle de México: Caso Xochimilco. Rev. Mex. Agronegocios 2014, 34, 699–709. [Google Scholar]
- Cham, B.E.; Meares, H.M. Glycoalkaloids from Solanum sodomaeum are effective in the treatment of skin cancers in man. Cancer Lett. 1987, 36, 111–118. [Google Scholar] [CrossRef]
- Guuntekin, E.; Uner, B.; Karakus, B. Chemical composition of tomato (Solanum lycopersicum) stalk and suitability in the particleboard production. J. Environ. Biol. 2009, 30, 731–734. [Google Scholar] [PubMed]
- Maligeppagol, M.; Chandra, G.S.; Navale, P.M.; Deepa, H.; Rajeev, P.R.; Asokan, R.; Babu, K.P.; Babu, C.S.B.; Rao, V.K.; Kumar, N.K.K. Anthocyanin enrichment of tomato (Solanum lycopersicum L.) fruit by metabolic engineering. Curr. Sci. 2013, 105, 72–80. [Google Scholar]
- Raiola, A.; Rigano, M.M.; Calafiore, R.; Frusciante, L.; Barone, A. Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediat. Inflamm. 2014, 2014, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Aust, O.; Stahl, W.; Sies, H.; Tronnier, H.; Heinrich, U. Supplementation with tomato-based products increases lycopene, phytofluene, and phytoene levels in human serum and protects against UV-light-induced erythema. Int. J. Vitam. Nutr. Res. 2005, 75, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Fernández-García, E. Photoprotection of human dermal fibroblasts against ultraviolet light by antioxidant combinations present in tomato. Food Funct. 2014, 5, 285–290. [Google Scholar] [CrossRef]
- Cooperstone, J.L.; Tober, K.L.; Riedl, K.M.; Teegarden, M.D.; Cichon, M.J.; Francis, D.M.; Schwartz, S.J.; Oberyszyn, T.M. Tomatoes protect against development of UV-induced keratinocyte carcinoma via metabolomic alterations. Sci. Rep. 2017, 7, 5106. [Google Scholar] [CrossRef] [PubMed]
- Lim, T.K. Spondias purpurea. In Edible Medicinal and Non-Medicinal Plants; Springer: Dordrecht, The Netherlands, 2012; pp. 160–165. [Google Scholar]
- Hernández-Ruiz, K.L.; Ruiz-Cruz, S.; Cira-Chávez, L.A.; Gassos-Ortega, L.E.; Ornelas-Paz, J.J.; Del-Toro-Sánchez, C.L.; Márquez-Ríos, E.; López-Mata, M.A.; Rodríguez-Félix, F. Evaluation of antioxidant capacity, protective effect on human erythrocytes and phenolic compound identification in two varieties of plum fruit (Spondias spp.) by UPLC-MS. Molecules 2018, 23, 3200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Villa-Hernández, J.M.; Mendoza-Cardoso, G.; Mendoza-Espinoza, J.A.; Vela-Hinojosa, C.; Díaz de León-Sánchez, F.; Rivera-Cabrera, F.; Alia-Tejacal, I.; Pérez-Flores, L.J. Antioxidant capacity in vitro and in vivo of various ecotypes of mexican plum (Spondias purpurea L.). J. Food Sci. 2017, 82, 2576–2582. [Google Scholar] [CrossRef]
- Silva, R.V.; Costa, S.C.C.; Branco, C.R.C.; Branco, A. In vitro photoprotective activity of the Spondias purpurea L. peel crude extract and its incorporation in a pharmaceutical formulation. Ind. Crop. Prod. 2016, 83, 509–514. [Google Scholar] [CrossRef]
- Peres, D.A.; de Oliveira, C.A.; da Costa, M.S.; Tokunaga, V.K.; Mota, J.P.; Rosado, C.; Consiglieri, V.O.; Kaneko, T.M.; Velasco, M.V.R.; Baby, A.R. Rutin increases critical wavelength of systems containing a single UV filter and with good skin compatibility. Ski. Res. Technol. 2016, 22, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, F.A.M.; Giffony, P.S.; dos Santos, S.B.; Guedes, J.A.; Ribeiro, M.E.N.; Araújo, T.G.D.; da Silva, L.M.R.; Zocolo, G.J.; Ricardo, N.M. Spondias purpurea L. stem bark extract: Antioxidant and in vitro photoprotective activities. J. Braz. Chem. Soc. 2021, 32, 1918–1930. [Google Scholar] [CrossRef]
- Baharum, Z.; Akim, A.; Taufiq-Yap, Y.; Hamid, R.; Kasran, R. In vitro antioxidant and antiproliferative activities of methanolic plant part extracts of Theobroma Cacao. Molecules 2014, 19, 18317–18331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Lagunas, M.J.; Vicente, F.; Pereira, P.; Castell, M.; Pérez-Cano, F.J. Relationship between cocoa intake and healthy status: A pilot study in university students. Molecules 2019, 24, 812. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, S.; Tamburic, S.; Lally, C. Eating chocolate can significantly protect the skin from UV light. J. Cosmet. Dermatol. 2009, 8, 169–173. [Google Scholar] [CrossRef]
- Heinrich, U.; Neukam, K.; Tronnier, H.; Sies, H.; Stahl, W. Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women. J. Nutr. 2006, 136, 1565–1569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patel, S. Yucca: A medicinally significant genus with manifold therapeutic attributes. Rev. Nat. Prod. Bioprospect. 2012, 2, 231–234. [Google Scholar] [CrossRef] [Green Version]
- Avila-Acevedo, J.G. Photoprotective activity of Yucca periculosa polyphenols. Bol. Latinoam. Caribe Plantas Med. Aromat. 2010, 9, 100–108. [Google Scholar]
- Torres, P.; Avila, J.G.; De Vivar, A.R.; García, A.M.; Marín, J.C.; Aranda, E.; Céspedes, C.L. Antioxidant and insect growth regulatory activities of stilbenes and extracts from Yucca periculosa. Phytochemistry 2003, 64, 463–473. [Google Scholar] [CrossRef]
- Camont, L.; Cottart, C.H.; Rhayem, Y.; Nivet-Antoine, V.; Djelidi, R.; Collin, F.; Beaudeux, J.L.; Bonnefont-Rousselot, D. Simple spectrophotometric assessment of the trans-/cis-resveratrol ratio in aqueous solutions. Anal. Chim. Acta 2009, 634, 121–128. [Google Scholar] [CrossRef] [PubMed]
- Hassan, F.; El-Razek, A.; Hassan, A. Nutritional value and hypoglycemic effect of prickly cactus pear (Opuntia ficus-Indica) fruit juice in alloxan-induced diabetic rats. Aust. J. Basic Appl. Sci. 2012, 5, 356–377. [Google Scholar]
- Gámez, O.; Villavicencio, E.; Serrato, M.; Mejía, J.; Treviño, G.; Martínez, L.; Rodríguez, M.; Granada, L.; Flores, M.; Reyes, J.; et al. Conservación Y Aprovechamiento Sostenible De Especies Ornamentales Nativas De México, 1st ed.; Servicio Nacional de Inspección y Certificación de Semillas y Universidad Autónoma Chapingo: Texcoco, Mexico, 2018; p. 152. [Google Scholar]
- Ciriminna, R.; Delisi, R.; Albanese, L.; Meneguzzo, F.; Pagliaro, M. Opuntia ficus–indica seed oil: Biorefineryand bioeconomy aspects. Eur. J. Lipid Sci. Technol. 2017, 118, 1700013. [Google Scholar] [CrossRef]
- Petruk, G.; Di Lorenzo, F.; Imbimbo, P.; Silipo, A.; Bonina, A.; Rizza, L.; Piccolo, R.; Monti, D.M.; Lanzetta, R. Protective effect of Opuntia ficus-indica L. cladodes against UVA-induced oxidative stress in normal human keratinocytes. Bioorganic Med. Chem. Lett. 2017, 27, 5485–5489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, K.; Choi, H.S.; Hong, Y.H.; Jung, E.Y.; Suh, H.J. Cactus cladodes (Opuntia humifusa) extract minimizes the effects of UV irradiation on keratinocytes and hairless mice. Pharm. Biol. 2017, 55, 1032–1040. [Google Scholar] [CrossRef] [PubMed]
- Ponniresan, V.; Maqbool, I.; Thangaiyan, R.; Govindasamy, K.; Prasad, N.R. Preventive effect of opuntiol, isolated from Opuntia ficus indica (L. Mill), extract against ultraviolet A radiation-induced oxidative damages in NIH/3T3 Cells. Int. J. Nutr. Pharmacol. Neurol. Dis. 2019, 9, 156. [Google Scholar]
Type of UVR | Characteristics | Acute Harmful Skin Effects | Chronic Harmful Skin Effects |
---|---|---|---|
Ultraviolet A radiation (UVA) 315 to 400 nm | Is not filtered by the stratospheric ozone layer in the atmosphere 90–99% reaches the earth’s surface Can penetrate deeper into the skin | Immediate pigment darkening Tanning | Photoaging: skin elasticity reduction and increase wrinkling. Immunosuppression |
Ultraviolet B radiation (UVB) 280 to 315 nm | Filtered by the stratospheric ozone layer in the atmosphere 1–10% reaches the earth´s surface Can penetrate the upper layers of the epidermis | Edema, erythema, darkening, sunburns. Thickening of the epidermis and dermis. | Photoaging Immunosuppression Skin cancer |
Ultraviolet C radiation (UVC) 100 to 280 nm | Completely filtered by the stratospheric ozone layer in the atmosphere Major artificial sources are germicidal lamps | Burn | Skin cancer |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torres-Contreras, A.M.; Garcia-Baeza, A.; Vidal-Limon, H.R.; Balderas-Renteria, I.; Ramírez-Cabrera, M.A.; Ramirez-Estrada, K. Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. Plants 2022, 11, 220. https://doi.org/10.3390/plants11020220
Torres-Contreras AM, Garcia-Baeza A, Vidal-Limon HR, Balderas-Renteria I, Ramírez-Cabrera MA, Ramirez-Estrada K. Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules. Plants. 2022; 11(2):220. https://doi.org/10.3390/plants11020220
Chicago/Turabian StyleTorres-Contreras, Ana Mariel, Antoni Garcia-Baeza, Heriberto Rafael Vidal-Limon, Isaias Balderas-Renteria, Mónica A. Ramírez-Cabrera, and Karla Ramirez-Estrada. 2022. "Plant Secondary Metabolites against Skin Photodamage: Mexican Plants, a Potential Source of UV-Radiation Protectant Molecules" Plants 11, no. 2: 220. https://doi.org/10.3390/plants11020220