Edible Flower Species as a Promising Source of Specialized Metabolites
Abstract
:1. Introduction
2. Results
2.1. Chromaticity Parameters and Total Dry Matter Content of Fresh Edible Flowers
2.2. Specialized Metabolites of Fresh Edible Flowers
2.3. Antioxidant Capacity of Fresh Edible Flowers
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Determination of Chromaticity Parameters and Total Dry Matter Content
4.3. Determination of Specialized Metabolites Content
4.4. Determination of Antioxidant Capacity
4.5. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Garagounis, C.; Delkis, N.; Papadopoulou, K.K. Unraveling the roles of plant specialized metabolites: Using synthetic biology to design molecular biosensors. New Phytol. 2021, 231, 1338–1352. [Google Scholar] [CrossRef] [PubMed]
- Amasino, R.M.; Cheung, A.Y.; Dresselhaus, T.; Kuhlemeier, C. Focus on Flowering and Reproduction. Plant Physiol. 2017, 173, 1–4. [Google Scholar] [CrossRef]
- Prabawati, N.B.; Oktavirina, V.; Palma, M.; Setyaningsih, W. Edible Flowers: Antioxidant Compounds and Their Functional Properties. Horticulturae 2021, 7, 66. [Google Scholar] [CrossRef]
- Barani, Y.H.; Zhang, M.; Mujumdar, A.S.; Chang, L. Preservation of color and nutrients in anthocyanin-rich edible flowers: Progress of new extraction and processing techniques. J. Food Process. Preserv. 2022, 46, e16474. [Google Scholar] [CrossRef]
- Pires, E.d.O., Jr.; Di Gioia, F.; Rouphael, Y.; Ferreira, I.C.F.R.; Caleja, C.; Barros, L.; Petropoulos, S.A. The Compositional Aspects of Edible Flowers as an Emerging Horticultural Product. Molecules 2021, 26, 6940. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Ujala; Bhargava, B. Phytochemicals from edible flowers: Opening a new arena for healthy lifestyle. J. Funct. Foods 2021, 78, 104375. [Google Scholar] [CrossRef]
- Haria, E.N.; Perera, M.A.D.N.; Senchina, D.S. Immunomodulatory effects of Echinacea laevigata ethanol tinctures produced from different organs. Biosci. Horiz. 2016, 9, hzw001. [Google Scholar] [CrossRef]
- Mishra, V.K.; Bacheti, R.K.; Husen, A. Medicinal Uses of Chlorophyll: A critical overview. In Chlorophyll: Structure, Function and Medicinal Uses; Le, H., Salcedo, E., Eds.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2011; pp. 177–196. ISBN 978-1-62100-015-0. [Google Scholar]
- Keskin, C. Antioxidant, Anticancer and Anticholinesterase Activities of Flower, Fruit and Seed Extracts of Hypericum amblysepalum HOCHST. Asian Pac. J. Cancer Prev. 2015, 16, 2763–2769. [Google Scholar] [CrossRef]
- Fakhri, S.; Tomas, M.; Capanoglu, E.; Hussain, Y.; Abbaszadeh, F.; Lu, B.; Hu, X.; Wu, J.; Zou, L.; Smeriglio, A.; et al. Antioxidant and anticancer potentials of edible flowers: Where do we stand? Crit. Rev. Food Sci. Nutr. 2021, 7, 1–57. [Google Scholar] [CrossRef] [PubMed]
- Lu, W.; Shi, Y.; Wang, R.; Su, D.; Tang, M.; Liu, Y.; Li, Z. Antioxidant Activity and Healthy Benefits of Natural Pigments in Fruits: A Review. Int. J. Mol. Sci. 2021, 22, 4945. [Google Scholar] [CrossRef]
- Cory, H.; Passarelli, S.; Szeto, J.; Tamez, M.; Mattei, J. The Role of Polyphenols in Human Health and Food Systems: A Mini-Review. Front. Nutr. 2018, 5, 87. [Google Scholar] [CrossRef] [PubMed]
- Gani, M.A.; Shama, M. Phenolic Compounds. In Bioactive Compounds—Biosynthesis, Characterization and Applications; Zepka, L.Q., Nascimento, T.C.d., Jacob-Lopes, E., Eds.; IntechOpen: London, UK, 2021; Available online: https://www.intechopen.com/chapters/76405 (accessed on 3 February 2022).
- Takahashi, J.A.; Rezende, F.A.G.G.; Moura, M.A.F.; Dominguete, L.C.B.; Sande, D. Edible flowers: Bioactive profile and its potential to be used in food development. Food Res. Int. 2020, 129, 10886. [Google Scholar] [CrossRef] [PubMed]
- Yoshikawa, M.; Morikawa, T.; Murakami, T.; Toguchida, I.; Harima, S.; Matsuda, H. Medicinal flowers. I. Aldose Reductase Inhibitors and Three New Eudesmane-Type Sesquiterpenes, Kikkanols A, B and C, from the Flowers of Chrysanthemum indicum L. Chem. Pharm. Bull. 1999, 47, 340–345. [Google Scholar] [CrossRef]
- de Camargo, M.G.G.; Lunau, K.; Batalha, M.A.; Brings, S.; de Brito, V.L.G.; Morellato, L.P.C. How flower colour signals allure bees and hummingbirds: A community-level test of the bee avoidance hypothesis. New Phytol. 2019, 222, 1112–1122. [Google Scholar] [CrossRef]
- della Cuna, F.S.R.; Giovannini, A.; Braglia, L.; Sottani, C.; Grignani, E.; Preda, S. Chemical Composition of the Essential Oils from Leaves and Flowers of Passiflora sexocellata and Passiflora trifasciata. Nat. Prod. Commun. 2021, 16, 1–7. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Diasa, M.I.; Barrosa, L.; Barreiraa, J.C.M.; Santos-Buelgab, C.; Ferreira, I.C.F.R. Incorporation of natural colorants obtained from edible flowers in yogurts. LWT-Food Sci. Technol. 2018, 97, 668–675. [Google Scholar] [CrossRef]
- Benvenuti, S.; Mazzoncini, M. The Biodiversity of Edible Flowers: Discovering New Tastes and New Health Benefits. Front. Plant Sci. 2021, 11, 569499. [Google Scholar] [CrossRef]
- Pires, T.C.S.P.; Dias, M.I.; Barros, L.; Calhelha, R.C.; Alves, M.J.; Oliveira, M.B.P.P.; Santos-Buelga, C.; Ferreira, I.C.F.R. Edible flowers as sources of phenolic compounds with bioactive potential. Food Res. Int. 2018, 105, 580–588. [Google Scholar] [CrossRef]
- Sandlrya Deepika, D.; Sowjanya Laksltni, G.; Lascmi Sowmya, K.; Sulakshana, M. Edible flowers—A Review article. Int. J. Adv. Res. Sci. Technol. 2014, 3, 51–57. [Google Scholar]
- Khan, A. Aromatic Molecules from Flowers in Perfume and Cosmetic Industries. In Flowering Plants: Structure and Industrial Products; Khan, A., Ed.; Chapter 12; Wiley: Hoboken, NJ, USA, 2017; pp. 287–290. [Google Scholar] [CrossRef]
- Olas, B. New Perspectives on the Effect of Dandelion, Its Food Products and Other Preparations on the Cardiovascular System and Its Diseases. Nutrients 2022, 14, 1350. [Google Scholar] [CrossRef]
- Chedraoui, S.; Abi-Rizk, A.; El-Beyrouthy, M.; Chalak, L.; Naim, O.; Loïc, R. Capparis spinosa L. in: A Systematic Review: A Xerophilous Species of Multi Values and Promising Potentialities for Agrosystems under the Threat of Global Warming. Front. Plant Sci. 2017, 8, 1845. [Google Scholar] [CrossRef] [PubMed]
- Johansson, E.; Hussain, A.; Kuktaite, R.; Andersson, S.C.; Olsson, M.E. Contribution of organically grown crops to human health. Int. J. Environ. Res. Public Health 2014, 11, 3870–3893. [Google Scholar] [CrossRef] [PubMed]
- Kelley, K.M.; Biernbaum, J.A. Organic nutrient management of greenhouse production of edible flowers in containers. Hortscience 2000, 35, 453B. [Google Scholar] [CrossRef]
- Parker, J.E.; Snyder, W.E.; Hamilton, G.C.; Rodriguez-Saona, C. Companion Planting and Insect Pest Control. In Weed and Pest Control—Conventional and New Challenges; Soloneski, S., Larramendy, M., Eds.; IntechOpen: London, UK, 2013; Available online: https://www.intechopen.com/chapters/42925 (accessed on 12 March 2022).
- Wang, K.-H.; Hooks, C.R.; Ploeg, A. Protecting Crops from Nematode Pests: Using Marigold as an Alternative to Chemical Nematicides. Plant Dis. 2007, 37, 1–6. [Google Scholar]
- Milewski, L.M.; Khan, S.A. An overview of potentially life-threatening poisonous plants in dogs and cats. J. Vet. Emerg. Crit. Care 2006, 16, 25–33. [Google Scholar] [CrossRef]
- Saxon-Buri, S. Daffodil toxicosis in an adult cat. Can. Vet. J. 2004, 45, 248–250. [Google Scholar] [PubMed]
- Negroni, M.S.; Marengo, A.; Caruso, D.; Tayar, A.; Rubiolo, P.; Giavarini, F.; Persampieri, S.; Sangiovanni, E.; Davanzo, F.; Carugo, S.; et al. Case Report of Accidental Intoxication following Ingestion of Foxglove Confused with Borage: High Digoxinemia without Major Complications. Case Rep. Cardiol. 2019, 2019, 9707428. [Google Scholar] [CrossRef]
- Welch, K.D.; Panter, K.E.; Gardner, D.R.; Stegelmeier, B.L. The good and the bad of poisonous plants: An introduction to the USDA-ARS Poisonous Plant Research Laboratory. J. Med. Toxicol. 2012, 8, 153–159. [Google Scholar] [CrossRef]
- Lysiak, G.P. Ornamental Flowers Grown in Human Surroundings as a Source of Anthocyanins with High Anti-Inflammatory Properties. Foods 2022, 11, 948. [Google Scholar] [CrossRef]
- Socha, R.; Kalwik, J.; Juszczak, L. Phenolic profile and antioxidant activity of the selected edible flowers grown in Poland. Acta Univ. Cibiniensis Ser. E Food Technol. 2021, 25, 185–200. [Google Scholar] [CrossRef]
- Narbona, E.; del Valle, J.C.; Whittall, J.B. Painting the green canvas: How pigments produce flower colours. Biochemist 2021, 43, 6–12. [Google Scholar] [CrossRef]
- Marchioni, I.; Pistelli, L.; Ferri, B.; Copetta, A.; Ruffoni, B.; Pistelli, L.; Najar, B. Phytonutritional Content and Aroma Profile Changes During Postharvest Storage of Edible Flowers. Front. Plant Sci. 2020, 11, 590968. [Google Scholar] [CrossRef] [PubMed]
- Kou, L.; Turner, E.R.; Luo, Y. Extending the Shelf Life of Edible Flowers with Controlled Release of 1-Methylcyclopropene and Modified Atmosphere Packaging. J. Food Sci. 2012, 77, 188–193. [Google Scholar] [CrossRef]
- Dei, H.K. Assessment of Maize (Zea mays) as Feed Resource for Poultry. In Poultry Science; Manafi, M., Ed.; IntechOpen: London, UK, 2017; Available online: https://www.intechopen.com/chapters/52383 (accessed on 14 March 2022).
- Yu, X.; Guo, L.; Jiang, G.; Song, Y.; Muminov, M.A. Advances of organic products over conventional productions with respect to nutritional quality and food security. Acta Ecol. Sin. 2018, 38, 53–60. [Google Scholar] [CrossRef]
- Mlcek, J.; Plaskova, A.; Jurikova, T.; Sochor, J.; Baron, M.; Ercisli, S. Chemical, Nutritional and Sensory Characteristics of Six Ornamental Edible Flowers Species. Foods 2021, 10, 2053. [Google Scholar] [CrossRef] [PubMed]
- Demasi, S.; Caser, M.; Donno, D.; Enri, S.R.; Lonati, M.; Scariot, V. Exploring wild edible flowers as a source of bioactive compounds: New perspectives in horticulture. Folia Hortic. 2021, 33, 27–48. [Google Scholar] [CrossRef]
- Assefa, A.; Debella, A. Review on dry matter production and partitioning as affected by different environmental conditions. Int. J. Adv. Res. Biol. Sci. 2020, 7, 37–46. [Google Scholar] [CrossRef]
- Gao, K.; Yu, Y.F.; Xia, Z.T.; Yang, G.; Xing, Z.L.; Qi, L.T.; Ling, L.Z. Response of height, dry matter accumulation and partitioning of oat (Avena sativa L.) to planting density and nitrogen in Horqin Sandy Land. Sci. Rep. 2019, 9, 7961. [Google Scholar] [CrossRef]
- Baafi, E.; Gracen, V.E.; Manu-Aduening, J.; Blay, E.T.; Ofori, K.; Carey, E.E. Genetic control of dry matter, starch and sugar content in sweetpotato. Acta Agric. Scand. B Soil Plant Sci. 2017, 67, 110–118. [Google Scholar] [CrossRef]
- Kelley, K.M.; Cameron, A.C.; Biernbaum, J.A.; Poff, K.L. Effect of storage temperature on the quality of edible flowers. Postharvest Biol. Technol. 2003, 27, 341–344. [Google Scholar] [CrossRef]
- Teucher, B.; Olivares, M.; Cori, H. Enhancers of Iron Absorption: Ascorbic Acid and other Organic Acids. Int. J. Vitam. Nutr. Res. 2004, 74, 403–419. [Google Scholar] [CrossRef]
- Traber, M.G.; Stevens, J.F. Vitamins C and E: Beneficial effects from a mechanistic perspective. Free Radic. Biol. Med. 2011, 51, 1000–1013. [Google Scholar] [CrossRef] [PubMed]
- Naidu, K.A. Vitamin C in human health and disease is still a mystery? An overview. Nutr. J. 2003, 2, 7. [Google Scholar] [CrossRef] [PubMed]
- Vissers, M.C.M.; Carr, A.C.; Pullar, J.M.; Bozonet, S.M. The bioavailability of vitamin C from kiwifruit. Adv. Food Nutr. Res. 2013, 68, 125–147. [Google Scholar] [CrossRef]
- Garzón, G.A.; Wrolstad, R.E. Major anthocyanins and antioxidant activity of Nasturtium flowers (Tropaeolum majus). Food Chem. 2009, 114, 44–49. [Google Scholar] [CrossRef]
- Khattak, K.F. Antioxidant activities and phytochemicals of Tagetes Erecta Flowers as affected by drying methods. J. Appl. Environ. Biol. Sci. 2014, 4, 253–262. [Google Scholar]
- Nerdy, N. Determination of Vitamin C in Various Colours of Bell Pepper (Capsicum annuum L.) by Titration Method. Alchemy J. Penelit. Kim. 2018, 14, 164–177. [Google Scholar] [CrossRef]
- Nishiyama, I.; Yamashita, Y.; Yamanaka, M.; Shimohashi, A.; Fukuda, T.; Oota, T. Varietal difference in vitamin C content in the fruit of kiwifruit and other actinidia species. J. Agric. Food Chem. 2004, 52, 5472–5475. [Google Scholar] [CrossRef] [PubMed]
- Santana, L.F.; Inada, A.C.; do Espirito Santo, B.L.S.; Filiú, W.F.O.; Pott, A.; Alves, F.M.; Guimarães, R.C.A.; Freitas, K.C.; Hiane, P.A. Nutraceutical Potential of Carica papaya in Metabolic Syndrome. Nutrients 2019, 11, 1608. [Google Scholar] [CrossRef]
- Okatan, V.; Melda Çolak, A.; Guclu, S.F.; Muttalip, G. The comparison of antioxidant compounds and mineral content in some pomegranate (Punica granatum L.) genotypes grown in the east of Turkey. Acta Sci. Pol. Hortorum Cultus 2018, 17, 201–2011. [Google Scholar] [CrossRef]
- Richardson, D.P.; Ansell, J.; Drummond, L.N. The nutritional and health attributes of kiwifruit: A review. Eur. J. Nutr. 2018, 57, 2659–2676. [Google Scholar] [CrossRef]
- Fatin Najwa, R.; Azrina, A. Comparison of vitamin C content in citrus fruits by titration and high performance liquid chromatography (HPLC) methods. Int. Food Res. J. 2017, 24, 726–733. [Google Scholar]
- Sabolová, M.; Kouřimská, L. Vitamin C and nitrates contents in fruit and vegetables from farmers’ markets and supermarkets. Potravin. Slovak J. Food Sci. 2020, 14, 1124–1130. [Google Scholar] [CrossRef]
- Paciolla, C.; Fortunato, S.; Dipierro, N.; Paradiso, A.; De Leonardis, S.; Mastropasqua, L.; de Pinto, M.C. Vitamin C in Plants: From Functions to Biofortification. Antioxidants 2019, 8, 519. [Google Scholar] [CrossRef]
- Mogren, L.; Reade, J.; Monaghan, J. Effects of Environmental Stress on Ascorbic Acid Content in Baby Leaf Spinach (Spinacia oleracea). Acta Hortic. 2012, 939, 205–208. [Google Scholar] [CrossRef]
- Hernández, V.; Hellín, P.; Fenoll, J.; Molina, M.V.; Garrido, I.; Flores, P. Impact of high temperature stress on ascorbic acid concentration in tomato. Acta Hortic. 2018, 1194, 985–990. [Google Scholar] [CrossRef]
- Voća, S.; Šic Žlabur, J.; Fabek Uher, S.; Peša, M.; Opačić, N.; Radman, S. Neglected Potential of Wild Garlic (Allium ursinum L.)—Specialized Metabolites Content and Antioxidant Capacity of Wild Populations in Relation to Location and Plant Phenophase. Horticulturae 2022, 8, 24. [Google Scholar] [CrossRef]
- Hollman, P.C.H. Evidence for health benefits of plant phenols: Local or systemic effects? J. Sci. Food Agric. 2001, 81, 842–852. [Google Scholar] [CrossRef]
- González-Burgos, E.; Gómez-Serranillos, M.P. Effect of Phenolic Compounds on Human Health. Nutrients 2021, 13, 3922. [Google Scholar] [CrossRef]
- Lockowandt, L.; Pinela, J.; Roriz, C.L.; Pereira, C.; Abreu, R.M.V.; Calhelha, R.C.; Alves, M.J.; Barros, L.; Bredol, M.; Ferreira, I.C.F.R. Chemical features and bioactivities of cornflower (Centaurea cyanus L.) capitula: The blue flowers and the unexplored non-edible part. Ind. Crop. Prod. 2019, 128, 496–503. [Google Scholar] [CrossRef]
- Babenko, L.M.; Smirnov, O.E.; Romanenko, K.; Trunova, O.K.; Kosakivska, I.V. Phenolic compounds in plants: Biogenesis and functions. Ukr. Biochem. J. 2019, 91, 5–18. [Google Scholar] [CrossRef]
- Schieber, A.; Wüs, M. Volatile Phenols—Important Contributors to the Aroma of Plant-Derived Foods. Molecules 2020, 25, 4529. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, D.; Shetty, K. Metabolic Stimulation of Plant Phenolics for Food Preservation and Health. Annu. Rev. Food Sci. Technol. 2014, 5, 395–413. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.S.; Tahir, I. Regulatory role of phenols in flower development and senescence in the genus Iris. Ind. J. Plant Physiol. 2016, 22, 135–140. [Google Scholar] [CrossRef]
- Lanfer-Marquez, U.M.; Barros, R.M.C.; Sinnecker, P. Antioxidant activity of chlorophylls and their derivatives. Food Res. Int. 2005, 38, 885–891. [Google Scholar] [CrossRef]
- Subramoniam, A.; Asha, V.V.; Nair, S.A.; Sasidharan, S.P.; Sureshkumar, P.K.; Rajendran, K.N.; Karunagaran, D.; Ramalingam, K. Chlorophyll revisited: Anti-inflammatory activities of chlorophyll a and inhibition of expression of TNF-α gene by the same. Inflammation 2012, 35, 959–966. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, T.M.; Gomes, B.B.; Lanfer-Marquez, U.M. Apparent absorption of chlorophyll from spinach in an assay with dogs. Innov. Food Sci. Emerg. Technol. 2007, 8, 426–432. [Google Scholar] [CrossRef]
- Ohmiya, A.; Hirashima, M.; Yagi, M.; Tanase, K.; Yamamizo, C. Identification of Genes Associated with Chlorophyll Accumulation in Flower Petals. PLoS ONE 2014, 9, e113738. [Google Scholar] [CrossRef]
- Thu Phan, M.A.; Paterson, J.; Bucknall, M.; Arcot, J. Interactions between phytochemicals from fruits and vegetables: Effects on bioactivities and bioavailability. Crit. Rev. Food Sci. Nutr. 2018, 58, 1310–1329. [Google Scholar] [CrossRef]
- Šivel, M.; Kráčmar, S.; Fišera, M.; Klejdus, B.; Kubáň, V. Lutein content in marigold flower (Tagetes erecta L.) concentrates used for production of food supplements. Czech J. Food Sci. 2014, 32, 521–525. [Google Scholar] [CrossRef]
- Niizu, P.Y.; Rodriguez-Amaya, D.B. Flowers and leaves of Tropaeolum majus L. as rich sources of lutein. J. Food Sci. 2005, 70, S605–S609. [Google Scholar] [CrossRef]
- Fernandes, L.; Casal, S.; Pereira, J.A.; Saraiva, J.A.; Ramalhosa, E. Effects of different drying methods on the bioactive compounds and antioxidant properties of edible Centaurea (Centaurea cyanus) petals. Braz J. Food Technol. 2018, 21, e2017211. [Google Scholar] [CrossRef]
- Bendokas, V.; Skemiene, K.; Trumbeckaite, S.; Stanys, V.; Passamonti, S.; Borutaite, V.; Liobikas, J. Anthocyanins: From plant pigments to health benefits at mitochondrial level. Crit. Rev. Food Sci. Nutr. 2019, 60, 3352–3365. [Google Scholar] [CrossRef] [PubMed]
- Brainina, K.; Stozhko, N.; Vidrevich, M. Antioxidants: Terminology, Methods, and Future Considerations. Antioxidants 2019, 8, 297. [Google Scholar] [CrossRef]
- Pham-Huy, L.A.; He, H.; Pham-Huy, C. Free Radicals, Antioxidants in Disease and Health. Int. J. Biomed. Sci. 2008, 4, 89–96. [Google Scholar]
- Mlcek, J.; Rop, O. Fresh edible flowers of ornamental plants–A new source of nutraceutical foods. Trends Food Sci. Technol. 2011, 22, 561–569. [Google Scholar] [CrossRef]
- Gottingerova, M.; Kumsta, M.; Necas, T. Health-benefitting Biologically Active Substances in Edible Apricot Flowers. HortScience 2020, 55, 1372–1377. [Google Scholar] [CrossRef]
- Rajurkar, N.; Hande, S.M. Estimation of Phytochemical Content and Antioxidant Activity of Some Selected Traditional Indian Medicinal Plants. Indian J. Pharm. Sci. 2011, 73, 146–151. [Google Scholar] [CrossRef]
- Zeng, Y.; Deng, M.; Lv, Z.; Peng, Y. Evaluation of antioxidant activities of extracts from 19 Chinese edible flowers. Springerplus 2014, 3, 315. [Google Scholar] [CrossRef]
- Chaudhary, S.; Hisham, H.; Mohamed, D. A review on phytochemical and pharmacological potential of watercress plant. Asian J. Pharm. Clin. Res. 2018, 11, 102–107. [Google Scholar] [CrossRef]
- Hallmann, E. Quantitative and qualitative identification of bioactive compounds in edible flowers of black and bristly locust and their antioxidant activity. Biomolecules 2020, 10, 1603. [Google Scholar] [CrossRef]
- Chen, G.-L.; Chen, S.-G.; Xie, Y.-Q.; Chen, F.; Zhao, Y.-Y.; Luo, C.-X.; Gao, Y.-Q. Total phenolic, flavonoid and antioxidant activity of 23 edible flowers subjected to in vitro digestion. J. Funct. Foods 2015, 17, 243–259. [Google Scholar] [CrossRef]
- Morittu, V.M.; Musco, N.; Mastellone, V.; Bonesi, M.; Britti, D.; Infascelli, F.; Loizzo, M.R.; Tundis, R.; Sicari, V.; Tudisco, R.; et al. In vitro and in vivo studies of Cucurbita pepo L. flowers: Chemical profile and bioactivity. Nat. Prod. Res. 2019, 35, 2905–2909. [Google Scholar] [CrossRef]
- Hunter, L.H. a, b Color Scale. Applications Note. 2012, Volume 8. Available online: http://www.hunterlab.se/wp-content/uploads/2012/11/Hunter-L-a-b.pdf (accessed on 15 June 2021).
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1995. [Google Scholar]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 2002. [Google Scholar]
- Ough, C.S.; Amerine, M.A. Methods for Analysis of Musts and Wines, 2nd ed.; John Wiley & Sons: New York, NY, USA, 1988. [Google Scholar]
- Holm, G. Chlorophyll mutations in barley. Acta Agric. Scand. 1954, 4, 457–471. [Google Scholar] [CrossRef]
- Wettstein, D. Chlorophyll-letale und der submikroskopische Formwechsel der Plastiden. Exp. Cell Res. 1957, 12, 427–434. [Google Scholar] [CrossRef]
- Miller, N.J.; Diplock, A.T.; Rice-Evans, C.; Davies, M.J.; Gopinathan, V.; Milner, A. A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clin. Sci. 1993, 84, 407–412. [Google Scholar] [CrossRef] [Green Version]
- SAS®/STAT 9.3; SAS Institute Inc.: Cary, NC, USA, 2010.
Sample | L* | a* | b* | C* | ho |
---|---|---|---|---|---|
Common marigold | 70.90 a ± 4.71 | 26.48 a ± 6.27 | 73.14 a ± 8.17 | 80.12 a ± 3.70 | 72.89 b ± 5.79 |
African marigold | 38.40 c ± 8.40 | 25.54 a ± 9.80 | 37.79 c ± 8.87 | 53.90 b ± 12.81 | 67.17 b ± 9.00 |
Nasturtium | 53.80 b ± 8.59 | 28.40 a ± 9.32 | 49.39 b ± 2.42 | 51.11 bc ± 9.95 | 48.60 c ± 1.75 |
Zucchini | 69.49 a ± 4.78 | 10.84 b ± 2.24 | 38.16 c ± 4.29 | 39.69 c ± 4.74 | 79.34 b ± 8.82 |
Cornflower | 36.12 c ± 3.92 | 12.54 b ± 0.46 | −2.49 d ± 0.83 | 11.12 d ± 2.28 | 338.35 a ± 15.80 |
ANOVA | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
LSD | 11.641 | 12.265 | 10.616 | 14.192 | 17.165 |
Sample | AsA (mg/100 g fw) | TPC (mg GAE/100 g fw) | TNFC (mg GAE/100 g fw) | TFC (mg CTH/100 g fw) |
---|---|---|---|---|
Common marigold | 25.46 c ± 0.94 | 379.38 c ± 0.25 | 213.89 c ± 1.68 | 165.49 d ± 1.87 |
African marigold | 36.69 c ± 1.96 | 898.19 a ± 6.93 | 507.11 a ± 1.56 | 391.09 a ± 5.40 |
Nasturtium | 77.56 b ± 0.17 | 336.96 d ± 0.44 | 138.27 d ± 0.61 | 198.70 c ± 1.05 |
Zucchini | 28.69 c ± 3.61 | 110.24 e ± 0.82 | 36.63 e ± 0.69 | 73.59 e ± 0.51 |
Cornflower | 129.70 a ± 11.77 | 647.09 b ± 0.41 | 382.20 b ± 1.18 | 264.90 b ± 1.22 |
ANOVA | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
LSD | 14.466 | 8.1079 | 3.1674 | 6.8978 |
Sample | Chl_a (mg/g) | Chl_b (mg/g) | TCh (mg/g) | TCa (mg/g) | TAC (mg/kg) |
---|---|---|---|---|---|
Common marigold | 0.32 a ± 0.02 | 0.43 a ± 0.04 | 0.75 a ± 0.06 | 0.42 b ± 0.01 | nd |
African marigold | 0.12 b | 0.20 b ± 0.01 | 0.32 b ± 0.01 | 0.58 a ± 0.01 | nd |
Nasturtium | 0.03 c | 0.03 c | 0.06 c ± 0.01 | 0.28 c ± 0.01 | nd |
Zucchini | 0.03 c | 0.03 c ± 0.01 | 0.04 c ± 0.01 | 0.28 c ± 0.01 | nd |
Cornflower | nd | nd | nd | nd | 1012.09 a ± 3.55 |
ANOVA | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 | p ≤ 0.0001 |
LSD | 0.0189 | 0.0438 | 0.0675 | 0.0094 | 4.1091 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dujmović, M.; Radman, S.; Opačić, N.; Fabek Uher, S.; Mikuličin, V.; Voća, S.; Šic Žlabur, J. Edible Flower Species as a Promising Source of Specialized Metabolites. Plants 2022, 11, 2529. https://doi.org/10.3390/plants11192529
Dujmović M, Radman S, Opačić N, Fabek Uher S, Mikuličin V, Voća S, Šic Žlabur J. Edible Flower Species as a Promising Source of Specialized Metabolites. Plants. 2022; 11(19):2529. https://doi.org/10.3390/plants11192529
Chicago/Turabian StyleDujmović, Mia, Sanja Radman, Nevena Opačić, Sanja Fabek Uher, Vida Mikuličin, Sandra Voća, and Jana Šic Žlabur. 2022. "Edible Flower Species as a Promising Source of Specialized Metabolites" Plants 11, no. 19: 2529. https://doi.org/10.3390/plants11192529
APA StyleDujmović, M., Radman, S., Opačić, N., Fabek Uher, S., Mikuličin, V., Voća, S., & Šic Žlabur, J. (2022). Edible Flower Species as a Promising Source of Specialized Metabolites. Plants, 11(19), 2529. https://doi.org/10.3390/plants11192529