Magnesium Fertilization Increases Nitrogen Use Efficiency in Winter Wheat (Triticum aestivum L.)
Abstract
1. Introduction
2. Results
2.1. Magnesium Fertilization Systems and Yield Increment
2.2. Magnesium Accumulation and Indices of Efficiency
2.3. Nitrogen Accumulation and Indices of Efficiency
3. Discussion
3.1. Magnesium Use Efficiency
- Is there an advantage of soil over foliar Mg fertilization?
- Does the stage of wheat development affect the choice of the date for foliar Mg fertilization?
- Is there any interaction between the two fertilization systems with regard to the end result, i.e., yield increase?
- Conservative: a high and stable yield increase, increasing the resistance to abiotic stresses;
- Effective: a moderate-to-high yield increase, provided there are no abiotic stresses;
- Prophylactic: a moderate yield increase, with a constant fertilization factor.
3.2. Impact of Magnesium Uptake on Nitrogen Management by Wheat
4. Materials and Methods
4.1. Experimental Site
4.2. Weather Conditions
4.3. Experimental Design
- Soil-applied magnesium (Mgs): 0, 25, and 50 kg Mg ha−1 (acronym: Mg control, Mgs25, and Mgs50);
- Foliar-applied magnesium (Mgf):
- Without application, i.e., Mgf control;
- Applied at the BBCH 30 stage (I) (I–BBCH 30);
- Applied at the BBCH 49/50 stage (II) (II–BBCH 59/50);
- Applied at the BBCH 30/31 and BBCH 49/50 stages; double-stage application (I + II).
4.4. Plant Material Sampling and Analysis
4.5. Parameters and Indices of Nitrogen Use Efficiency
- Nitrogen accumulation in wheat grain, NaG:
- Nitrogen accumulation in crop residues, Nr:
- Total accumulation of nitrogen in wheat biomass, TN:
- Nitrogen harvest index, NHI:
- Nitrogen unit accumulation in grain, NUA-G:
- Nitrogen unit accumulation in total wheat biomass, NUA-T:
- Nitrogen unit productivity—grain, NUPG:
- Nitrogen unit productivity–total, NUP-T:
- Partial factor productivity of fertilizer N, PFP-N:
- Nitrogen agronomic efficiency, NAE:
- Nitrogen recovery, N–R:
- Nitrogen physiological efficiency, N-PhE:
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Trait | MgaG | MgaCR | MgaT | Mg–HI | MgUA–G | MgUA–T | MgUP–G | MgUP–T | PFP–Mg | MgAE | Mg–R | Mg–PhE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | 0.35 * | 0.36 * | 0.38 * | 0.02 | −0.33 * | −0.37 * | 0.25 | 0.28 | 0.07 | 0.06 | 0.08 | 0.07 |
MgaG | 1.00 | 0.67 *** | 0.97 *** | 0.57 *** | 0.77 *** | 0.71 *** | −0.82 *** | −0.77 *** | 0.01 | 0.05 | 0.10 | 0.07 |
MgaCR | 1.00 | 0.83 *** | −0.23 | 0.44 ** | 0.56 *** | −0.48 ** | −0.62 *** | −0.06 | −0.02 | 0.02 | 0.04 | |
MgaT | 1.00 | 0.36 * | 0.72 *** | 0.71 *** | −0.77 *** | −0.78 *** | −0.01 | 0.03 | 0.08 | 0.07 | ||
Mg–HI | 1.00 | 0.54 ** | 0.34 * | −0.58 *** | −0.35 * | 0.07 | 0.09 | 0.10 | 0.05 | |||
MgUA–G | 1.00 | 0.97 *** | −0.99 *** | −0.97 *** | −0.04 | 0.01 | 0.04 | 0.02 | ||||
MgUA–T | 1.00 | −0.96 *** | −0.99 *** | −0.06 | −0.01 | 0.02 | 0.01 | |||||
MgUP–G | 1.00 | 0.97 *** | 0.01 | −0.04 | −0.07 | −0.05 | ||||||
MgUP–T | 1.00 | 0.04 | −0.01 | −0.05 | −0.04 | |||||||
PFP–Mg | 1.00 | 1.00 *** | 0.99 *** | 0.95 *** | ||||||||
MgAE | 1.00 | 1.00 *** | 0.96 *** | |||||||||
Mg–R | 1.00 | 0.96 *** |
Trait | NaGY | NaCR | TN | N–HI | NUA–G | NUA–T | NUP–G | NUP–T | PFP–N | NAE | N–R | N–PhE |
---|---|---|---|---|---|---|---|---|---|---|---|---|
GY | 0.50 ** | −0.53 ** | 0.26 | 0.9 *** | −0.16 | −0.38 *** | 0.22 | 0.47 ** | 1.00 | 0.75 *** | 0.14 | 0.38 * |
NaG | 1.00 | 0.40 * | 0.96 *** | 0.24 | 0.78 *** | 0.61 *** | −0.73 *** | −0.53 ** | 0.50 ** | −0.10 | 0.91 *** | −0.61 *** |
NaCR | 1.00 | 0.63 *** | −0.78 *** | 0.84 *** | 0.94 *** | −0.84 *** | −0.94 *** | −0.53 *** | −0.83 *** | 0.70 *** | −0.91 *** | |
TN | 1.00 | −0.01 | 0.90 *** | 0.79 *** | −0.83 *** | −0.72 *** | 0.26 | −0.33 | 0.97 *** | −0.78 *** | ||
N–HI | 1.00 | −0.37 * | −0.59 *** | 0.40 * | 0.64 *** | 0.91 *** | 0.81 *** | −0.13 | 0.55 *** | |||
NUA–G | 1.00 | 0.97 *** | −0.99 *** | −0.94 *** | −0.16 | −0.67 *** | 0.93 *** | −0.97 *** | ||||
NUA–T | 1.00 | −0.97 *** | −0.99 *** | −0.38 * | −0.79 *** | 0.85 *** | −0.99 *** | |||||
NUP–G | 1.00 | 0.96 *** | 0.23 | 0.68 *** | −0.91 *** | 0.98 *** | ||||||
NUP–T | 1.00 | 0.47 ** | 0.83 *** | −0.80 *** | 0.99 *** | |||||||
PFP–N | 1.00 | 0.75 *** | 0.14 | 0.38 * | ||||||||
NAE | 1.00 | −0.37 * | 0.80 *** | |||||||||
R–N | 1.00 | −0.83 *** |
Trait | MgaCR | MgaT | NUA-G | NUA–T | NUP–G | NUP–T | PFP–N | NAE | R–N | PhE–N |
---|---|---|---|---|---|---|---|---|---|---|
MgaG | 0.67 *** | 0.97 *** | −0.91 *** | −0.91 *** | 0.90 *** | 0.92 *** | 0.35 * | 0.82 *** | −0.75 *** | 0.93 *** |
MgaCR | 1.00 | 0.83 *** | −0.54 ** | −0.57 *** | 0.54 ** | 0.57 *** | 0.34 * | 0.68 *** | −0.30 | 0.58 *** |
MgaT | 1.00 | −0.86 *** | −0.89 *** | 0.86 *** | 0.88 *** | 0.38 * | 0.84 *** | −0.67 *** | 0.89 *** |
Appendix B
References
- FAOSTAT. Available online: https://faostat.fao.org/site/567/default.aspx#ancor (accessed on 25 May 2022).
- Lobell, D.B.; Cassman, K.G.; Field, C.B. Crop yield gaps: Their importance, magnitudes, and causes. Annu. Rev. Environ. Resour. 2009, 34, 179–204. [Google Scholar] [CrossRef]
- Wójcik-Gront, E.; Iwańska, M.; Wnuk, A.; Oleksiak, T. The analysis of wheat yield variability based on experimental data from 2008-2018 to understand the yield gap. Agriculture 2022, 12, 32. [Google Scholar] [CrossRef]
- Grzebisz, W.; Łukowiak, R. Nitrogen gap amelioration is a core for sustainable intensification of agriculture—A concept. Agronomy 2021, 11, 419. [Google Scholar] [CrossRef]
- Grzebisz, W.; Łukowiak, R.; Sassenrath, G. Virtual nitrogen as a tool for assessment of nitrogen at the field scale. Field Crops Res. 2018, 218, 182–184. [Google Scholar] [CrossRef]
- Grzebisz, W.; Niewiadomska, A.; Przygocka-Cyna, K. Nitrogen HotSpots on the farm—A practice-oriented approach. Agronomy 2022, 12, 1305. [Google Scholar] [CrossRef]
- Ahrends, H.E.; Siebert, S.; Rezaei, E.E.; Seidel, S.J.; Hüging, H.; Ewert, F.; Döring, T.; Rueda-Ayala, V.; Eugster, W.; Gaiser, T. Nutrient supply affects the yield stability of major European crops—A 50 year study. Environ. Res. Lett. 2020, 16, 014003. [Google Scholar] [CrossRef]
- Klepper, B.; Rickman, R.W.; Waldman, S.; Chevalier, P. The physiological life cycle of wheat: Its use in breeding and crop management. Euphytica 1998, 100, 341–347. [Google Scholar]
- Xie, Q.; Mayes, S.; Sparkes, D.L. Pre-anthesis biomass accumulation and plant organs defines yield components in wheat. Eur. J. Agron. 2016, 81, 15–26. [Google Scholar] [CrossRef]
- Schnitkey, G.; Paulson, N.; Zulauf, C.; Swansin, K.; Colussi, J.; Baltz, J. Nitrogen fertilizer prices and supply in light of the Ukraine-Russia conflict. Farmdoc Dly. 2022, 12, 45. [Google Scholar]
- Johnston, A.M.; Bruulsema, T.W. 4R nutrient stewardship for improved nutrient use efficiency. Procedia Engine. 2014, 83, 365–370. [Google Scholar] [CrossRef]
- Cakmak, I.; Yazici, A.M. Magnesium: A forgotten element in crop production. Better Crops 2010, 94, 23–25. [Google Scholar]
- Szczepaniak, W.; Barłóg, P.; Łukowiak, R.; Przygocka-Cyna, K. Effect of balanced nitrogen fertilization in four-year rotation on plant productivity. J. Cent. Europ. Agric. 2013, 14, 64–77. [Google Scholar] [CrossRef]
- Grzebisz, W. Magnesium. In Handbook od Plant Nutrition; Barker, A.V., Pilbeam, D.J., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 199–260. [Google Scholar]
- Hlisnikovský, L.; Čermak, P.; Kunzová, E.; Barłóg, P. The effect of application of potassium, magnesium and sulphur on wheat and barley grain yield and protein content. Agron. Res. 2019, 17, 1905–1917. [Google Scholar]
- Sadeghi, F.; Rezezad, A.; Rahimi, M. Effect of zinc and magnesium fertilizers on the yield and some characteristics of wheat (Triticum aestivum L.) seeds in two years. Inter. J. Agron. 2021, 2021, 8857222. [Google Scholar] [CrossRef]
- Wang, Z.; Hassan, M.U.; Nadeem, F.; Wu, L.; Zhang, F.; Li, X. Magnesium fertilization improves crop yield in most production systems: A meta–analysis. Front. Plant Sci. 2020, 10, 1727. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, W. The influence of crop rotation with an increasing content of cereals on photosynthetic potential of winter wheat. J. Agron. Crop Sci. 1988, 160, 198–207. [Google Scholar] [CrossRef]
- Härdter, R.; Rex, M.; Orlovius, K. Effects of different Mg fertilizer sources on the magnesium availability in soils. Nut. Cycl. Agroecos. 2004, 70, 249–259. [Google Scholar] [CrossRef]
- Gerendás, J.; Führs, H. The significance of magnesium for crop quality. Plant Soil 2013, 368, 101–128. [Google Scholar] [CrossRef]
- Adnan, M.; Hayyat, M.S.; Imran, M.; Rehman, F.U.; Saeed, M.S.; Mehta, J.; Tampubolon, K. Impact of foliar application of magnesium fertilizer on agronomic crops: A review. Ind. J. Pure App. Biosci. 2020, 8, 281–288. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants; Elsevier Ltd. Academic Press: London, UK, 1995; 899p. [Google Scholar]
- Kant, S.; Seneweera, S.; Rodin, J.; Materne, M.; Burch, D.; Rothstein, S.J.; Spangenberg, G. Improving yield potential in crop under elevated CO2: Integrating the photosynthetic and nitrogen utilization efficiencies. Front. Plant Sci. 2012, 3, 162. [Google Scholar] [CrossRef]
- Parry, A.J.; Andralojc, P.J.; Scales, J.C.; Salvucci, M.E.; Carmo-Silva, A.E.; Alonso, H.; Whitney, S.M. Rubisco activity and regulation as targets for crop improvement. J. Exp. Bot. 2013, 6493, 717–730. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Li, S.; Gao, L.; Sun, C.; Hu, J.; Ullah, A.; Gao, J.; Li, X.; Liu, S.; Jiang, D.; et al. Magnesium application promotes rubisco activation and contributes to high-temperature stress alleviation in wheat during the grain filling. Front. Plant Sci. 2021, 12, 675582. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, W.; Przygocka-Cyna, K.; Szczepaniak, W.; Diatta, J.; Potarzycki, J. Magnesium as a nutritional tool of nitrogen efficient management—Plant production and environment. J. Elem. 2010, 15, 771–788. [Google Scholar] [CrossRef]
- Grzebisz, W. Crop response to magnesium fertilization as affected by nitrogen supply. Plant Soil 2013, 368, 23–39. [Google Scholar] [CrossRef]
- Potarzycki, J. Effect of magnesium and zinc supplementation at the background of nitrogen rate on nitrogen management by maize canopy cultivated in monoculture. Plant Soil Environ. 2011, 57, 19–25. [Google Scholar] [CrossRef]
- Szczepaniak, W.; Grzebisz, W.; Potarzycki, J.; Łukowiak, R.; Przygocka-Cyna, K. The magnesium and calcium mineral status of maize at physiological maturity as a toll for an evaluation of yield-forming conditions. J. Elem. 2016, 2193, 881–897. [Google Scholar]
- Grzebisz, W.; Potarzycki, J. The in-season nitrogen concentration in the potato tuber as the yield driver. Agron. J. 2020, 112, 1287–1308. [Google Scholar] [CrossRef]
- Pogłodziński, R.; Barłog, P.; Grzebisz, W. Effect of nitrogen and magnesium sulfate application on sugar beet yield and quality. Plant Soil Environ. 2021, 67, 507–513. [Google Scholar] [CrossRef]
- Grzebisz, W.; Potarzycki, J. Effect of magnesium fertilization systems on grain yield formation by winter wheat (Triticum aestivum L.) during the grain filling period. Agronomy 2022, 12, 12. [Google Scholar] [CrossRef]
- Wallace, A.; Wallace, G.A. Closing the Crop-Yield Gap through Better Soil and Better Management; Wallace Laboratories: Los Angeles, CA, USA, 2003; p. 162. [Google Scholar]
- Slafer, G.A.; Elia, M.; Savin, R.; Garcia, G.A.; Terrile, I.I.; Ferrante, A.; Miralles, D.J.; González, F.G. Fruiting efficiency: An alternative trait to further rise in wheat yield. Food Energy Sec. 2015, 4, 92–109. [Google Scholar] [CrossRef]
- Ahmadi-Lahijani, M.J.; Emam, Y. Post-anthesis drought stress effects on photosynthesis rate and chlorophyll content if wheat genotypes. J. Plant Physiol. Breed. 2016, 6, 35–52. [Google Scholar]
- Mathur, S.; Agrawal, D.; Jajoo, A. Photosynthesiis: Response to high temperaturę stress. J. Photochem. Photobiol. B 2014, 137, 116–126. [Google Scholar] [CrossRef] [PubMed]
- Veres, S.; Ondrasek, G.; Zsombik, L. Wheat sensitivity to nitrogen supply under different climatic conditions. In Global Wheat Production; Fhad, S., Basir, A., Adnan, M., Eds.; InTech: Rijeka, Croatia, 2018; pp. 31–49. [Google Scholar]
- Hodgkinson, L.; Dodd, I.C.; Binley, A.; Ashton, R.W.; White, R.P.; Watts, C.W.; Whalley, W.R. Root growth in field grown winter wheat: Some effects of soil conditions, season and genotype. Eur. J. Agron. 2017, 91, 74–83. [Google Scholar] [CrossRef] [PubMed]
- Hawkesford, M.J. Reducing the reliance on nitrogen fertilizer for wheat production. J. Cereal Sci. 2014, 59, 276–283. [Google Scholar] [CrossRef] [PubMed]
- Potarzycki, J. Influence of nitrogen and magnesium fertilization at the flag leaf stage of winter wheat development on the yield and grain quality. Fertil. Fertil. 2008, 32, 99–109. [Google Scholar]
- Potarzycki, J. Nitrogen management of winter wheat fertilized with magnesium and nitrogen fertilizers at the flag leaf stage of growth. Fertil. Fertil. 2008, 32, 110–120. [Google Scholar]
- Szczepaniak, W.; Nowicki, B.; Bełka, D.; Kazimierowicz, A.; Kulwicki, M.; Grzebisz, W. Effect of foliar application of micronutrients and fungicides on the nitrogen use efficiency in winter wheat. Agronomy 2022, 12, 257. [Google Scholar] [CrossRef]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Hulisz, P.; Jaknkowski, M.; Jonczak, J.; Łabaz, B.; et al. Polish Soil Classification: Principles, classification scheme and correlation. Soil Sci. Annu. 2019, 70, 71–97. [Google Scholar] [CrossRef]
Factor | Level of Factor | MgaG | MgaCR | MgaT | MgHI | MgUA–G | MgUA–T | MgUP–G | MgUP–T | PFP–Mg | MgAE | Mg–R | Mg–PhE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg ha−1 | % | kg Mg t−1 | kg Grain kg−1 Mg | t Grain kg−1 Mgf | % | t Grain kg−1 MgaT | |||||||
Year | 2013 | 11.1 b | 5.3 b | 16.4 b | 67.9 a | 1.31 a | 1.93 a | 766.2 c | 519.9 c | 731.8 c | 0.36 b | 62.6 b | 0.66 b |
(Y) | 2014 | 12.6 a | 5.8 a | 18.4 a | 68.4 a | 1.15 b | 1.69 b | 871.6 b | 595.4 b | 946.8 a | 0.44 a | 81.6 a | 1.05 a |
2015 | 8.3 c | 4.6 c | 12.9 c | 64.8 b | 0.86 c | 1.33 c | 1178.8 a | 760.5 a | 843.3 b | 0.34 b | 54.4 c | 0.56 b | |
p | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
Mg in-soil | 0 | 10.6 | 5.1 a | 15.6 b | 67.4 | 1.11 | 1.65 | 921.5 | 620.1 | 1990.1 a | 0.91 a | 156.2 a | 2.21 a |
Mgs | 25 | 10.7 | 5.1 a | 15.8 ab | 67.3 | 1.10 | 1.63 | 950.7 | 634.6 | 346.8 b | 0.16 b | 27.2 b | 0.04 b |
50 | 10.8 | 5.5 a | 16.3 a | 66.3 | 1.11 | 1.67 | 944.3 | 621.2 | 185.0 c | 0.09 c | 15.2 c | 0.01 c | |
p | n.s. | * | * | n.s. | n.s. | n.s. | n.s. | n.s. | *** | *** | *** | *** | |
Mg foliar | 0 | 10.4 | 4.8 b | 15.2 b | 68.3 a | 1.11 | 1.63 | 929.0 | 633.2 | 191.9 d | 0.09 d | 14.0 d | 0.02 d |
(Mgs) | I | 10.6 | 5.1 ab | 15.7 ab | 67.1 ab | 1.09 | 1.62 | 959.9 | 638.5 | 1524.4 a | 0.69 a | 118.1 a | 1.96 a |
II | 10.9 | 5.3 ab | 16.1 a | 67.1 ab | 1.12 | 1.67 | 919.5 | 614.2 | 975.2 b | 0.44 b | 79.7 b | 0.75 b | |
I + II | 10.8 | 5.6 a | 16.4 a | 65.7 b | 1.10 | 1.68 | 947.0 | 615.3 | 671.2 c | 0.31 c | 53.0 c | 0.30 c | |
p | n.s. | *** | *** | * | n.s. | n.s. | n.s. | n.s. | *** | *** | *** | *** | |
Source of Variation for Interaction | |||||||||||||
Y × Mgs | * | n.s. | * | * | * | n.s. | * | * | *** | *** | *** | *** | |
Y × Mgf | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. | n.s. | *** | *** | ** | *** | |
Mgs × Mgf | n.s. | ** | ** | * | n.s. | n.s. | n.s. | *** | *** | *** | *** | *** | |
Y × Mgs × Mgf | n.s. | * | * | n.s. | n.s. | n.s. | n.s. | ** | *** | *** | *** | *** |
Factor | Level of Factor | NaG | NaCR | TN | NHI | NUA–G | NUA–T | NUP–G | NUP–T | PFP–N | NAE | N–R | N–PhE |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
kg N ha−1 | % | kg N t−1 | kg Grain kg−1 N | Grain kg−1 Nf | % | Grain kg−1 TN | |||||||
Year | 2013 | 185.0 c | 46.8 b | 231.8 c | 79.8 c | 21.9 b | 27.4 b | 45.8 b | 36.5 b | 44.5 | 22.1 b | 78.9 b | 28.0 b |
(Y) | 2014 | 224.5 b | 30.3 c | 254.8 b | 88.1 a | 20.5 c | 23.3 c | 49.0 a | 43.1 a | 57.5 | 27.1 a | 81.5 b | 33.6 a |
2015 | 265.0 a | 59.0 a | 324.0 a | 81.8 b | 27.3 a | 33.4 a | 36.7 c | 30.0 c | 51.0 | 20.7 c | 107.2 a | 19.4 c | |
p | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | *** | |
Mg in-soil | 0 | 214.5 b | 45.1 | 259.6 b | 82.6 | 22.6 b | 27.5 b | 45.1 a | 37.4 a | 50.2 b | 22.4 b | 83.6 b | 27.8 a |
Mgs | 25 | 228.8 a | 44.9 | 273.7 a | 83.6 | 23.6 a | 28.3 a | 43.1 b | 36.1 b | 51.1 a | 23.4 ab | 91.0 a | 26.4 a |
50 | 231.2 a | 46.0 | 277.2 a | 83.5 | 23.5 a | 28.3 a | 43.2 b | 36.2 b | 51.7 a | 24.0 a | 92.9 a | 26.7 a | |
p | *** | n.s. | *** | n.s. | *** | ** | *** | *** | *** | ** | *** | n.s. | |
Mg foliar | 0 | 217.1 b | 43.6 | 260.6 b | 83.2 | 23.0 | 27.8 | 44.1 | 36.7 | 49.6 b | 21.9 b | 84.2 b | 26.7 |
(Mgf) | I | 228.6 a | 45.5 | 274.2 a | 83.5 | 23.4 | 28.1 | 43.4 | 36.3 | 51.5 a | 23.8 a | 91.3 a | 26.8 |
II | 222.1 ab | 46.1 | 268.1 ab | 82.9 | 23.0 | 27.9 | 44.6 | 37.1 | 51.1 a | 23.4 a | 88.1 ab | 27.8 | |
I + II | 231.5 a | 46.2 | 277.7 a | 83.4 | 23.6 | 28.4 | 43.2 | 36.1 | 51.8 a | 24.1 a | 93.2 a | 26.7 | |
p | *** | n.s. | *** | n.s. | n.s. | n.s. | n.s. | n.s. | *** | *** | *** | n.s. | |
Source of Variation for Interaction | |||||||||||||
Y × Mgs | ** | ** | * | ** | ** | n.s. | *** | ** | n.s. | n.s. | n.s. | n.s. | |
Y × Mgf | * | * | n.s. | * | *** | * | *** | ** | n.s. | n.s. | n.s. | * | |
Mgs × Mgf | n.s. | n.s. | n.s. | n.s. | n.s. | n.s. | * | n.s. | * | n.s. | n.s. | n.s. | |
Y × Mgs × Mgf | n.s. | * | n.s. | n.s. | * | n.s. | * | * | n.s. | n.s. | n.s. | n.s. |
Year | Soil Layer | pH | P 1 | K 1 | Mg 2 | Nmin |
---|---|---|---|---|---|---|
(cm) | 1 M KCl | mg kg−1 Soil | kg ha−1 | |||
2012/2013 | 0–30 | 6.5 | 63.2 1 M 3 | 157.7 M | 33.2 H | 76 4 |
30–60 | 59.7 1 M | 107.9 M | 25.3 M | |||
2013/2014 | 0–30 | 6.7 | 91.6 1 H | 168.0 M | 30.2 M | 74 |
30–60 | 91.6 1 H | 153.6 M | 24.7 M | |||
2014/2015 | 0–30 | 6.6 | 87.2 1 H | 182.6 H | 24.1 M | 57 |
30–60 | 95.9 1 H | 149.9 M | 30.2 M |
Treatment | Fertilization Schedule | N–P2O5–K2O | Mg–Soil | Mg–Foliar |
---|---|---|---|---|
kg ha−1 | ||||
1.1 | NPK | 190–70–80 | 0 | 0 |
2.1 | NPK–Mg foliar BBCH 30 | 190–70–80 | 0 | 2.4 |
2.2 | NPK–Mg foliar BBCH 49/50 | 190–70–80 | 0 | 4.0 |
2.3 | NPK–Mg foliar BBCH 30 + 49.50 | 190–70–80 | 0 | 6.4 |
3.1 | NPK–Mg soil | 190–70–80 | 25 | 0 |
3.2 | NPK–Mg soil + foliar BBCH 30 | 190–70–80 | 25 | 2.4 |
3.3 | NPK–Mg soil + foliar BBCH 49/50 | 190–70–80 | 25 | 4.0 |
3.4 | NPK–Mg soil + foliar BBCH 30 + 49/50 | 190–70–80 | 25 | 6.4 |
4.1 | NPK–Mg soil | 190–70–80 | 50 | 0 |
4.2 | NPK–Mg soil + foliar BBCH 30 | 190–70–80 | 50 | 2.4 |
4.3 | NPK–Mg soil + foliar BBCH 49/50 | 190–70–80 | 50 | 4.0 |
4.4 | NPK–Mg soil + foliar BBCH 30 + 49/50 | 190–70–80 | 50 | 6.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Potarzycki, J.; Grzebisz, W.; Szczepaniak, W. Magnesium Fertilization Increases Nitrogen Use Efficiency in Winter Wheat (Triticum aestivum L.). Plants 2022, 11, 2600. https://doi.org/10.3390/plants11192600
Potarzycki J, Grzebisz W, Szczepaniak W. Magnesium Fertilization Increases Nitrogen Use Efficiency in Winter Wheat (Triticum aestivum L.). Plants. 2022; 11(19):2600. https://doi.org/10.3390/plants11192600
Chicago/Turabian StylePotarzycki, Jarosław, Witold Grzebisz, and Witold Szczepaniak. 2022. "Magnesium Fertilization Increases Nitrogen Use Efficiency in Winter Wheat (Triticum aestivum L.)" Plants 11, no. 19: 2600. https://doi.org/10.3390/plants11192600
APA StylePotarzycki, J., Grzebisz, W., & Szczepaniak, W. (2022). Magnesium Fertilization Increases Nitrogen Use Efficiency in Winter Wheat (Triticum aestivum L.). Plants, 11(19), 2600. https://doi.org/10.3390/plants11192600