Root Morphology and Biomass Allocation of 50 Annual Ephemeral Species in Relation to Two Soil Condition
Abstract
:1. Introduction
2. Results
2.1. Correlation among the Root Traits
2.2. Comparison of Root Morphology Traits under Two Soil Conditions
2.3. Correlation between Whole-plant Morphology Traits and Biomass Allocation
3. Discussion
3.1. Correlation among Root Traits and Root Economics Spectrum
3.2. Differences in Root Strategies between Species Rooting LS and DGS
3.3. Differences in Whole-plant Strategies between Species Rooting LS and DGS
4. Materials and Methods
4.1. Geography of the Study Area
4.2. Field Investigation and Sample Collection
4.3. Trait Measurements and Calculations
4.4. Data Analysis
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lynch, J. Root architecture and plant productivity. Plant Physiol. 1995, 109, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Dannowski, M.; Block, A. Fractal geometry and root system structures of heterogeneous plant communities. Plant Soil. 2005, 272, 61–76. [Google Scholar] [CrossRef]
- Guevara, A.; Giordano, C.V. Hydrotropism in lateral but not in pivotal roots of desert plant species under simulated natural conditions. Plant Soil. 2015, 389, 257–272. [Google Scholar] [CrossRef]
- Carmona, C.P.; Bueno, C.G.; Toussaint, A.; Träger, S.; Díaz, S.; Moora, M.; Munson, A.D.; Pärtel, M.; Zobel, M.; Tamme, R. Fine-root traits in the global spectrum of plant form and function. Nature 2021, 597, 683–687. [Google Scholar] [CrossRef] [PubMed]
- Bardgett, R.D.; Mommer, L.; De Vries, F.T. Going Underground: Root traits as drivers of ecosystem processes. Trends Ecol. Evol. 2014, 29, 692–699. [Google Scholar] [CrossRef] [PubMed]
- Eissenstat, D.M. On the relationship between specific root length and the rate of root proliferation: A field study using citrus rootstocks. New Phytol. 1991, 118, 63–68. [Google Scholar] [CrossRef]
- Wright, I.J.; Westoby, M. Differences in seedling growth behaviour among species: Trait correlations across species, and trait shifts along nutrient compared to rainfall gradients. J. Ecol. 2010, 87, 5–97. [Google Scholar] [CrossRef]
- Reich, P.B. The world-wide ‘fast-slow’ plant economics spectrum: A traits manifesto. J. Ecol. 2014, 102, 275–301. [Google Scholar] [CrossRef]
- Prieto, I.; Roumet, C.; Cardinael, R.; Dupraz, C.; Jourdan, C.; Kim, J.H.; Maeght, J.L.; Mao, Z.; Pierret, A.; Portillo, N.; et al. Root Functional parameters along a land-use gradient: Evidence of a community-level economics spectrum. J. Ecol. 2015, 103, 361–373. [Google Scholar] [CrossRef]
- Kong, D.; Wang, J.; Wu, H.; Valverde-Barrantes, O.J.; Wang, R.; Zeng, H.; Kardol, P.; Zhang, H.; Feng, Y. Nonlinearity of root trait relationships and the root economics spectrum. Nat. Commun. 2019, 10, 2203. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weemstra, M.; Zambrano, J.; Allen, D.; Umaña, M.N. Tree growth increases through opposing above-ground and below-ground resource strategies. J. Ecol. 2021, 109, 3502–3512. [Google Scholar] [CrossRef]
- Kramer-Walter, K.R.; Bellingham, P.J.; Millar, T.R.; Smissen, R.D.; Richardson, S.J.; Laughlin, D.C. Root traits are multidimensional: Specific root length is independent from root tissue density and the plant economic spectrum. J. Ecol. 2016, 104, 1299–1310. [Google Scholar] [CrossRef]
- Weemstra, M.; Mommer, L.; Visser, E.J.W.; Ruijven, J.; Kuyper, T.W.; Mohren, G.M.J.; Sterck, F.J. Towards a multidimensional root trait framework: A tree root review. New Phytol. 2016, 211, 1159–1169. [Google Scholar] [CrossRef] [PubMed]
- Erktan, A.; Roumet, C.; Bouchet, D.; Stokes, A.; Pailler, F.; Munoz, F. Two dimensions define the variation of fine root traits across plant communities under the joint influence of ecological succession and annual mowing. J. Ecol. 2018, 106, 2031–2042. [Google Scholar] [CrossRef]
- Ding, J.; Kong, D.; Zhang, Z.; Cai, Q.; Xiao, J.; Liu, Q.; Yin, H. Climate and soil nutrients differentially drive multidimensional fine root traits in ectomycorrhizal-dominated alpine coniferous forests. J. Ecol. 2020, 108, 2544–2556. [Google Scholar] [CrossRef]
- Han, M.; Zhu, B. Linking root respiration to chemistry and morphology across species. Glob. Change Biol. 2021, 27, 190–201. [Google Scholar] [CrossRef]
- Tjoelker, M.G.; Craine, J.M.; Wedin, D.; Reich, P.B.; Tilman, D. Linking leaf and root trait syndromes among 39 grassland and savannah species. New Phytol. 2005, 167, 493–508. [Google Scholar] [CrossRef]
- Markesteijn, L.; Poorter, L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought- and shade-tolerance. J. Ecol. 2009, 97, 311–325. [Google Scholar] [CrossRef]
- Alvarez-Flores, R.; Winkel, T.; Nguyen-Thi-Truc, A.; Joffre, R. Root foraging capacity depends on root system architecture and ontogeny in seedlings of three andean Chenopodium species. Plant Soil. 2014, 380, 415–428. [Google Scholar] [CrossRef]
- Isaac, M.E.; Martin, A.R.; de Melo Virginio Filho, E.; Rapidel, B.; Roupsard, O.; Van den Meersche, K. Intraspecific trait variation and coordination: Root and leaf economics spectra in coffee across environmental gradients. Front. Plant Sci. 2017, 8, 1196. [Google Scholar] [CrossRef] [Green Version]
- Freschet, G.T.; Valverde-Barrantes, O.J.; Tucker, C.M.; Craine, J.M.; McCormack, M.L.; Violle, C.; Fort, F.; Blackwood, C.B.; Urban-Mead, K.R.; Iversen, C.M.; et al. Climate, soil and plant functional types as drivers of global fine-root trait variation. J. Ecol. 2017, 105, 1182–1196. [Google Scholar] [CrossRef]
- Pregitzer, K.S.; DeForest, J.L.; Burton, A.J.; Allen, M.F.; Ruess, R.W.; Hendrick, R.L. Fine root architecture of nine north american trees. Ecol. Monogr. 2002, 72, 293–309. [Google Scholar] [CrossRef]
- Craine, J.M.; Wedin, D.A.; Iii, F.S.C.; Reich, P.B. Relationship between the structure of root systems and resource use for 11 north american grassland plants. Plant Ecol. 2002, 165, 85–100. [Google Scholar] [CrossRef]
- Materechera, S.A.; Dexter, A.R.; Alston, A.M. Penetration of very strong soils by seedling roots of different plant species. Plant Soil. 1991, 135, 31–41. [Google Scholar] [CrossRef]
- Bouma, T.J.; Nielsen, K.L.; Van Hal, J.; Koutstaal, B. Root system topology and diameter distribution of species from habitats differing in inundation frequency: Root systems in differing inundation frequencies. Funct. Ecol. 2001, 15, 360–369. [Google Scholar] [CrossRef]
- Freschet, G.T.; Violle, C.; Bourget, M.Y.; Scherer-Lorenzen, M.; Fort, F. Allocation, Morphology, Physiology, Architecture: The multiple facets of plant above- and below-ground responses to resource stress. New Phytol. 2018, 219, 1338–1352. [Google Scholar] [CrossRef]
- Zhou, M.; Bai, W.M.; Zhang, Y.S.; Zhang, W.H. Multi-dimensional patterns of variation in root traits among coexisting herbaceous species in temperate steppes. J. Ecol. 2018, 106, 2320–2331. [Google Scholar] [CrossRef]
- Hanson, P.J.; Weltzin, J.F. Drought disturbance from climate change: Response of united states forests. Sci. Total Environ. 2000, 262, 205–220. [Google Scholar] [CrossRef]
- Nardini, A.; Luglio, J. Leaf hydraulic capacity and drought vulnerability: Possible trade-offs and correlations with climate across three major biomes. Funct. Ecol. 2014, 28, 810–818. [Google Scholar] [CrossRef]
- Engelbrecht, B.M.J.; Kursar, T.A.; Tyree, M.T. Drought effects on seedling survival in a tropical moist forest. Trees 2005, 19, 312–321. [Google Scholar] [CrossRef]
- Yin, Q.; Tian, T.; Han, X.; Xu, J.; Chai, Y.; Mo, J.; Lei, M.; Wang, L.; Yue, M. The relationships between biomass allocation and plant functional trait. Ecol. Indic. 2019, 102, 302–308. [Google Scholar] [CrossRef]
- Blackman, G.E.; Evans, G.C. The Quantitative Analysis of Plant Growth. J. Ecol. 1973, 61, 617–619. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Feng, G.; Christie, P.; Li, X.L. Arbuscular mycorrhizal status of spring ephemerals in the desert ecosystem of Junggar Basin, China. Mycorrhiza 2006, 16, 269–275. [Google Scholar] [CrossRef]
- Wang, X.Q.; Jiang, J.; Lei, J.Q.; Zhang, W.M.; Qian, Y.B. The distribution of ephemeral vegetation on the longitudinal dune surface and its stabilization significance in the Gurbantunggut Desert. Acta Geogr. Sin. 2003, 58, 599–605. [Google Scholar]
- Raatikainen, K.M.; Heikkinen, R.K.; Luoto, M. Relative Importance of habitat area, connectivity, management and local factors for vascular plants: Spring ephemerals in boreal semi-natural grasslands. Biodivers. Conserv. 2009, 18, 1067–1085. [Google Scholar] [CrossRef]
- Zhang, L.Y. Ephemerals in Xinjiang (I) Eco-Biological characteristics. Plants 2002, 1, 2–6. [Google Scholar]
- Wright, I.J.; Falster, D.S.; Pickup, M.; Westoby, M. Cross-species patterns in the coordination between leaf and stem traits, and their implications for plant hydraulics. Physiol. Plant. 2006, 127, 445–456. [Google Scholar] [CrossRef]
- Westoby, M.; Falster, D.S.; Moles, A.T.; Vesk, P.A.; Wright, I.J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 2002, 33, 125–159. [Google Scholar] [CrossRef]
- Wright, I.J.; Reich, P.B.; Cornelissen, J.H.C.; Falster, D.S.; Garnier, E.; Hikosaka, K.; Lamont, B.B.; Lee, W.; Oleksyn, J.; Osada, N.; et al. Assessing the generality of global leaf trait relationships. New Phytol. 2005, 166, 485–496. [Google Scholar] [CrossRef]
- Wang, Z.Y.; Chen, X.P.; Chen, Y.; Wang, M.T.; Zhong, Q.L.; Li, M.; Cheng, D.L. Fine Root Traits of Woody Plants in Deciduous Forest of the Wuyi Mountains. Acta Ecol. Sin. 2018, 38, 8088–8097. [Google Scholar] [CrossRef]
- Withington, J.M.; Reich, P.B.; Oleksyn, J.; Eissenstat, D.M. Comparisons of structure and life span in roots and leaves among temperate trees. Ecol. Monogr. 2006, 76, 381–397. [Google Scholar] [CrossRef]
- Holdaway, R.J.; Richardson, S.J.; Dickie, I.A.; Peltzer, D.A.; Coomes, D.A. Species- and community-level patterns in fine root traits along a 120 000-year soil chronosequence in temperate rain forest: Root trait shifts along soil chronosequence. J. Ecol. 2011, 99, 954–963. [Google Scholar] [CrossRef]
- Comas, L.H.; Eissenstat, D.M. Patterns in root trait variation among 25 co-existing north American forest species. New Phytol. 2009, 182, 919–928. [Google Scholar] [CrossRef]
- Wilson, S.D. Below-ground opportunities in vegetation science. J. Veg. Sci. 2014, 25, 1117–1125. [Google Scholar] [CrossRef]
- Paz, H. Root/shoot allocation and root architecture in seedlings: Variation among forest sites, microhabitats, and ecological groups1. Biotropica 2003, 35, 318–332. [Google Scholar] [CrossRef]
- Tsakaldimi, M.; Tsitsoni, T.; Ganatsas, P.; Zagas, T. A comparison of root architecture and shoot morphology between naturally regenerated and container-grown seedlings of Quercus ilex. Plant Soil. 2009, 324, 103–113. [Google Scholar] [CrossRef]
- Eissenstat, D.M.; Wells, C.E.; Yanai, R.D.; Whitbeck, J.L. Building roots in a changing environment: Implications for root longevity: Review building absorptive roots and root life span. New Phytol. 2000, 147, 33–42. [Google Scholar] [CrossRef]
- Freschet, G.T.; Roumet, C.; Comas, L.H.; Weemstra, M.; Bengough, A.G.; Rewald, B.; Bardgett, R.D.; De Deyn, G.B.; Johnson, D.; Klimešová, J.; et al. Root traits as drivers of plant and ecosystem functioning: Current understanding, pitfalls and future research needs. New Phytol. 2021, 232, 1123–1158. [Google Scholar] [CrossRef]
- Raynaud, X.; Leadley, P.W. Soil characteristics play a key role in modeling nutrient competition in plant communities. Ecology 2004, 85, 2200–2214. [Google Scholar] [CrossRef]
- Kirschner, G.K.; Xiao, T.T.; Blilou, I. Rooting in the desert: A developmental overview on desert plants. Genes 2021, 12, 709. [Google Scholar] [CrossRef]
- Fitter, A.H.; Stickland, T.R. Architectural analysis of plant root systems 2. Influence of nutrient supply on architecture in contrasting plant species. New Phytol. 1991, 118, 383–389. [Google Scholar] [CrossRef]
- Wahl, S.; Ryser, P. Root tissue structure is linked to ecological strategies of grasses. New Phytol. 2000, 148, 459–471. [Google Scholar] [CrossRef]
- Eissenstat, D.M.; Achor, D.S. Anatomical Characteristics of roots of citrus rootstocks that vary in specific root length. New Phytol. 1999, 141, 309–321. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef]
- Shipley, B.; Meziane, D. The balanced-growth hypothesis and the allometry of leaf and root biomass allocation: Allometry versus balanced growth hypotheses. Funct. Ecol. 2002, 16, 326–331. [Google Scholar] [CrossRef]
- Mensah, S.; Glèlè Kakaï, R.; Seifert, T. Patterns of biomass allocation between foliage and woody structure: The effects of tree size and specific functional traits. Ann. For. Res. 2016, 59, 49–60. [Google Scholar] [CrossRef]
- Chapin, F.S. Integrated responses of plants to stress. BioScience 1991, 41, 29–36. [Google Scholar] [CrossRef]
- Nicotra, A.B.; Atkin, O.K.; Bonser, S.P.; Davidson, A.M.; Finnegan, E.J.; Mathesius, U.; Poot, P.; Purugganan, M.D.; Richards, C.L.; Valladares, F.; et al. Plant phenotypic plasticity in a changing climate. Trends Plant Sci. 2010, 15, 684–692. [Google Scholar] [CrossRef]
- Forseth, I.N.; Ehleringer, J.R.; Werk, K.S.; Cook, C.S. Field water relations of sonoran desert annuals. Ecology 1984, 65, 1436–1444. [Google Scholar] [CrossRef]
- Qiu, J.; Tan, D.Y.; Fan, D.Y. Characteristics of photosynthesis and biomass allocation of spring ephemeral in the Junggar Desert. Chin. J. Plant Ecol. 2007, 31, 883–891. [Google Scholar]
- Craine, J.M.; Froehle, J.; Tilman, D.G.; Wedin, D.A.; Chapin III, F.S. The relationships among root and leaf traits of 76 grassland species and relative abundance along fertility and disturbance gradients. Oikos 2001, 93, 274–285. [Google Scholar] [CrossRef]
- Moles, A.T.; Warton, D.I.; Warman, L.; Swenson, N.G.; Laffan, S.W.; Zanne, A.E.; Pitman, A.; Hemmings, F.A.; Leishman, M.R. Global patterns in plant height. J. Ecol. 2009, 97, 923–932. [Google Scholar] [CrossRef]
PCA | Axis | Rooting Soil Conditions | Significance Test | ||
---|---|---|---|---|---|
Rooting LS | Rooting DGS | t | P | ||
Whole-plant | PC1 | 0.43 ± 0.40 a | −0.92 ± 0.39 b | 2.61 | 0.01 |
PC2 | −0.23 ± 0.20 a | 0.50 ± 0.43 a | −1.79 | 0.08 |
Species | Family | Code | Group | H (cm) | CD (mm) | MRD (cm) | RD (mm) | SRL (cm g−1) | SRA (cm2 g−1) | RTD (g cm−3) | LMF (g g−1) | SMF (g g−1) | RMF (g g−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Descurainia sophia | Brassicaceae | Des.s | LS | 19.47 | 1.29 | 19.37 | 0.29 | 1239.28 | 111.32 | 1.36 | 0.21 | 0.46 | 0.24 |
Plantago minuta | Plantaginaceae | Pla.m | DGS | 3.24 | 1.232 | 13.65 | 0.37 | 1091.74 | 113.78 | 1.07 | 0.58 | 0.13 | 0.12 |
Plantago minuta | Plantaginaceae | Pla.m | LS | 6.86 | 2.407 | 12.52 | 0.28 | 1337.01 | 114.67 | 1.44 | 0.46 | 0.05 | 0.26 |
Chamaesphacos ilicifolius | Lamiaceae | Cha.i | LS | 10.38 | 1.049 | 13.78 | 0.38 | 1161.03 | 139.46 | 3.01 | 0.27 | 0.32 | 0.08 |
Nepeta micrantha | Lamiaceae | Nep.m | LS | 5.33 | 0.552 | 8.93 | 0.20 | 1279.70 | 80.53 | 2.49 | 0.29 | 0.19 | 0.28 |
Euphorbia turczaninowii | Euphorbiaceae | Eup.t | LS | 5.38 | 0.913 | 19.84 | 0.43 | 868.70 | 114.24 | 0.85 | 0.21 | 0.51 | 0.19 |
Trigonella arcuata | Fabaceae | Tri.a | LS | 2.9 | 0.775 | 25.62 | 0.23 | 2737.76 | 199.92 | 0.88 | 0.59 | 0.07 | 0.17 |
Astragalus arpilobus | Fabaceae | Ast.a | LS | 3.67 | 0.737 | 22.13 | 0.29 | 1078.93 | 100.08 | 1.59 | 0.40 | 0.15 | 0.35 |
Tribulus terrestris | Zygophyllaceae | Tri.t | LS | 0.99 | 0.755 | 16.24 | 0.32 | 1874.33 | 186.86 | 0.70 | 0.29 | 0.30 | 0.31 |
Centaurea pulchella | Asteraceae | Cen.p | LS | 9.46 | 1.063 | 21.94 | 0.31 | 1507.41 | 142.75 | 0.95 | 0.53 | 0.22 | 0.12 |
Crepis desertorum | Asteraceae | Cre.d | LS | 8.59 | 0.724 | 10.62 | 0.31 | 2198.19 | 202.17 | 0.78 | 0.26 | 0.23 | 0.06 |
Amberboa turanica | Asteraceae | Amb.t | LS | 9.28 | 1.425 | 20.44 | 0.39 | 1100.29 | 127.31 | 0.87 | 0.18 | 0.41 | 0.08 |
Epilasia hemilasia | Asteraceae | Epi.h | LS | 9.03 | 1.1 | 19.24 | 0.49 | 865.36 | 132.71 | 0.78 | 0.26 | 0.37 | 0.13 |
Koelpinia linearis | Asteraceae | Koe.l | LS | 9.18 | 0.861 | 15.39 | 0.31 | 1269.16 | 122.90 | 1.24 | 0.27 | 0.25 | 0.16 |
Lactuca undulate | Asteraceae | Lac.u | LS | 11.21 | 1.623 | 11.22 | 0.45 | 728.92 | 93.23 | 1.14 | 0.37 | 0.25 | 0.08 |
Senecio subdentatus | Asteraceae | Sen.s | LS | 12.12 | 1.236 | 21.2 | 0.32 | 1516.69 | 147.62 | 0.97 | 0.32 | 0.25 | 0.11 |
Atriplex dimorphostegia | Amaranthaceae | Atr.d | LS | 17.06 | 1.232 | 13.64 | 0.41 | 744.77 | 92.18 | 1.15 | 0.21 | 0.50 | 0.05 |
Corispermum lehmannianum | Amaranthaceae | Cor.l | LS | 9.01 | 0.967 | 18.74 | 0.24 | 1042.88 | 78.61 | 2.66 | 0.32 | 0.38 | 0.12 |
Ceratocephala testiculata | Ranunculaceae | Cer.t | DGS | 5.13 | 0.427 | 3.71 | 0.25 | 326.38 | 24.44 | 7.53 | 0.07 | 0.15 | 0.14 |
Hyoscyamus pusillus | Solanaceae | Hyo.p | DGS | 7.72 | 1.282 | 7.67 | 0.44 | 1096.56 | 151.10 | 0.97 | 0.31 | 0.18 | 0.08 |
Tetracme quadricornis | Brassicaceae | Tet.q | DGS | 11.34 | 2.562 | 9.44 | 0.52 | 945.80 | 239.94 | 1.38 | 0.29 | 0.29 | 0.09 |
Lachnoloma lehmannii | Brassicaceae | Lac.l | DGS | 6.76 | 1.113 | 7.34 | 0.37 | 1012.26 | 112.73 | 1.06 | 0.39 | 0.27 | 0.11 |
Chorispora sibirica | Brassicaceae | Cho.s | DGS | 5.69 | 0.842 | 11.24 | 0.36 | 1193.59 | 125.86 | 1.47 | 0.44 | 0.23 | 0.12 |
Lepidium apetalum | Brassicaceae | Lep.a | DGS | 8.32 | 1.154 | 14.52 | 0.43 | 859.89 | 117.50 | 1.69 | 0.46 | 0.23 | 0.22 |
Lepidium perfoliatum | Brassicaceae | Lep.p | DGS | 8.51 | 1.238 | 4.58 | 0.65 | 615.42 | 112.18 | 0.81 | 0.45 | 0.13 | 0.06 |
Chorispora tenella | Brassicaceae | Cho.t | DGS | 12.03 | 1.177 | 6.48 | 0.49 | 441.59 | 66.02 | 2.96 | 0.15 | 0.19 | 0.07 |
Camelina microcarpa | Brassicaceae | Cam.m | DGS | 19.13 | 1.628 | 8.92 | 0.52 | 497.92 | 78.90 | 1.09 | 0.43 | 0.30 | 0.07 |
Goldbachia laevigata | Brassicaceae | Gol.l | DGS | 24.9 | 1.49 | 7.83 | 0.41 | 788.01 | 95.33 | 1.11 | 0.28 | 0.23 | 0.10 |
Euclidium syriacum | Brassicaceae | Euc.s | DGS | 21.46 | 1.807 | 8.29 | 0.74 | 386.88 | 86.44 | 0.66 | 0.33 | 0.15 | 0.04 |
Diptychocarpus strictus | Brassicaceae | Dip.s | DGS | 25.23 | 1.718 | 9.04 | 0.51 | 1045.39 | 169.57 | 0.67 | 0.24 | 0.26 | 0.07 |
Tauscheria lasiocarpa | Brassicaceae | Tau.l | DGS | 23.2 | 1.595 | 5.81 | 0.57 | 294.54 | 52.59 | 1.76 | 0.18 | 0.31 | 0.12 |
Malcolmia scorpioides | Brassicaceae | Mal.s | LS | 21.45 | 1.913 | 19.32 | 0.28 | 708.90 | 61.81 | 3.07 | 0.30 | 0.42 | 0.13 |
Alyssum linifolium | Brassicaceae | Aly.l | LS | 16.92 | 1.354 | 16.24 | 0.23 | 1415.04 | 100.22 | 2.02 | 0.29 | 0.34 | 0.20 |
Alyssum dasycarpum | Brassicaceae | Aly.d | LS | 14.78 | 1.47 | 15.56 | 0.24 | 1283.34 | 93.89 | 2.46 | 0.33 | 0.28 | 0.09 |
Leptaleum filifolium | Brassicaceae | Lep.f | LS | 7.17 | 0.55 | 8.71 | 0.17 | 2164.55 | 114.37 | 2.18 | 0.38 | 0.14 | 0.11 |
Isatis violascens | Brassicaceae | Isa.v | LS | 18.43 | 1.253 | 16.95 | 0.45 | 773.55 | 105.26 | 0.89 | 0.43 | 0.34 | 0.15 |
Cithareloma vernum | Brassicaceae | Cit.v | LS | 5.4 | 0.819 | 14.35 | 0.31 | 1316.82 | 117.72 | 1.31 | 0.35 | 0.31 | 0.13 |
Isatis minima | Brassicaceae | Isa.m | LS | 26.53 | 4.036 | 23.71 | 0.47 | 527.79 | 71.85 | 1.28 | 0.33 | 0.33 | 0.20 |
Spirorhynchus sabulosus | Brassicaceae | Spi.s | LS | 16.81 | 1.551 | 24.31 | 0.46 | 775.16 | 95.97 | 1.00 | 0.29 | 0.38 | 0.19 |
Tetracme recurvata | Brassicaceae | Tet.r | LS | 10.33 | 1.213 | 10.13 | 0.37 | 670.63 | 77.79 | 1.67 | 0.46 | 0.20 | 0.14 |
Silene olgiana | Caryophyllaceae | Sil.o | LS | 8.51 | 1.027 | 14.32 | 0.27 | 1476.95 | 123.35 | 1.33 | 0.46 | 0.19 | 0.14 |
Fumaria vaillantii | Papaveraceae | Fum.v | DGS | 10.71 | 1.233 | 6.85 | 0.35 | 1482.44 | 157.62 | 0.76 | 0.59 | 0.22 | 0.04 |
Hypecoum erectum | Papaveraceae | Hyp.e | LS | 19.15 | 1.442 | 29.69 | 0.28 | 1601.33 | 137.29 | 1.06 | 0.57 | 0.19 | 0.09 |
Hypecoum parviflorum | Papaveraceae | Hyp.p | LS | 7.39 | 0.68 | 15.46 | 0.28 | 3262.09 | 286.09 | 0.55 | 0.48 | 0.16 | 0.12 |
Lappula semiglabra | Boraginaceae | Lap.s | DGS | 10.52 | 1.676 | 16.42 | 0.31 | 1281.78 | 119.61 | 1.36 | 0.59 | 0.14 | 0.09 |
Heliotropium acutiflorum | Boraginaceae | Hel.a | LS | 6.71 | 1.039 | 12.09 | 0.44 | 893.38 | 122.95 | 0.85 | 0.26 | 0.37 | 0.19 |
Nonea caspica | Boraginaceae | Non.c | LS | 8.98 | 0.873 | 26.25 | 0.25 | 1944.64 | 148.63 | 1.12 | 0.38 | 0.19 | 0.21 |
Arnebia decumbens | Boraginaceae | Arn.d | LS | 6.39 | 1.038 | 15.22 | 0.28 | 2131.62 | 182.87 | 0.82 | 0.41 | 0.23 | 0.11 |
Lappula semiglabra | Boraginaceae | Lap.s | LS | 11.24 | 1.201 | 12.3 | 0.27 | 1659.34 | 131.37 | 1.25 | 0.47 | 0.22 | 0.12 |
Lappula lasiocarpa | Boraginaceae | Lap.l | LS | 11.58 | 1.126 | 13.47 | 0.25 | 1594.84 | 124.31 | 1.61 | 0.48 | 0.18 | 0.13 |
Abbrev. | Trait | Unit | Implication |
---|---|---|---|
CD | Root collar diameter | mm | Reflecting the transportation efficiency of root nutrients and water to the aboveground part of plant |
H | Plant height | cm | Plant height is related to plant longevity and the potential to compete for sunlight |
MRD | Maximum root depth | cm | Reflecting the explored potential of root to soil layer |
RD | Root diameter | mm | Reflecting the penetration of root system to soil |
SRL | Specific root length | cm g−1 | The root length per biomass investment is closely related to the efficiency of plants in capturing water and nutrients |
SRA | Specific root area | cm2 g−1 | The root surface area per biomass investment is closely related to the efficiency of plants in capturing water and nutrients |
RTD | Root tissue density | g cm−3 | The root biomass investment per volume can reflect the tensile strength and defensive strength of roots. |
LMF | Leaf mass fraction | g g−1 | The biomass assigned to leaves by plants for photosynthesis. |
SMF | Stem mass fraction | g g−1 | The biomass allocated to stem by plants for Supporting leaves and transporting water and nutrients between roots and leaves. |
RMF | Root mass fraction | g g−1 | The biomass investment of plants in underground foraging. |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, T.; Huang, L.; Zhang, X.; Wang, M.; Tan, D. Root Morphology and Biomass Allocation of 50 Annual Ephemeral Species in Relation to Two Soil Condition. Plants 2022, 11, 2495. https://doi.org/10.3390/plants11192495
Wang T, Huang L, Zhang X, Wang M, Tan D. Root Morphology and Biomass Allocation of 50 Annual Ephemeral Species in Relation to Two Soil Condition. Plants. 2022; 11(19):2495. https://doi.org/10.3390/plants11192495
Chicago/Turabian StyleWang, Taotao, Lei Huang, Xuan Zhang, Mao Wang, and Dunyan Tan. 2022. "Root Morphology and Biomass Allocation of 50 Annual Ephemeral Species in Relation to Two Soil Condition" Plants 11, no. 19: 2495. https://doi.org/10.3390/plants11192495
APA StyleWang, T., Huang, L., Zhang, X., Wang, M., & Tan, D. (2022). Root Morphology and Biomass Allocation of 50 Annual Ephemeral Species in Relation to Two Soil Condition. Plants, 11(19), 2495. https://doi.org/10.3390/plants11192495