Is There a Role for Sound in Plants?
Abstract
:1. Introduction
2. Communication through Sound
2.1. What Is “Sound”
2.2. Sound at Cellular and Subcellular Level
2.3. Sound like Touch
3. Effects of Sound Perception
3.1. Buzz Pollination
3.2. Sweetened Nectar
3.3. Interpreting Relevant and Irrelevant Sounds
4. Sound below Ground
5. Can We Communicate with Plants by Means of Sound
The Case of Cavitation
6. Plant Alerts
Communicating Drought Stress
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hublin, J.J.; Ben-Ncer, A.; Bailey, S.E.; Freidline, S.E.; Neubauer, S.; Skinner, M.M.; Bergmann, I.; le Cabec, A.; Benazzi, S.; Harvati, K.; et al. New fossils from Jebel Irhoud, Morocco and the pan-African origin of Homo sapiens. Nature 2017, 546, 289–292. [Google Scholar] [CrossRef] [PubMed]
- Taylor, T.; Taylor, E.; Krings, M. (Eds.) Paleobotany: The Biology and Evolution of Fossil Plants, 2nd ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 161–177. [Google Scholar] [CrossRef]
- Gomez, B.; Daviero-Gomez, V.; Coiffard, C.; Martín-Closas, C.; Dilcher, D.L. Montsechia, an ancient aquatic angiosperm. Proc. Natl. Acad. Sci. USA 2015, 112, 10985–10988. [Google Scholar] [CrossRef]
- Friis, E.; Crane, P.; Pedersen, K. Introduction to Angiosperms. In The Early Flowers and Angiosperm Evolution; Cambridge University Press: Cambridge, MA, USA, 2011; pp. 1–22. [Google Scholar] [CrossRef]
- Gagliano, M.; Renton, M.; Depczynski, M.; Mancuso, S. Experience teaches plants to learn faster and forget slower in environments where it matters. Oecologia 2014, 175, 63–72. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, M.; Grimonprez, M.; Depczynski, M.; Renton, M. Tuned in: Plant roots use sound to locate water. Oecologia 2017, 184, 151–160. [Google Scholar] [CrossRef]
- Yokawa, K.; Kagenishi, T.; Pavlovič, A.; Gall, S.; Weiland, M.; Mancuso, S.; Baluška, F. Anaesthetics stop diverse plant organ movements, affect endocytic vesicle recycling and ROS homeostasis, and block action potentials in Venus flytraps. Ann. Bot. 2018, 122, 747–756. [Google Scholar] [CrossRef]
- Toyota, M.; Spencer, D.; Sawai-Toyota, S.; Jiaqi, W.; Zhang, T.; Koo, A.J.; Howe, G.A.; Gilroy, S. Glutamate triggers long-distance, calcium-based plant defense signaling. Science 2018, 361, 1112–1115. [Google Scholar] [CrossRef] [PubMed]
- Sopory, S. (Ed.) Sensory Biology of Plants; Springer Nature: Singapore, 2019. [Google Scholar] [CrossRef]
- Jung, J.; Kim, S.K.; Kim, J.Y.; Jeong, M.J.; Ryu, C.M. Beyond Chemical Triggers: Evidence for Sound-Evoked Physiological Reactions in Plants. Front. Plant Sci. 2018, 30, 9–25. [Google Scholar] [CrossRef] [Green Version]
- Allievi, S.; Arru, L.; Forti, L. A Tuning Point in Plant Acoustics Investigation. Plant Signal. Behav. 2021, 16, 1919836. [Google Scholar] [CrossRef]
- Frongia, F.; Forti, L.; Arru, L. Sound perception and its effects in plants and algae. Plant Signal. Behav. 2020, 15, 1828674. [Google Scholar] [CrossRef]
- Christensen-Dalsgaard, J. Acoustical Signals-In Air and Water. In Encyclopedia of Animal Behavior, 2nd ed.; Choe, J.C., Ed.; Academic Press: Oxford, UK, 2019; pp. 438–448. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, B.C.; Jia, Y.; Duan, C.R.; Sakanishi, A. Effect of sound wave on the synthesis of nucleic acid and protein in chrysanthemum. Colloids Surf. B 2003, 29, 99–102. [Google Scholar] [CrossRef]
- Zhang, J. Application progress of plant audio control technology in modern agriculture. Ningxia J. Agric. For. Sci. Technol. 2012, 53, 80–81. [Google Scholar]
- Hendrawan, Y.; Rizky, A.; Susilo, B.; Prasetyo, J.; Damayant, R. The Effct of Javanese Gamelan Music on the Growth of Chinese Broccoli. Pertanika J. Sci. Technol. 2020, 28, 69–90. [Google Scholar]
- Munasinghe, D.S.P.; Weerakoon, S.R.; Somaratne, S. The effect of Buddhist pirith chanting and Western pop music on growth performance of “Pranajeewa”, Codariocalyx motorius (Houtt.) H. Ohashi. Ceylon J. Sci. 2018, 47, 357–361. [Google Scholar] [CrossRef]
- Munasinghe, D.S.P.; Liyanage, K.C.M.; Weerakoon, S.R.; Somaratne, S.; Dissanayake, D.M.L.C. A preliminary study on effect of Buddhist pirith chanting and pop music on the growth and yield performance in rice (Oryza sativa L.). Sri Lankan J. Biol. 2018, 3, 44–51. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, B.C.; Wang, X.J.; Duan, C.R.; Yang, X.C. Effect of sound stimulation on roots growth and plasmalemma H+-ATPase activity of chrysanthemum (Gerbera jamesonii). Colloids Surf. B Biointerfaces 2003, 27, 65–69. [Google Scholar] [CrossRef]
- Zhao, H.C.; Zhu, T.; Wu, J.; Xi, B.S. Role of protein kinase in the effect of sound stimulation on the PM H+-ATPase activity of Chrysanthemum callus. Colloids Surf. B Biointerfaces 2002, 26, 335–340. [Google Scholar] [CrossRef]
- Wang, X.J.; Wang, B.C.; Jia, Y.; Huo, D.; Duan, C.R. Effect of sound stimulation on cell cycle of chrysanthemum (Gerbera jamesonii). Colloids Surf. B Biointerfaces 2003, 29, 103–107. [Google Scholar] [CrossRef]
- Zhao, H.C.; Wu, J.; Zheng, L.; Zhu, T.; Xi, B.S.; Wang, B.; Cai, S.; Younian, W. Effect of sound stimulation on Dendranthema morifolium callus growth. Colloids Surf. B Biointerfaces 2003, 29, 143–147. [Google Scholar] [CrossRef]
- Mishra, R.C.; Ghosh, R.; Bae, H. Plant acoustics: In the search of a sound mechanism for sound signaling in plants. J. Exp. Bot. 2016, 67, 4483–4494. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, M. Green symphonies: A call for studies on acoustic communication in plants. Behav. Ecol. 2013, 24, 789–796. [Google Scholar] [CrossRef]
- Pelling, A.E.; Sehati, S.; Gralla, E.B.; Valentine, J.S.; Gimzewski, J.K. Local nanomechanical motion of the cell wall of Saccharomyces cerevisiae. Science 2004, 305, 1147–1150. [Google Scholar] [CrossRef]
- Mishra, R.C.; Bae, H. Plant Cognition: Ability to Perceive ‘Touch’ and ‘Sound’. In Sensory Biology of Plants; Sopory, S., Ed.; Springer: Singapore, 2019; pp. 137–162. [Google Scholar] [CrossRef]
- Telewski, F.W. A unified hypothesis of mechanoperception in plants. Am. J. Bot. 2006, 93, 1466–1476. [Google Scholar] [CrossRef]
- Gagliano, M.; Mancuso, S.; Robert, D. Towards understanding plant bioacoustics. Trends Plant Sci. 2012, 17, 323–325. [Google Scholar] [CrossRef]
- Liu, C.Q.; Gao, Y.D.; Niu, Y.; Xiong, Y.Z.; Sun, H. Floral adaptations of two lilies: Implications for the evolution and pollination ecology of huge trumpet-shaped flowers. Am. J. Bot. 2019, 106, 622–632. [Google Scholar] [CrossRef] [PubMed]
- Schöner, M.G.; Schöner, C.R.; Simon, R.; Grafe, T.U.; Puechmaille, S.J.; Ji, L.L.; Kerth, G. Bats Are Acoustically Attracted to Mutualistic Carnivorous Plants. Curr. Biol. 2015, 25, 1911–1916. [Google Scholar] [CrossRef] [PubMed]
- De Luca, P.; Vallejo-Marín, M. What’s the ‘buzz’ about? The ecology and evolutionary significance of buzz-pollination. Curr. Opin. Plant Biol. 2013, 16, 429–435. [Google Scholar] [CrossRef]
- Mesquita-Neto, J.; Blüthgen, N.; Schlindwein, C. Flowers with poricidal anthers and their complex interaction networks—Disentangling legitimate pollinators and illegitimate visitors. Funct. Ecol. 2018, 32, 2321–2332. [Google Scholar] [CrossRef]
- King, M.J.; Buchmann, S.L. Floral Sonication by Bees: Mesosomal Vibration by Bombus and Xylocopa, but Not Apis (Hymenoptera: Apidae), Ejects Pollen from Poricidal Anthers. J. Kans. Entomol. Soc. 2003, 76, 295–305. [Google Scholar] [CrossRef]
- King, M.J.; Buchmann, S.L. Sonication Dispensing of Pollen from Solanum laciniatum Flowers. Funct. Ecol. 1996, 10, 449–456. [Google Scholar] [CrossRef]
- De Luca, P.A.; Bussière, L.F.; Souto-Vilaros, D.; Goulson, D.; Mason, A.C.; Vallejo-Marín, M. Variability in bumblebee pollination buzzes affects the quantity of pollen released from flowers. Oecologia 2013, 172, 805–816. [Google Scholar] [CrossRef]
- Veits, M.; Khait, I.; Obolski, U.; Zinger, E.; Boonman, A.; Goldshtein, A.; Saban, K.; Seltzer, R.; Ben-Dor, U.; Estlein, P.; et al. Flowers respond to pollinator sound within minutes by increasing nectar sugar concentration. Ecol. Lett. 2019, 22, 1483–1492. [Google Scholar] [CrossRef]
- Pfannenstiel, R.S.; Hunt, R.E.; Yeargan, K.V. Orientation of a hemipteran predator to vibrations produced by feeding caterpillars. J. Insect Behav. 1995, 8, 1–9. [Google Scholar] [CrossRef]
- Appel, H.M.; Cocroft, R.B. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 2014, 175, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Guerrieri, E. Who’s listening to talking plants. In Deciphering Chemical Language of Plant Communication; Blande, J.D., Glinwood, R., Eds.; Springer: Basel, Switzerland, 2016; pp. 117–136. [Google Scholar]
- Eriksson, A.; Anfora, G.; Lucchi, A.; Virant-Doberlet, M.; Mazzoni, V. Inter-plant vibrational communication in a leafhopper insect. PLoS ONE 2011, 6, e19692. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, M.; Renton, M.; Duvdevani, N.; Timmins, M.; Mancuso, S. Acoustic and magnetic communication in plants: Is it possible? Plant Signal. Behav. 2012, 7, 1346–1348. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, M.; Renton, M.; Duvdevani, N.; Timmins, M.; Mancuso, S.; Moora, M. Out of Sight but Not out of Mind: Alternative Means of Communication in Plants. PLoS ONE 2012, 7, e37382. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, J.S.; Kwon, T.R.; Lee, S.I.; Kim, J.A.; Lee, G.M.; Park, S.C.; Jeong, M.J. Sound waves delay tomato fruit ripening by negatively regulating ethylene biosynthesis and signaling genes. Postharvest Biol. Technol. 2015, 110, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Bochu, W.; Hucheng, Z.; Yiyao, L.; Yi, J.; Sakanishi, A. The effects of alternative stress on the cell membrane deformability of chrysanthemum callus cells. Colloids Surf. B Biointerfaces 2001, 20, 321–325. [Google Scholar] [CrossRef]
- Wang, B.C.; Yoshikoshi, A.; Sakanishi, A. Carrot cell growth in a stimulated ultrasonic environment. Colloids Surf. B Biointerfaces 1998, 12, 89–95. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Takatsuki, H.; Yoshikoshi, A.; Wang, B.C.; Sakanishi, A. Effects of ultrasound on the growth and vacuolar H+-ATPase activity of Aloe arborescens callus cells. Colloids Surf. B Biointerfaces 2003, 32, 105–116. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Yoshikoshi, A.; Wang, B.C.; Sakanishi, A. Influence of ultrasonic stimulation on the growth and proliferation of Oryza sativa Nipponbare callus. Colloids Surf. B Biointerfaces 2003, 27, 287–293. [Google Scholar] [CrossRef]
- Ananthakrishnan, G.; Xia, X.; Amutha, S.; Singer, S.; Muruganantham, M.; Yablonsky, S.; Fischer, E.; Gaba, V. Ultrasonic treatment stimulates multiple shoot regeneration and explant enlargement in recalcitrant squash cotyledon explants in vitro. Plant Cell Rep. 2007, 26, 267–276. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Yang, C.Y.; Wei, S.H. Enhancement of the differentiation of protocorm-like bodies of Dendrobium officinale to shoots by ultrasound treatment. J. Plant Physiol. 2012, 169, 770–774. [Google Scholar] [CrossRef] [PubMed]
- Safari, M.; Ghanati, F.; Behmanesh, M.; Hajnorouzi, A.; Nahidian, B.; Mina, G. Enhancement of antioxidant enzymes activity and expression of CAT and PAL genes in hazel (Corylus avellana L.) cells in response to low-intensity ultrasound. Acta Physiol. Plant 2013, 35, 2847–2855. [Google Scholar] [CrossRef]
- López-Ribera, I.; Vicient, C.M. Drought tolerance induced by sound in Arabidopsis plants. Plant Signal. Behav. 2017, 12, e1368938. [Google Scholar] [CrossRef]
- Zweifel, R.; Zeugin, F. Ultrasonic acoustic emissions in drought-stressed trees--more than signals from cavitation? New Phytol. 2008, 179, 1070–1079. [Google Scholar] [CrossRef]
- Khait, I.; Lewin-Epstein, O.; Sharon, R.; Saban, K.; Perelman, R.; Boonman, A.; Hadany, L. Plants Emit Informative Airborne Sounds under Stress. bioRxiv 2019, 507590. [Google Scholar] [CrossRef] [Green Version]
- Woolf, B.P. Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing E-Learning; Morgan Kaufmann: Burlington, MA, USA, 2010. [Google Scholar] [CrossRef]
- Laschimke, R.; Burger, M.; Vallen, H. Acoustic emission analysis and experiments with physical model systems reveal a peculiar nature of the xylem tension. J. Plant Physiol. 2006, 163, 996–1007. [Google Scholar] [CrossRef] [PubMed]
- Vergeynst, L.L.; Sause, M.G.; Hamstad, M.A.; Steppe, K. Deciphering acoustic emission signals in drought stressed branches: The missing link between source and sensor. Front. Plant Sci. 2015, 6, 494. [Google Scholar] [CrossRef]
- Jeong, M.J.; Cho, J.I.; Park, S.H.; Kim, K.H.; Siddiqui, Z.S. Sound frequencies induce drought tolerance in rice plant. Pak. J. Bot. 2014, 46, 2015–2020. [Google Scholar]
- Mayr, S.; Zublasing, V. Ultrasonic emissions from conifer xylem exposed to repeated freezing. J. Plant Physiol. 2010, 167, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Holopainen, J.K. Multiple functions of inducible plant volatiles. Trends Plant Sci. 2004, 9, 529–533. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Del Stabile, F.; Marsili, V.; Forti, L.; Arru, L. Is There a Role for Sound in Plants? Plants 2022, 11, 2391. https://doi.org/10.3390/plants11182391
Del Stabile F, Marsili V, Forti L, Arru L. Is There a Role for Sound in Plants? Plants. 2022; 11(18):2391. https://doi.org/10.3390/plants11182391
Chicago/Turabian StyleDel Stabile, Filippo, Vittoria Marsili, Luca Forti, and Laura Arru. 2022. "Is There a Role for Sound in Plants?" Plants 11, no. 18: 2391. https://doi.org/10.3390/plants11182391