Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article
Abstract
:1. Introduction
2. Methodology of the Review
3. Soil and the Sustainable Development Goals (SDGs)
4. Restoration of Degraded Soils
4.1. Saline Sandy Soils
4.2. Saline–Sodic Soils
- Application of Ca-sources like gypsum [53],
- Application of biofertilizers [64],
- Nano-remediation using nanomaterials [65],
- Using integrated fertilization [70],
- Maintaining soil water level by using proper fertilization/irrigation [71],
- Selecting efficient irrigation systems [72], and
- Soil management through techniques like tillage and mulching [73].
Used Nanomaterials/Amendment | Cultivated Plant | Properties of Used Soil | Main Findings of This Study | Refs. |
---|---|---|---|---|
I. Applied nanomaterials | ||||
Nano-Zn, nano-Si (30, 25 nm and 50, 2.5 mg L−1, resp.) | Rice (Oryza sativa, L.), var. Giza 178 | Clayey, EC = 7.6 dS m−1, SAR = 14, ESP = 22.5% | Improved saline sodic soil by integrated management of both nano-Zn, and nano-Si in addition to using straw-filled ditches | [79] |
Nano-ZnO at levels of 1 and 2 g·L−1 (40–50 nm) | Faba bean (Vicia faba L.), var. Sakha 1 | Clayey, pH = 8.43, EC = 7.48 dS m−1, SAR = 16.2, ESP = 18.6 | Application of nano-ZnO compost and S was integrated to reclaim saline–sodic soils | [80] |
Green nano-silica (150 and 300 mg L−1) | Banana (Musa spp.) | Sandy irrigated with groundwater (EC = 4.12 dS m−1) | Green nano-silica improved the productivity and quality in sandy soil with saline irrigation | [81] |
MgO-NP at 50 and 100 µg ml−1 as foliar application | Sweet potato (Ipomoea batatas L.) cv. Beauregard | Sandy loam, EC = 7.56 dS m−1, pH = 7.65, ESP = 10.66% | Co-applied effective micro-organisms and/or MgO-NPs improved plant tolerant to osmotic stress by increase osmolytes level, K+ content | [65] |
Nanoparticles (Si-Zn-NPs) and plant growth-promoting microbes (PGPMs) | Soybean (Glycine max L.) cv. Giza 111 | Clayey, pH = 8.23, EC = 5.52 dS m−1, ESP = 16% | PGPMs and nanoparticles (Si-Zn-NPs) promoted soybean productivity, and seed quality under water deficit stress | [82] |
Foliar NPs-Si (12.5 mg L−1) and bio-Se-NPs (6.25 mg L−1) | Rice (Oryza sativa L.), Giza 177 and Giza 178 | Clayey, pH = 8.20, EC = 7.20 dS m−1, SOM = 1.62% | Applied nano-nutrients (NPs-Si and NPs-Se) improved the yield components and mitigated harmful salinity stress | [83] |
II. Applied biofertilizers/organic fertilizers | ||||
Extracts of moringa leaves, licorice roots, ginger (2.0%) | Wheat (Triticum aestivum L.), cv. Misr 1 | Clayey, pH = 8.13, EC = 13.20 dS m−1, ESP = 15.08% | Proline and enzymatic antioxidants (CAT, SOD) after treating with vermicompost and sprayed with moringa extract | [84] |
PGPR, some strains of both Rhizobium and Bacillus | Faba Bean (Vicia faba L.), cv. 716 | Clayey, pH = 8.24, EC = 5.52 dS m−1, SOM = 1.19%, ESP = 20% | Foliar PGPR and potassium silicate maintain soil quality and increased productivity of plants irrigated with saline water (3.5 dS m−1) | [85] |
PGPR, namely some strains of Azospirillum and Bacillus | Wheat (Triticum aestivum L.), cv. Misr 1 | Clay loam, pH = 8.58, EC = 9.09 dS m−1, SOM = 1.48%, ESP = 18% | Collaborative impact of PGPR and compost on soil properties, and physiological–biochemical attributes of wheat under water deficit stress | [86] |
Bacterial inoculation (plant growth-promoting rhizobacteria) | Maize (Zea mays L.) cv. HSC 10 | Clayey, pH = 8.22, EC = 7.33 dS m−1, ESP = 21.27% | Phosphor-gypsum and PGPR are effective approach for ameliorating the negative stress of salinity on maize plants | [87] |
Foliar spray of folic acid (FA), ascorbic acid (AA), and salicylic acid (SA) | Potato (Solanum tuberosum L.) cv. Spunta | Loam, pH = 7.71, EC = 7.14 dS m−1, SOM = 0.79% | Foliar AA (200 mg L−1) was most effective in enhancing plant tolerance to salinity stress | [88] |
Gypsum and mycorrhizal fungi inoculation (AMF) | Wheat (T. aestivum L.), cv. Sakha 94; maize (Z. mays L.), cv. Hybrid 368 | Heavy clay, pH = 8.32, EC = 7.09 dS m−1, ESP = 19.35%, SOM = 1.16% | Combination of applied gypsum and AMF inoculation was an effective approach to ameliorate and alleviate the hazardous effects of soil salinity and sodicity on cultivated plants | [89] |
PGPR (Azospirillum brasilense and Bacillus circulans); potassium silicate | Wheat (T. aestivum L.), cv. Misr 1, Gemmeza 12, and Sakha 95 | Clayey texture, pH = 8.28, EC = 7.71 dS m−1, SOM = 1.75% | Combined application activated soil enzymes (i.e., urease and dehydrogenase); boosted soil microbial activity; enhanced plant growth at studied stress | [90] |
Biochar (husks of rice and maize) and foliar applied potassium humate | Onion (Allium cepa L.), cv. Giza 20 | Clay loam, pH = 8.35, EC = 11.14 dS m−1, SOM = 1.51% | Dual application of biochar and K-humate was sustainable, an effective, eco-friendly strategy under water stress | [91] |
5. Sustainable Production of Nanoparticles
6. Nano-Restoration of Soil Fertility
7. Nanoparticle–Plant–Microbe Nexus for Restoring Soil Fertility
7.1. Soil–Plant–Water Interactions
7.2. Soil–Plant–Microbe Interactions
7.3. Soil–Water–Nanoparticle Interactions
7.4. Soil–Plant–Water–Microbe Interactions
7.5. Soil–Plant–Microbe–Nanoparticle Interactions
8. General Discussion
- -
- What are the roles of microorganisms in their interplay with plants and NPs for restoring soil fertility?
- -
- What are the evolutionary and ecological basis of microbe–plant–soil interactions?
- -
- What are the dynamics of microbe–plant interactions and their link to plant growth and soil conditions under the umbrella of nano-restoration?
- -
- What are the broader impacts of the interactions of microbe–plant–soil agroecosystems or agricultural productivity under soil degradation?
- -
- To what extent will the dynamics of microbe–plant interactions differ in the case of polluted or otherwise degraded soils?
- -
- What are the crucial roles of soil microbes for plant mineral nutrition and soil fertility in the presence of pollutants?
9. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brevik, E.C.; Pereg, L.; Pereira, P.; Steffan, J.J.; Burgess, L.C.; Gedeon, C. Shelter, clothing, and fuel: Often overlooked links between soils, ecosystem services, and human health. Sci. Total Environ. 2019, 651, 134–142. [Google Scholar] [CrossRef] [PubMed]
- El-Ramady, H.; Hajdú, P.; Törős, G.; Badgar, K.; Llanaj, X.; Kiss, A.; Abdalla, N.; Omara, A.E.-D.; Elsakhawy, T.; Elbasiouny, H.; et al. Plant Nutrition for Human Health: A Pictorial Review on Plant Bioactive Compounds for Sustainable Agriculture. Sustainability 2022, 14, 8329. [Google Scholar] [CrossRef]
- Shayanthan, A.; Ordoñez, P.A.C.; Oresnik, I.J. The Role of Synthetic Microbial Communities (SynCom) in Sustainable Agriculture. Front. Agron. 2022, 4, 896307. [Google Scholar] [CrossRef]
- Gonçalves, R.G.D.M.; dos Santos, C.A.; Breda, F.A.D.F.; Lima, E.S.A.; Carmo, M.G.F.D.; Souza, C.D.C.B.D.; Sobrinho, N.M.B.D.A. Cadmium and lead transfer factors to kale plants (Brassica oleracea var. acephala) grown in mountain agroecosystem and its risk to human health. Environ. Monit. Assess. 2022, 194, 366. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Dolfing, J.; Liu, W.; Chen, R.; Zhang, J.; Lin, X.; Feng, Y. Beyond the snapshot: Identification of the timeless, enduring indicator microbiome informing soil fertility and crop production in alkaline soils. Environ. Microbiome 2022, 17, 25. [Google Scholar] [CrossRef]
- Pereg, L.; Steffan, J.J.; Gedeon, C.; Thomas, P.; Brevik, E.C. Medical Geology of Soil Ecology. In Practical Applications of Medical Geology; Siege, M., Selinus, O., Finkelman, R., Eds.; Springer: Cham, Switzerland, 2021; pp. 343–401. [Google Scholar]
- Yadav, R.H. Soil-plant-microbial interactions for soil fertility management and sustainable agriculture. In Microbes in Land Use Change Management; Singh, J.S., Tiwari, S., Singh, C., Singh, A.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 341–362. [Google Scholar] [CrossRef]
- Page, K.L.; Dang, Y.P.; Dalal, R.C. The Ability of Conservation Agriculture to Conserve Soil Organic Carbon and the Subsequent Impact on Soil Physical, Chemical, and Biological Properties and Yield. Front. Sustain. Food Syst. 2020, 4, 31. [Google Scholar] [CrossRef]
- Castellini, M.; Diacono, M.; Gattullo, C.; Stellacci, A. Sustainable Agriculture and Soil Conservation. Appl. Sci. 2021, 11, 4146. [Google Scholar] [CrossRef]
- Scagliola, M.; Valentinuzzi, F.; Mimmo, T.; Cesco, S.; Crecchio, C.; Pii, Y. Bioinoculants as Promising Complement of Chemical Fertilizers for a More Sustainable Agricultural Practice. Front. Sustain. Food Syst. 2021, 4, 622169. [Google Scholar] [CrossRef]
- Koriem, M.; Gaheen, S.; El-Ramady, H.; Prokisch, J.; Brevik, E. Global Soil Science Education to Address the Soil—Water-Climate Change Nexus. Environ. Biodivers. Soil Secur. 2022, 6, 27–39. [Google Scholar] [CrossRef]
- Psomas, A.; Vryzidis, I.; Spyridakos, A.; Mimikou, M. MCDA approach for agricultural water management in the context of water–energy–land–food nexus. Oper. Res. 2021, 21, 689–723. [Google Scholar] [CrossRef]
- Wolde, Z.; Wei, W.; Ketema, H.; Yirsaw, E.; Temesegn, H. Indicators of Land, Water, Energy and Food (LWEF) Nexus Resource Drivers: A Perspective on Environmental Degradation in the Gidabo Watershed, Southern Ethiopia. Int. J. Environ. Res. Public Health 2021, 18, 5181. [Google Scholar] [CrossRef] [PubMed]
- Gu, B.; Chen, D.; Yang, Y.; Vitousek, P.; Zhu, Y.-G. Soil-Food-Environment-Health Nexus for Sustainable Development. Research 2021, 2021, 9804807. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.; Ni, M. Sustainable water–energy–environment nexus. Environ. Sci. Pollut. Res. 2021, 28, 40049–40052. [Google Scholar] [CrossRef] [PubMed]
- Adebiyi, J.A.; Olabisi, L.S.; Liu, L.; Jordan, D. Water–food–energy–climate nexus and technology productivity: A Nigerian case study of organic leafy vegetable production. Environ. Dev. Sustain. 2021, 23, 6128–6147. [Google Scholar] [CrossRef]
- Misrol, M.A.; Alwi, S.R.W.; Lim, J.S.; Manan, Z.A. Optimization of energy-water-waste nexus at district level: A techno-economic approach. Renew. Sustain. Energy Rev. 2021, 152, 111637. [Google Scholar] [CrossRef]
- Bian, Z.; Liu, D. A Comprehensive Review on Types, Methods and Different Regions Related to Water–Energy–Food Nexus. Int. J. Environ. Res. Public Health 2021, 18, 8276. [Google Scholar] [CrossRef]
- de Andrade Guerra, J.B.S.O.; Berchin, I.I.; Garcia, J.; da Silva Neiva, S.; Jonck, A.V.; Faraco, R.A.; de Amorim, W.S.; Ribeiro, J.M.P. A literature-based study on the water-energy-food nexus for sustainable development. Stoch. Environ. Res. Risk Assess. 2021, 35, 95–116. [Google Scholar] [CrossRef]
- Yuan, M.-H.; Lo, S.-L. Principles of food-energy-water nexus governance. Renew. Sustain. Energy Rev. 2022, 155, 111937. [Google Scholar] [CrossRef]
- Shi, X.; Matsui, T.; Machimura, T.; Haga, C.; Hu, A.; Gan, X. Impact of urbanization on the food–water–land–ecosystem nexus: A study of Shenzhen, China. Sci. Total Environ. 2022, 808, 152138. [Google Scholar] [CrossRef]
- Yu, L.; Liu, S.; Wang, F.; Liu, Y.; Li, M.; Wang, Q.; Dong, S.; Zhao, W.; Tran, L.-S.P.; Sun, Y.; et al. Effects of agricultural activities on energy-carbon-water nexus of the Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 331, 129995. [Google Scholar] [CrossRef]
- Rekik, F.; van Es, H.M. The soil health–human health nexus: Mineral thresholds, interlinkages and rice systems in Jhar-khand, India. In Advances in Agronomy; Academic Press: Cambridge, MA, USA, 2021. [Google Scholar] [CrossRef]
- Brevik, E.; Omara, A.E.-D.; Elsakhawy, T.A.; Amer, M.M.; Abdalla, Z.F.; El-Ramady, H.; Prokisch, J. The Soil-Water-Plant-Human Nexus: A Call for Photographic Review Articles. Environ. Biodivers. Soil Secur. 2022, 6, 117–131. [Google Scholar] [CrossRef]
- Abdalla, Z.F.; El-Ramady, H. Applications and Challenges of Smart Farming for Developing Sustainable Agriculture. Environ. Biodivers. Soil Secur. 2022, 6, 81–90. [Google Scholar] [CrossRef]
- Elramady, H.; Brevik, E.C.; Elsakhawy, T.; Omara, A.E.-D.; Amer, M.M.; Abowaly, M.; El-Henawy, A.; Prokisch, J. Soil and Humans: A Comparative and A Pictorial Mini-Review. Egypt. J. Soil Sci. 2022, 62, 101–115. [Google Scholar] [CrossRef]
- El-Ramady, H.; Faizy, S.; Amer, M.M.; Elsakhawy, T.A.; Omara, A.E.-D.; Eid, Y.; Brevik, E. Management of Salt-Affected Soils: A Photographic Mini-Review. Environ. Biodivers. Soil Secur. 2022, 6, 61–79. [Google Scholar] [CrossRef]
- El-Ramady, H.; Törős, G.; Badgar, K.; Llanaj, X.; Hajdú, P.; El-Mahrouk, M.E.; Abdalla, N.; Prokisch, J. A Comparative Photographic Review on Higher Plants and Macro-Fungi: A Soil Restoration for Sustainable Production of Food and Energy. Sustainability 2022, 14, 7104. [Google Scholar] [CrossRef]
- Abdalla, Z.F.; El-Ramady, H.; Omara, A.E.-D.; Elsakhawy, T.A.; Bayoumi, Y.; Shalaby, T.; Prokisch, J. From Farm-to-Fork: A pictorial Mini Review on Nano-Farming of Vegetables. Environ. Biodivers. Soil Secur. 2022, 6, 149–163. [Google Scholar] [CrossRef]
- Bayoumi, Y.; Shalaby, T.; Abdalla, Z.F.; Shedeed, S.H.; Abdelbaset, N.; El-Ramady, H.; Prokisch, J. Grafting of Vegetable Crops in the Era of Nanotechnology: A photographic Mini Review. Environ. Biodivers. Soil Secur. 2022, 6, 133–148. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef] [Green Version]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Löbmann, M.T.; Maring, L.; Prokop, G.; Brils, J.; Bender, J.; Bispo, A.; Helming, K. Systems knowledge for sustainable soil and land management. Sci. Total Environ. 2022, 822, 153389. [Google Scholar] [CrossRef]
- Elsakhawy, T.; Omara, A.E.-D.; Abowaly, M.; El-Ramady, H.; Badgar, K.; Llanaj, X.; Törős, G.; Hajdú, P.; Prokisch, J. Green Synthesis of Nanoparticles by Mushrooms: A Crucial Dimension for Sustainable Soil Management. Sustainability 2022, 14, 4328. [Google Scholar] [CrossRef]
- Lal, R.; Horn, R.; Kosaki, T. Soil and Sustainable Development Goals. Available online: https://www.schweizerbart.de/publications/detail/isbn/9783510654253/Soil_and_Sustainable_Development_Goals (accessed on 3 March 2022).
- Vogliano, C.; Murray, L.; Coad, J.; Wham, C.; Maelaua, J.; Kafa, R.; Burlingame, B. Progress towards SDG 2: Zero hunger in Melanesia—A state of data scoping review. Glob. Food Secur. 2021, 29, 100519. [Google Scholar] [CrossRef]
- Pingali, P.; Plavšić, M. Hunger and environmental goals for Asia: Synergies and trade-offs among the SDGs. Environ. Chall. 2022, 7, 100491. [Google Scholar] [CrossRef]
- Mosier, S.; Córdova, S.C.; Robertson, G.P. Restoring Soil Fertility on Degraded Lands to Meet Food, Fuel, and Climate Security Needs via Perennialization. Front. Sustain. Food Syst. 2021, 5, 706142. [Google Scholar] [CrossRef]
- Zhang, Q.; Ma, J.; Gonzalez-Ollauri, A.; Yang, Y.; Chen, F. Soil microbes-mediated enzymes promoted the secondary succession in post-mining plantations on the Loess Plateau, China. Soil Ecol. Lett. 2022, 1–15. [Google Scholar] [CrossRef]
- Pereira, P.; Brevik, E.C.; Muñoz-Rojas, M.; Miller, B.A.; Smetanova, A.; Depellegrin, D.; Misiune, I.; Novara, A.; Cerdà, A. Soil Mapping and Processes Modeling for Sustainable Land Management. In Soil Mapping and Process Modeling for Sustainable Land Use Management; Pereira, P., Brevik, E., Muñoz-Rojas, M., Miller, B., Smetanova, A., Depellegrin, D., Misiune, I., Novara, A., Cerda, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 29–60. [Google Scholar] [CrossRef]
- El Refaey, A.; Mohamed, Y.I.; El-Shazly, S.M.; El Salam, A.A.A. Effect of Salicylic and Ascorbic Acids Foliar Application on Picual Olive Trees Growth under Water Stress Condition. Egypt. J. Soil Sci. 2022, 62, 1–16. [Google Scholar] [CrossRef]
- Habib, A. Response of Pearl Millet to Fertilization by Mineral Phosphorus, Humic Acid and Mycorrhiza under Calcareous Soil Conditions. Egypt. J. Soil Sci. 2021, 61, 399–411. [Google Scholar] [CrossRef]
- Tolba, M.; Farid, I.M.; Siam, H.; Abbas, M.H.; Mohamed, I.; Mahmoud, S.; El-Sayed, A.E.-K. Integrated management of K -additives to improve the productivity of zucchini plants grown on a poor fertile sandy soil. Egypt. J. Soil Sci. 2021, 61, 255–365. [Google Scholar] [CrossRef]
- Farid, I.M.; El-Nabarawy, A.; Abbas, M.H.; Morsy, A.; Afifi, M.; Abbas, H.; Hekal, M. Implications of seed irradiation with γ-rays on the growth parameters and grain yield of faba bean. Egypt. J. Soil Sci. 2021, 61, 175–186. [Google Scholar] [CrossRef]
- Gaafar, D.E.S.M.; Baka, Z.A.M.; Abou-Dobara, M.I.; Shehata, H.S.; El-Tapey, H.M.A. Microbial impact on growth and yield of Hibiscus sabdariffa L. and sandy soil fertility. Egypt. J. Soil Sci. 2021, 61, 259–274. [Google Scholar] [CrossRef]
- Vishwakarma, K.; Kumar, N.; Shandilya, C.; Mohapatra, S.; Bhayana, S.; Varma, A. Revisiting Plant–Microbe Interactions and Microbial Consortia Application for Enhancing Sustainable Agriculture: A Review. Front. Microbiol. 2020, 11, 560406. [Google Scholar] [CrossRef] [PubMed]
- Das, P.P.; Singh, K.R.; Nagpure, G.; Mansoori, A.; Singh, R.P.; Ghazi, I.A.; Kumar, A.; Singh, J. Plant-soil-microbes: A tripartite interaction for nutrient acquisition and better plant growth for sustainable agricultural practices. Environ. Res. 2022, 214, 113821. [Google Scholar] [CrossRef]
- De Corato, U. Effect of value-added organic co-products from four industrial chains on functioning of plant disease suppressive soil and their potentiality to enhance soil quality: A review from the perspective of a circular economy. Appl. Soil Ecol. 2021, 168, 104221. [Google Scholar] [CrossRef]
- Hossain, M.S. Present scenario of global salt affected soils, its management and importance of salinity research. Int. Res. J. Biol. Sci. 2019, 1, 1–3. [Google Scholar]
- Kumar, P.; Sharma, P.K. Soil Salinity and Food Security in India. Front. Sustain. Food Syst. 2020, 4, 174. [Google Scholar] [CrossRef]
- Rani, A.; Kumar, N.; Sinha, N.K.; Kumar, J. Identification of salt-affected soils using remote sensing data through random forest technique: A case study from India. Arab. J. Geosci. 2022, 15, 381. [Google Scholar] [CrossRef]
- Otlewska, A.; Migliore, M.; Dybka-Stępień, K.; Manfredini, A.; Struszczyk-Świta, K.; Napoli, R.; Białkowska, A.; Canfora, L.; Pinzari, F. When Salt Meddles Between Plant, Soil, and Microorganisms. Front. Plant Sci. 2020, 11, 553087. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, R. Salt-Affected Soils and Marginal Waters Global Perspectives and Sustainable Management; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 1–48. [Google Scholar] [CrossRef]
- Stavi, I.; Thevs, N.; Priori, S. Soil Salinity and Sodicity in Drylands: A Review of Causes, Effects, Monitoring, and Restoration Measures. Front. Environ. Sci. 2021, 9, 712831. [Google Scholar] [CrossRef]
- Guo, J.; Shan, C.; Zhang, Y.; Wang, X.; Tian, H.; Han, G.; Zhang, Y.; Wang, B. Mechanisms of Salt Tolerance and Molecular Breeding of Salt-Tolerant Ornamental Plants. Front. Plant Sci. 2022, 13, 854116. [Google Scholar] [CrossRef]
- Dustgeer, Z.; Seleiman, M.F.; Khan, I.; Chattha, M.U.; Ali, E.F.; Alhammad, B.A.; Jalal, R.S.; Refay, Y.; Hassan, M.U. Glycine-betaine induced salinity tolerance in maize by regulating the physiological attributes, antioxidant defense system and ionic homeostasis. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12248. [Google Scholar] [CrossRef]
- Mohanavelu, A.; Naganna, S.R.; Al-Ansari, N. Irrigation Induced Salinity and Sodicity Hazards on Soil and Groundwater: An Overview of Its Causes, Impacts and Mitigation Strategies. Agriculture 2021, 11, 983. [Google Scholar] [CrossRef]
- Sultan, I.; Khan, I.; Chattha, M.U.; Hassan, M.U.; Barbanti, L.; Calone, R.; Ali, M.; Majid, S.; Ghani, M.A.; Batool, M.; et al. Improved salinity tolerance in early growth stage of maize through salicylic acid foliar application. Ital. J. Agron. 2021, 16, 1810. [Google Scholar] [CrossRef]
- Monsur, M.B.; Datta, J.; Rohman, M.D.M.; Hasanuzzaman, M.; Hossain, A.; Islam, M.S. Salt-Induced Toxicity and Antioxidant Response in Oryza sativa: An Updated Review. In Managing Plant Production Under Changing Environmen; Hasanuzzaman, M., Ahammed, G.J., Nahar, K., Eds.; Springer: Singapore, 2022. [Google Scholar] [CrossRef]
- Kamran, M.; Parveen, A.; Ahmar, S.; Malik, Z.; Hussain, S.; Chattha, M.S.; Saleem, M.H.; Adil, M.; Heidari, P.; Chen, J.-T. An Overview of Hazardous Impacts of Soil Salinity in Crops, Tolerance Mechanisms, and Amelioration through Selenium Supplementation. Int. J. Mol. Sci. 2019, 21, 148. [Google Scholar] [CrossRef] [PubMed]
- Seleiman, M.F.; Aslam, M.T.; Alhammad, B.A.; Hassan, M.U.; Maqbool, R.; Chattha, M.U.; Khan, I.; Gitari, H.I.; Uslu, O.S.; Rana, R.; et al. Salinity stress in wheat: Effects, mechanisms and management strategies. Phyton 2022, 91, 667–694. [Google Scholar]
- Munir, N.; Hanif, M.; Dias, D.A.; Abideen, Z. The role of halophytic nanoparticles towards the remediation of degraded and saline agricultural lands. Environ. Sci. Pollut. Res. 2021, 28, 60383–60405. [Google Scholar] [CrossRef] [PubMed]
- Song, U.; Kim, B.W.; Rim, H.; Bang, J.H. Phytoremediation of nanoparticle-contaminated soil using the halophyte plant species Suaeda glauca. Environ. Technol. Innov. 2022, 28, 102626. [Google Scholar] [CrossRef]
- Hussien, E.A.A.; Ahmed, B.M.; Elbaalawy, A.M. Efficiency of Azolla and Biochar Application on Rice (Oryza sativa L.) Productivity in Salt-Affected Soil. Egypt. J. Soil Sci. 2020, 60, 277–288. [Google Scholar] [CrossRef]
- El-Mageed, T.A.A.; Gyushi, M.A.H.; Hemida, K.A.; El-Saadony, M.T.; El-Mageed, S.A.A.; Abdalla, H.; AbuQamar, S.F.; El-Tarabily, K.A.; Abdelkhalik, A. Coapplication of Effective Microorganisms and Nanomagnesium Boosts the Agronomic, Physio-Biochemical, Osmolytes, and Antioxidants Defenses Against Salt Stress in Ipomoea batatas. Front. Plant Sci. 2022, 13, 883274. [Google Scholar] [CrossRef]
- Gunarathne, V.; Senadeera, A.; Gunarathne, U.; Biswas, J.K.; Almaroai, Y.A.; Vithanage, M. Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil. Biochar 2020, 2, 107–120. [Google Scholar] [CrossRef]
- Yao, R.; Li, H.; Yang, J.; Zhu, W.; Yin, C.; Wang, X.; Xie, W.; Zhang, X. Combined application of biochar and N fertilizer shifted nitrification rate and amoA gene abundance of ammonia-oxidizing microorganisms in salt-affected anthropogenic-alluvial soil. Appl. Soil Ecol. 2022, 171, 104348. [Google Scholar] [CrossRef]
- Das, S.; Christopher, J.; Apan, A.; Choudhury, M.R.; Chapman, S.; Menzies, N.W.; Dang, Y.P. UAV-Thermal imaging and agglomerative hierarchical clustering techniques to evaluate and rank physiological performance of wheat genotypes on sodic soil. ISPRS J. Photogramm. Remote Sens. 2021, 173, 221–237. [Google Scholar] [CrossRef]
- Islam, A.T.; Koedsuk, T.; Ullah, H.; Tisarum, R.; Jenweerawat, S.; Cha-Um, S.; Datta, A. Salt tolerance of hybrid baby corn genotypes in relation to growth, yield, physiological, and biochemical characters. S. Afr. J. Bot. 2022, 147, 808–819. [Google Scholar] [CrossRef]
- Liu, X.; Yang, J.; Tao, J.; Yao, R. Integrated application of inorganic fertilizer with fulvic acid for improving soil nutrient supply and nutrient use efficiency of winter wheat in a salt-affected soil. Appl. Soil Ecol. 2022, 170, 104255. [Google Scholar] [CrossRef]
- Yao, R.; Li, H.; Zhu, W.; Yang, J.; Wang, X.; Yin, C.; Jing, Y.; Chen, Q.; Xie, W. Biochar and potassium humate shift the migration, transformation and redistribution of urea-N in salt-affected soil under drip fertigation: Soil column and incubation experiments. Irrig. Sci. 2022, 40, 267–282. [Google Scholar] [CrossRef]
- Devkota, K.P.; Devkota, M.; Rezaei, M.; Oosterbaan, R. Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agric. Syst. 2022, 198, 103390. [Google Scholar] [CrossRef]
- Garcia-Franco, N.; Wiesmeier, M.; Hurtarte, L.C.C.; Fella, F.; Martínez-Mena, M.; Almagro, M.; Martínez, E.G.; Kögel-Knabner, I. Pruning residues incorporation and reduced tillage improve soil organic matter stabilization and structure of salt-affected soils in a semi-arid Citrus tree orchard. Soil Tillage Res. 2021, 213, 105129. [Google Scholar] [CrossRef]
- EL Sabagh, A.; Islam, M.S.; Skalicky, M.; Raza, M.A.; Singh, K.; Hossain, M.A.; Hossain, A.; Mahboob, W.; Iqbal, M.A.; Ratnasekera, D.; et al. Salinity Stress in Wheat (Triticum aestivum L.) in the Changing Climate: Adaptation and Management Strategies. Front. Agron. 2021, 3, 661932. [Google Scholar] [CrossRef]
- Farid, I.; Hashem, A.N.; El-Aty, A.; Esraa, A.M.; Abbas, M.H.; Ali, M. Integrated approaches towards ameliorating a saline sodic soil and increasing the dry weight of barley plants grown thereon. Environ. Biodiv. Soil Secur. 2020, 4, 31–46. [Google Scholar] [CrossRef]
- Leal, L.D.S.G.; Pessoa, L.G.M.; de Oliveira, J.P.; Santos, N.A.; Silva, L.F.D.S.; Júnior, G.B.; Freire, M.B.G.D.S.; de Souza, E.S. Do applications of soil conditioner mixtures improve the salt extraction ability of Atriplex nummularia at early growth stage? Int. J. Phytoremediation 2020, 22, 482–489. [Google Scholar] [CrossRef]
- Naz, T.; Iqbal, M.M.; Tahir, M.; Hassan, M.M.; Rehmani, M.I.A.; Zafar, M.I.; Ghafoor, U.; Qazi, M.A.; EL Sabagh, A.; Sakran, M.I. Foliar Application of Potassium Mitigates Salinity Stress Conditions in Spinach (Spinacia oleracea L.) through Reducing NaCl Toxicity and Enhancing the Activity of Antioxidant Enzymes. Horticulturae 2021, 7, 566. [Google Scholar] [CrossRef]
- Khan, I.; Muhammad, A.; Chattha, M.U.; Skalicky, M.; Ayub, M.A.; Anwar, M.R.; Soufan, W.; Hassan, M.U.; Rahman, A.; Brestic, M.; et al. Mitigation of Salinity-Induced Oxidative Damage, Growth, and Yield Reduction in Fine Rice by Sugarcane Press Mud Application. Front. Plant Sci. 2022, 13, 840900. [Google Scholar] [CrossRef] [PubMed]
- Kheir, A.M.S.; Abouelsoud, H.M.; Hafez, E.M.; Ali, O.A.M. Integrated effect of nano-Zn, nano-Si, and drainage using crop straw–filled ditches on saline sodic soil properties and rice productivity. Arab. J. Geosci. 2019, 12, 471. [Google Scholar] [CrossRef]
- El-Sharkawy, M.; El-Aziz, M.A.; Khalifa, T. Effect of nano-zinc application combined with sulfur and compost on saline-sodic soil characteristics and faba bean productivity. Arab. J. Geosci. 2021, 14, 1178. [Google Scholar] [CrossRef]
- Ding, Z.; Zhao, F.; Zhu, Z.; Ali, E.F.; Shaheen, S.M.; Rinklebe, J.; Eissa, M.A. Green nanosilica enhanced the salt-tolerance defenses and yield of Williams banana: A field trial for using saline water in low fertile arid soil. Environ. Exp. Bot. 2022, 197, 104843. [Google Scholar] [CrossRef]
- Osman, H.; Gowayed, S.; Elbagory, M.; Omara, A.; El-Monem, A.; El-Razek, U.A.; Hafez, E. Interactive Impacts of Beneficial Microbes and Si-Zn Nanocomposite on Growth and Productivity of Soybean Subjected to Water Deficit under Salt-Affected Soil Conditions. Plants 2021, 10, 1396. [Google Scholar] [CrossRef]
- Badawy, S.A.; Zayed, B.A.; Bassiouni, S.M.A.; Mahdi, A.H.A.; Majrashi, A.; Ali, E.F.; Seleiman, M.F. Influence of Nano Silicon and Nano Selenium on Root Characters, Growth, Ion Selectivity, Yield, and Yield Components of Rice (Oryza sativa L.) under Salinity Conditions. Plants 2021, 10, 1657. [Google Scholar] [CrossRef]
- Awwad, E.A.; Mohamed, I.R.; El-Hameedb, A.A.; Zaghloul, E.A. The Co-Addition of Soil Organic Amendments and Natural Bio-Stimulants Improves the Production and Defenses of the Wheat Plant Grown under the Dual stress of Salinity and Alkalinity. Egypt. J. Soil Sci. 2022, 62, 137–153. [Google Scholar] [CrossRef]
- Hafez, E.; Osman, H.; El-Razek, U.; Elbagory, M.; Omara, A.; Eid, M.; Gowayed, S. Foliar-Applied Potassium Silicate Coupled with Plant Growth-Promoting Rhizobacteria Improves Growth, Physiology, Nutrient Uptake and Productivity of Faba Bean (Vicia faba L.) Irrigated with Saline Water in Salt-Affected Soil. Plants 2021, 10, 894. [Google Scholar] [CrossRef]
- Omara, A.E.-D.; Hafez, E.M.; Osman, H.S.; Rashwan, E.; El-Said, M.A.A.; Alharbi, K.; El-Moneim, D.A.; Gowayed, S.M. Collaborative Impact of Compost and Beneficial Rhizobacteria on Soil Properties, Physiological Attributes, and Productivity of Wheat Subjected to Deficit Irrigation in Salt Affected Soil. Plants 2022, 11, 877. [Google Scholar] [CrossRef]
- Khalifa, T.; Elbagory, M.; Omara, A.E.-D. Salt Stress Amelioration in Maize Plants through Phosphogypsum Application and Bacterial Inoculation. Plants 2021, 10, 2024. [Google Scholar] [CrossRef]
- Selem, E.; Hassan, A.A.S.A.; Awad, M.F.; Mansour, E.; Desoky, E.-S.M. Impact of Exogenously Sprayed Antioxidants on Physio-Biochemical, Agronomic, and Quality Parameters of Potato in Salt-Affected Soil. Plants 2022, 11, 210. [Google Scholar] [CrossRef] [PubMed]
- Khalifa, T.H. Effectiveness of gypsum application and arbuscular mycorrhizal fungi inoculation on ameliorating saline-sodic soil characteristics and their productivity. Environ. Biodivers. Soil Secur. 2022, 6, 165–180. [Google Scholar] [CrossRef]
- El-Nahrawy, S.M. Potassium Silicate and Plant Growth-promoting Rhizobacteria Synergistically Improve Growth Dynamics and Productivity of Wheat in Salt-affected Soils. Environ. Biodivers. Soil Secur. 2022, 6, 9–25. [Google Scholar] [CrossRef]
- Abdelrasheed, K.G.; Mazrou, Y.; Omara, A.E.-D.; Osman, H.S.; Nehela, Y.; Hafez, E.M.; Rady, A.M.S.; El-Moneim, D.A.; Alowaiesh, B.F.; Gowayed, S.M. Soil Amendment Using Biochar and Application of K-Humate Enhance the Growth, Productivity, and Nutritional Value of Onion (Allium cepa L.) under Deficit Irrigation Conditions. Plants 2021, 10, 2598. [Google Scholar] [CrossRef] [PubMed]
- Singh, P.; Kim, Y.-J.; Zhang, D.; Yang, D.-C. Biological Synthesis of Nanoparticles from Plants and Microorganisms. Trends Biotechnol. 2016, 34, 588–599. [Google Scholar] [CrossRef] [PubMed]
- Das, R.K.; Pachapur, V.L.; Lonappan, L.; Naghdi, M.; Pulicharla, R.; Maiti, S.; Cledon, M.; Dalila, L.M.A.; Sarma, S.J.; Brar, S.K. Biological synthesis of metallic nanoparticles: Plants, animals and microbial aspects. Nanotechnol. Environ. Eng. 2017, 2, 18. [Google Scholar] [CrossRef]
- Ahmad, F.; Ashraf, N.; Ashraf, T.; Zhou, R.-B.; Yin, D.-C. Biological synthesis of metallic nanoparticles (MNPs) by plants and microbes: Their cellular uptake, biocompatibility, and biomedical applications. Appl. Microbiol. Biotechnol. 2019, 103, 2913–2935. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, X.-L.; Gu, Y.; Huang, H.; Zhang, G.-W. Green Synthesis of Metallic Nanoparticles and Their Potential Applications to Treat Cancer. Front. Chem. 2020, 8, 799. [Google Scholar] [CrossRef]
- Bahrulolum, H.; Nooraei, S.; Javanshir, N.; Tarrahimofrad, H.; Mirbagheri, V.S.; Easton, A.J.; Ahmadian, G. Green synthesis of metal nanoparticles using microorganisms and their application in the agrifood sector. J. Nanobiotechnol. 2021, 19, 86. [Google Scholar] [CrossRef]
- Das, B.S.; Das, A.; Mishra, A.; Arakha, M. Microbial cells as biological factory for nanoparticle synthesis. Front. Mater. Sci. 2021, 15, 177–191. [Google Scholar] [CrossRef]
- Adeyemi, J.O.; Oriola, A.O.; Onwudiwe, D.C.; Oyedeji, A.O. Plant Extracts Mediated Metal-Based Nanoparticles: Synthesis and Biological Applications. Biomolecules 2022, 12, 627. [Google Scholar] [CrossRef] [PubMed]
- Sarraf, M.; Vishwakarma, K.; Kumar, V.; Arif, N.; Das, S.; Johnson, R.; Janeeshma, E.; Puthur, J.T.; Aliniaeifard, S.; Chauhan, D.K.; et al. Metal/Metalloid-Based Nanomaterials for Plant Abiotic Stress Tolerance: An Overview of the Mechanisms. Plants 2022, 11, 316. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.T.; Adil, S.F.; Shaik, M.R.; Alkhathlan, H.Z.; Khan, M.; Khan, M. Engineered Nanomaterials in Soil: Their Impact on Soil Microbiome and Plant Health. Plants 2022, 11, 109. [Google Scholar] [CrossRef] [PubMed]
- Mustapha, T.; Misni, N.; Ithnin, N.R.; Daskum, A.M.; Unyah, N.Z. A Review on Plants and Microorganisms Mediated Synthesis of Silver Nanoparticles, Role of Plants Metabolites and Applications. Int. J. Environ. Res. Public Health 2022, 19, 674. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, R.T.; Salvadori, M.R.; Rafatullah, M.; Siddiqui, M.R.; Khan, M.A.; Alshareef, S.A. Exploration of Microbial Factories for Synthesis of Nanoparticles—A Sustainable Approach for Bioremediation of Environmental Contaminants. Front. Microbiol. 2021, 12, 658294. [Google Scholar] [CrossRef] [PubMed]
- Del Prado-Audelo, M.L.; Kerdan, I.G.; Escutia-Guadarrama, L.; Reyna-González, J.M.; Magaña, J.J.; Leyva-Gómez, G. Nanoremediation: Nanomaterials and Nanotechnologies for Environmental Cleanup. Front. Environ. Sci. 2021, 9, 793765. [Google Scholar] [CrossRef]
- Rodríguez-Seijo, A.; Soares, C.; Ribeiro, S.; Amil, B.F.; Patinha, C.; Cachada, A.; Fidalgo, F.; Pereira, R. Nano-Fe2O3 as a tool to restore plant growth in contaminated soils—Assessment of potentially toxic elements (bio)availability and redox homeostasis in Hordeum vulgare L. J. Hazard. Mater. 2022, 425, 127999. [Google Scholar] [CrossRef]
- Arora, S.; Murmu, G.; Mukherjee, K.; Saha, S.; Maity, D. A comprehensive overview of nanotechnology in sustainable agriculture. J. Biotechnol. 2022, 355, 21–41. [Google Scholar] [CrossRef]
- Neme, K.; Nafady, A.; Uddin, S.; Tola, Y.B. Application of nanotechnology in agriculture, postharvest loss reduction and food processing: Food security implication and challenges. Heliyon 2021, 7, e08539. [Google Scholar] [CrossRef]
- Rajput, V.; Minkina, T.; Sushkova, S.; Behal, A.; Maksimov, A.; Blicharska, E.; Ghazaryan, K.; Movsesyan, H.; Barsova, N. ZnO and CuO nanoparticles: A threat to soil organisms, plants, and human health. Environ. Geochem. Health 2020, 42, 147–158. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Alam Cheema, S.A.; Rehman, H.U.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total. Environ. 2020, 721, 137778. [Google Scholar] [CrossRef] [PubMed]
- Mishra, D.; Pandey, V.; Khare, P. Engineered Nanoparticles in Agro-ecosystems: Implications on the Soil Health. In Plant-Microbes-Engineered Nano-Particles (PM-ENPs) Nexus in Agro-Ecosystems: Understanding the Interaction of Plant, Microbes and Engineered Nano-Particles (ENPS); Singh, P., Singh, R., Verma, P., Bhadouria, R., Kumar, A., Kaushik, M., Eds.; Advances in Science, Technology & Innovation IEREK Interdisciplinary Book Series for Sustainable Development; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 103–118. [Google Scholar] [CrossRef]
- Bhardwaj, A.K.; Arya, G.; Kumar, R.; Hamed, L.; Pirasteh-Anosheh, H.; Jasrotia, P.; Kashyap, P.L.; Singh, G.P. Switching to nanonutrients for sustaining agroecosystems and environment: The challenges and benefits in moving up from ionic to particle feeding. J. Nanobiotechnol. 2022, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Ogunyemi, S.O.; Zhang, M.; Abdallah, Y.; Ahmed, T.; Qiu, W.; Ali, A.; Yan, C.; Yang, Y.; Chen, J.; Li, B. The Bio-Synthesis of Three Metal Oxide Nanoparticles (ZnO, MnO2, and MgO) and Their Antibacterial Activity Against the Bacterial Leaf Blight Pathogen. Front. Microbiol. 2020, 11, 588326. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, A.; Sarkar, D.; Sasmal, S. A Review of Green Synthesis of Metal Nanoparticles Using Algae. Front. Microbiol. 2021, 12, 693899. [Google Scholar] [CrossRef]
- Mittal, D.; Kaur, G.; Singh, P.; Yadav, K.; Ali, S.A. Nanoparticle-Based Sustainable Agriculture and Food Science: Recent Advances and Future Outlook. Front. Nanotechnol. 2020, 2, 579954. [Google Scholar] [CrossRef]
- Schreefel, L.; Schulte, R.; de Boer, I.; Schrijver, A.P.; van Zanten, H. Regenerative agriculture—the soil is the base. Glob. Food Secur. 2020, 26, 100404. [Google Scholar] [CrossRef]
- Giller, K.E.; Hijbeek, R.; Andersson, J.A.; Sumberg, J. Regenerative Agriculture: An agronomic perspective. Outlook Agric. 2021, 50, 13–25. [Google Scholar] [CrossRef]
- Ganie, A.S.; Bano, S.; Khan, N.; Sultana, S.; Rehman, Z.; Rahman, M.M.; Sabir, S.; Coulon, F.; Khan, M.Z. Nanoremediation technologies for sustainable remediation of contaminated environments: Recent advances and challenges. Chemosphere 2021, 275, 130065. [Google Scholar] [CrossRef]
- Kumar, L.; Ragunathan, V.; Chugh, M.; Bharadvaja, N. Nanomaterials for remediation of contaminants: A review. Environ. Chem. Lett. 2021, 19, 3139–3163. [Google Scholar] [CrossRef]
- Vélez, Y.S.P.; Carrillo-González, R.; González-Chávez, M.D.C.A. Interaction of metal nanoparticles–plants–microorganisms in agriculture and soil remediation. J. Nanopart. Res. 2021, 23, 206. [Google Scholar] [CrossRef]
- Ahmed, B.; Rizvi, A.; Ali, K.; Lee, J.; Zaidi, A.; Khan, M.S.; Musarrat, J. Nanoparticles in the soil–plant system: A review. Environ. Chem. Lett. 2021, 19, 1545–1609. [Google Scholar] [CrossRef]
- Dibyanshu, K.; Chhaya, T.; Raychoudhury, T. A review on the fate and transport behavior of engineered nanoparticles: Possibility of becoming an emerging contaminant in the groundwater. Int. J. Environ. Sci. Technol. 2022, 1–24. [Google Scholar] [CrossRef]
- Usman, M.; Anastopoulos, I.; Hamid, Y.; Wakeel, A. Recent trends in the use of fly ash for the adsorption of pollutants in contaminated wastewater and soils: Effects on soil quality and plant growth. Environ. Sci. Pollut. Res. 2022, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Eikuma, K.; Decho, A.W.; Lau, B.L.T. When nanoparticles meet biofilms interactions guiding the environmental fate and accumulation of nanoparticles. Front. Microbiol. 2015, 6, 591. [Google Scholar] [CrossRef]
- Cecchin, I.; Reddy, K.R.; Thomé, A.; Tessaro, E.F.; Schnaid, F. Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. Int. Biodeterior. Biodegrad. 2017, 119, 419–428. [Google Scholar] [CrossRef]
- Rajput, V.D.; Minkina, T.; Upadhyay, S.K.; Kumari, A.; Ranjan, A.; Mandzhieva, S.; Sushkova, S.; Singh, R.K.; Verma, K.K. Nanotechnology in the Restoration of Polluted Soil. Nanomaterials 2022, 12, 769. [Google Scholar] [CrossRef]
- Daly, A.B.; Jilling, A.; Bowles, T.M.; Buchkowski, R.W.; Frey, S.D.; Kallenbach, C.M.; Keiluweit, M.; Mooshammer, M.; Schimel, J.P.; Grandy, A.S. A holistic framework integrating plant-microbe-mineral regulation of soil bioavailable nitrogen. Biogeochemistry 2021, 154, 211–229. [Google Scholar] [CrossRef]
- Kucharski, J.; Boros, E.; Wyszkowska, J. Biochemical activity of nickel—Contaminated soil. Pol. J. Environ. Stud. 2009, 18, 1039–1044. [Google Scholar]
- Symanowicz, B.; Skorupka, W.; Becher, M.; Jaremko, D.; Krasuski, S. The Effect of Alfalfa Mineral Fertilization and Times of Soil Sampling on Enzymatic Activity. Agronomy 2021, 11, 1335. [Google Scholar] [CrossRef]
- Kumar, R. Nanotechnology: Advancement for Agricultural Sustainability. In Plant-Microbes-Engineered Nano-Particles (PM-ENPs) Nexus in Agro-Ecosystems: Understanding the Interaction of Plant, Microbes and Engineered Nano-Particles (ENPS); Singh, P., Singh, R., Verma, P., Bhadouria, R., Kumar, A., Kaushik, M., Eds.; Advances in Science, Technology & Innovation IEREK Interdisciplinary Book Series for Sustainable Development; Springer Nature Switzerland AG: Cham, Switzerland, 2021; pp. 19–27. [Google Scholar] [CrossRef]
- Jacoby, R.; Peukert, M.; Succurro, A.; Koprivova, A.; Kopriva, S. The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions. Front. Plant Sci. 2017, 8, 1617. [Google Scholar] [CrossRef]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef] [PubMed]
- Moreira-Grez, B.; Muñoz-Rojas, M.; Kariman, K.; Storer, P.; O’Donnell, A.G.; Kumaresan, D.; Whiteley, A.S. Reconditioning Degraded Mine Site Soils With Exogenous Soil Microbes: Plant Fitness and Soil Microbiome Outcomes. Front. Microbiol. 2019, 10, 1617. [Google Scholar] [CrossRef] [PubMed]
- Seitz, T.J.; Schütte, U.M.E.; Drown, D.M. Soil Disturbance Affects Plant Productivity via Soil Microbial Community Shifts. Front. Microbiol. 2021, 12, 619711. [Google Scholar] [CrossRef] [PubMed]
- Nadarajah, K.; Rahman, N.S.N.A. Plant–Microbe Interaction: Aboveground to Belowground, from the Good to the Bad. Int. J. Mol. Sci. 2021, 22, 10388. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Kang, H.; Cui, Y.; Lu, S.; Yang, H.; Zhu, J.; Fu, Z.; Yan, C.; Wang, D. Consistent Plant and Microbe Nutrient Limitation Patterns During Natural Vegetation Restoration. Front. Plant Sci. 2022, 13, 885984. [Google Scholar] [CrossRef]
- Gelaw, T.A.; Sanan-Mishra, N. Nanomaterials coupled with microRNAs for alleviating plant stress: A new opening towards sustainable agriculture. Physiol. Mol. Biol. Plants 2022, 28, 791–818. [Google Scholar] [CrossRef]
- Panpatte, D.G.; Jhala, Y.K. Soil Fertility Management for Sustainable Development; Springer Nature Singapore Pte Ltd.: Singapore, 2019. [Google Scholar] [CrossRef]
- Anza, M.; Salazar, O.; Epelde, L.; Alkorta, I.; Garbisu, C. The Application of Nanoscale Zero-Valent Iron Promotes Soil Remediation While Negatively Affecting Soil Microbial Biomass and Activity. Front. Environ. Sci. 2019, 7, 19. [Google Scholar] [CrossRef]
- Moura, C.C.; Salazar-Bryam, A.M.; Piazza, R.D.; dos Santos, C.C.; Jafelicci, M.J.; Marques, R.F.C.; Contiero, J. Rhamnolipids as Green Stabilizers of nZVI and Application in the Removal of Nitrate from Simulated Groundwater. Front. Bioeng. Biotechnol. 2022, 10, 794460. [Google Scholar] [CrossRef]
- Ma, J.; Alshaya, H.; Okla, M.K.; Alwasel, Y.A.; Chen, F.; Adrees, M.; Hussain, A.; Hameed, S.; Shahid, M.J. Application of Cerium Dioxide Nanoparticles and Chromium-Resistant Bacteria Reduced Chromium Toxicity in Sunflower Plants. Front. Plant Sci. 2022, 13, 876119. [Google Scholar] [CrossRef]
- Li, D.; Zhou, C.; Wu, Y.; An, Q.; Zhang, J.; Fang, Y.; Li, J.-Q.; Pan, C. Nanoselenium integrates soil-pepper plant homeostasis by recruiting rhizosphere-beneficial microbiomes and allocating signaling molecule levels under Cd stress. J. Hazard. Mater. 2022, 432, 128763. [Google Scholar] [CrossRef]
- Kahraman, B.F.; Altin, A.; Ozdogan, N. Remediation of Pb-diesel fuel co-contaminated soil using nano/bio process: Subsequent use of nanoscale zero-valent iron and bioremediation approaches. Environ. Sci. Pollut. Res. 2022, 29, 41110–41124. [Google Scholar] [CrossRef] [PubMed]
- Bakshi, M.; Kumar, A. Copper-based nanoparticles in the soil-plant environment: Assessing their applications, interactions, fate and toxicity. Chemosphere 2021, 281, 130940. [Google Scholar] [CrossRef] [PubMed]
- Shah, G.M.; Ali, H.; Ahmad, I.; Kamran, M.; Hammad, M.; Bakhat, H.F.; Waqar, A.; Guo, J.; Dong, R.; Rashid, M.I. Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system. Environ. Pollut. 2022, 293, 118559. [Google Scholar] [CrossRef] [PubMed]
- Sharma, S.; Shree, B.; Aditika; Sharma, A.; Irfan, M.; Kumar, P. Nanoparticle-based toxicity in perishable vegetable crops: Molecular insights, impact on human health and mitigation strategies for sustainable cultivation. Environ. Res. 2022, 212, 113168. [Google Scholar] [CrossRef]
- Júnior, A.H.D.S.; Mulinari, J.; de Oliveira, P.V.; de Oliveira, C.R.S.; Júnior, F.W.R. Impacts of metallic nanoparticles application on the agricultural soils microbiota. J. Hazard. Mater. Adv. 2022, 7, 100103. [Google Scholar] [CrossRef]
- Liu, J.; Fu, C.; Li, G.; Khan, M.; Wu, H. ROS Homeostasis and Plant Salt Tolerance: Plant Nanobiotechnology Updates. Sustainability 2021, 13, 3552. [Google Scholar] [CrossRef]
- Li, Z.; Zhu, L.; Zhao, F.; Li, J.; Zhang, X.; Kong, X.; Wu, H.; Zhang, Z. Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. Front. Plant Sci. 2022, 13, 843994. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.; Fu, C.; Khan, M.N.; Hu, J.; Zhao, F.; Wu, H.; Li, Z. CeO2 nanoparticles modulate Cu–Zn superoxide dismutase and lipoxygenase-IV isozyme activities to alleviate membrane oxidative damage to improve rapeseed salt tolerance. Environ. Sci. Nano 2022, 9, 1116–1132. [Google Scholar] [CrossRef]
Item (s) of Comparison | Microorganisms | Plants |
---|---|---|
Method of synthesis | The biological/green method or biosynthesis | The biological or green methods |
Which plant tissue or microbe can use? | Bacteria, fungi, yeast, viruses, cyanobacteria, and actinomycetes | Plant tissues (leaf, flower, seed, stem, root, peel, fruit) and plant extracts |
location of production | Extracellular and intracellular | Extracellular and intracellular |
Main mechanism | Extracellular biosynthesis by trapping metal ions on the cell wall and reducing them through secreted enzymes as reducing agents (e.g., acetyl xylan esterase) | Extracellular production of nano-particles using plant extracts (e.g., leaf, fruit, etc.) as capping agents in the production of nanoparticles, fast degradation of metal ions |
Intracellular biosynthesis by reducing metal ions into cell cytoplasm through metabolic reactions with enzymes (e.g., nitrate reductase), phytochemicals | Proteins, amino acids, vitamins, polysaccharides, polyphenols, terpenoids, organic acid | |
Factors affecting biosynthesis of nanoparticles | Medium pH, reaction time, temperature, and reactant content | Plant part (e.g., leaves, flowers, seeds, barks, fruits, and roots), plant species, extract content, temperature, metal in the salt, pH, and contact time |
Main applications | Anti-cancer materials, cosmetics and medical appliances, antimicrobial, antipathogen, plant-growth stimulation, antifungal activity | Nano-sensors detect biomolecules, environmental factors, gene delivery cell labelling, magnetically responsive drug delivery, photothermal therapy |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Ramady, H.; Brevik, E.C.; Fawzy, Z.F.; Elsakhawy, T.; Omara, A.E.-D.; Amer, M.; Faizy, S.E.-D.; Abowaly, M.; El-Henawy, A.; Kiss, A.; et al. Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article. Plants 2022, 11, 2392. https://doi.org/10.3390/plants11182392
El-Ramady H, Brevik EC, Fawzy ZF, Elsakhawy T, Omara AE-D, Amer M, Faizy SE-D, Abowaly M, El-Henawy A, Kiss A, et al. Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article. Plants. 2022; 11(18):2392. https://doi.org/10.3390/plants11182392
Chicago/Turabian StyleEl-Ramady, Hassan, Eric C. Brevik, Zakaria F. Fawzy, Tamer Elsakhawy, Alaa El-Dein Omara, Megahed Amer, Salah E.-D. Faizy, Mohamed Abowaly, Ahmed El-Henawy, Attila Kiss, and et al. 2022. "Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article" Plants 11, no. 18: 2392. https://doi.org/10.3390/plants11182392
APA StyleEl-Ramady, H., Brevik, E. C., Fawzy, Z. F., Elsakhawy, T., Omara, A. E. -D., Amer, M., Faizy, S. E. -D., Abowaly, M., El-Henawy, A., Kiss, A., Törős, G., Prokisch, J., & Ling, W. (2022). Nano-Restoration for Sustaining Soil Fertility: A Pictorial and Diagrammatic Review Article. Plants, 11(18), 2392. https://doi.org/10.3390/plants11182392