Prediction of Heterosis for Agronomic Traits in Half-Diallel Cross of Rice (Oryza sativa L.) under Drought Stress Using Microsatellite Markers
Abstract
:1. Introduction
2. Results
2.1. Informativeness of Microsatellite Markers
2.2. Gene Diversity
2.3. Parental Performance
2.4. Heterosis over Mid-Parent (MP)
2.5. Heterosis over Better Parent (BP)
2.6. Hybrid Prediction Based on Microsatellite Genetic Distance
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Field Experiments
4.2.1. Drought Test
4.2.2. Phenotypic Data Collection
4.3. Genomic DNA Extraction
4.4. Microsatellite Markers
4.5. Microsatellite Marker Analysis
4.6. Statistical Analysis
4.6.1. Determination of Heterosis
4.6.2. Cluster Analysis
4.6.3. Correlation Coefficient
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Food and Agriculture Organization of the United Nations. Statistical Database. 2019. Available online: http://www.fao.org/faostat/en/#data/QC/visualize (accessed on 12 May 2022).
- Shahbandeh, M. Total Rice Consumption Worldwide from 2008/2009 to 2018/2019. 2019. Available online: https://www.statista.com/statistics/255977/total-global-rice-consumption (accessed on 12 May 2022).
- Khush, G.S. Strategies for increasing the yield potential of rice. In Redesigning Rice Photosynthesis to Increase Yield, Proceedings of the Workshop on the Quest to Reduce Hunger: Redesigning Rice Photosynthesis, Los Banos, Phillippines, 30 November–3 December 1999; Elsevier: Amsterdam, The Netherlands, 2000. [Google Scholar]
- Mourad, A.M.I.; Alomari, D.Z.; Alqudah, A.M.; Sallam, A.; Salem, K.F.M. Recent advances in wheat (Triticum spp.) breeding. In Advances in Plant Breeding Strategies: Cereals; Al-Khayri, J., Jain, S., Johnson, D., Eds.; Springer: Cham, Switzerland, 2019; pp. 559–593. [Google Scholar]
- Saleh, M.M.; Salem, K.F.; Elabd, A.B. Definition of selection criterion using correlation and path coefficient analysis in rice (Oryza sativa L.) genotypes. Bull. Natl. Res. Cent. 2020, 44, 1–6. [Google Scholar] [CrossRef]
- Aidy, I.R.; Maximos, M.A. Rice varietal improvement in Egypt during the last two decades: Achievements and future strategies. Egypt. J. Agric. Res. 2006, 83, 23–30. [Google Scholar]
- Salem, K.F.M. The Inheritance and Molecular Mapping of Genes for Post-Anthesis Drought Tolerance (PADT) in Wheat. Ph.D. Thesis, Martin Luther University, Halle-Wittenberg, Germany, 2004. [Google Scholar]
- El-Mouhamady, A.A.; Abdel-Sattar, A.A.; El-Seidy, E.H. Assessment the degree of drought tolerance in rice through the environmental tests and molecular markers technique. J. Agric. Biol. Sci. 2013, 9, 40–57. [Google Scholar]
- Abd El-Lattef, A.S.; Abo-Khalifa, A.A.B.; El-Gohary, A.A.A. Inheritance of some quantitative characters under drought conditions in rice (Oryza sativa L.). Inter. J. Biol. Pharm. Allied Sci. 2012, 1, 620–635. [Google Scholar]
- Emara, H.A.; Salem, K.F.M.; Abdel-Halim, A.A.; Abdel-Kowy, R.N.F. An in vivo and in vitro analysis of a half diallel cross in rice (Oryza sativa L.). Egypt. J. Plant Breed. 2013, 17, 591–610. [Google Scholar]
- Salem, K.F.M. Breeding Studies on Rice. Master’s Thesis, Faculty of Agriculture, Minufiya Uni, Shibin El-Kom, Egypt, 1997. [Google Scholar]
- Smith, J.S.C.; Smith, O.S. Fingerprinting crop varieties. Rev. Agric. Acad. Press USA 1992, 47, 85–140. [Google Scholar]
- Salem, K.F.M.; Sallam, A. Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes using SSR markers. C. R. Biol. 2016, 339, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Ghazy, M.I.; Salem, K.F.M.; Sallam, A. Utilization of genetic diversity and marker-trait to improve drought tolerance in rice (Oryza sativa L.). Mol. Biol. Rep. 2020, 48, 157–170. [Google Scholar] [CrossRef]
- Havrlentová, M.; Ondreicková, K.; Hozlár, P.; Gregusová, V.; Mihálik, D.; Kraic, J. Formation of potential heterotic groups of oat using variation at microsatellite loci. Plants 2021, 10, 2462. [Google Scholar] [CrossRef]
- Srdic, J.; Miladenovic-Drinic, S.; Pajic, Z.; Filipovic, M. Characterization of maize inbred lines based on molecular markers, heterosis and pedigree data. Genetika 2007, 39, 355–363. [Google Scholar] [CrossRef]
- Sruthi, K.; Divya, B.; Senguttuvel, P.; Revathi, P.; Kemparaju, K.B.; Koteswararao, P.; Sundaram, R.M.; Singh, V.J.; Ranjith Kumar, E.; Bhowmick, P.K.; et al. Evaluation of genetic diversity of parental lines for development of heterotic groups in hybrid rice (Oryza sativa L.). J. Plant Biochem. Biotechnol. 2020, 29, 236–252. [Google Scholar] [CrossRef]
- Sreewongchai, T.; Sripichitt, P.; Matthayatthaworn, W. Parental genetic distance and combining ability analyses in relation to heterosis in various rice origins. J. Crop Sci. Biotechnol. 2021, 24, 327–336. [Google Scholar] [CrossRef]
- Brondani, C.; Caldeira, K.D.; Borba, T.C.O.; Rangel, P.N.; de Morais, O.P.; Castro, E.D.; Rangel, P.H.N.; Mendonça, J.A.; Brondani, R.V. Genetic variability analysis of elite upland rice genotypes with SSR markers. Crop Breed. Appl. Biotechnol. 2006, 6, 9–17. [Google Scholar] [CrossRef]
- Giarrocco, L.E.; Marassi, M.A.; Salerno, G.L. Assessment of the genetic diversity in Argentine rice cultivars with SSR markers. Crop Sci. 2007, 47, 853–860. [Google Scholar] [CrossRef]
- Cheng, Y.; Cho, Y.; Chung, J.W.; Ma, K.H.; Park, Y.J. Analysis of genetic diversity and population structure of rice cultivars from Africa, Asia, Europe, South America, and Oceania using SSR markers. Korean J. Crop Sci. 2009, 54, 441–451. [Google Scholar]
- Cui, H.; Moe, K.T.; Chung, J.W.; Cho, Y.I.; Lee, G.A.; Park, Y.G. Genetic diversity and population structure of rice accessions from South Asia using SSR markers. Korean J. Breed. Sci. 2010, 42, 11–22. [Google Scholar]
- Ghaley, B.B.; Christiansen, L.G.; Andersen, S.B. Genetic diversity in blast resistance of Bhutan rice landraces. Euphytica 2012, 184, 119–130. [Google Scholar] [CrossRef]
- Das, B.; Sengupta, S.; Parida, S.K.; Roy, B.; Ghosh, M.; Prasad, M.; Ghose, T.K. Genetic diversity and population structure of rice landraces from eastern and northeastern states of India. BMC Genet. 2013, 14, 71–78. [Google Scholar] [CrossRef] [Green Version]
- Meti, N.; Samal, K.C.; Bastia, D.N.; Rout, G.R. Genetic diversity analysis in aromatic rice genotypes using microsatellite based simple sequence repeats (SSR) marker. Afr. J. Biotech. 2013, 12, 4238–4250. [Google Scholar]
- Salem, K.F.M.; El-Zanaty, A.M. Genetic diversity of old and modern Egyptian rice (Oryza sativa L.) using microsatellite markers. Minufiya. J. Agric. Res. 2015, 40, 1507–1518. [Google Scholar]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar]
- Zhang, T.; Ni, X.L.; Jiang, K.F.; Yang, Q.H.; Yang, L.; Wan, X.Q.; Cao, Y.J.; Zheng, J.K. Correlation between heterosis and genetic distance based on molecular markers of functional genes in rice. Rice Sci. 2010, 17, 1–7. [Google Scholar] [CrossRef]
- Mundhe, B.S.; Jundhale, N.D.; Bendale, V.W. Genetic divergence in midlate genotypes of rice. J. Maharashtra Agric. Univ. 2006, 31, 21–23. [Google Scholar]
- Tanksley, S.D.; Ganal, M.W.; Prince, J.P.; de Vincente, M.C.; Bonierble, M.W.; Broun, P.; Fulton, T.M.; Giovannoni, J.J.; Grandillo, S.; Martin, G.B. High-density molecular linkage maps of the tomato and potato genomes. Genetics 1992, 132, 1141–1160. [Google Scholar] [CrossRef]
- Stuber, C.W.; Lincoln, S.E.; Wolff, D.W.; Helentjaris, T.; Lander, E.S. Identification of genetic factors contributing to heterosis in a hybrid from elite maize inbred lines using molecular markers. Genetics 1992, 132, 823–839. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Gao, Y.J.; Yang, S.H.; Ragab, R.A.; Maroof, M.A.; Li, Z.B. A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites. Theor. Appl. Genet. 1994, 89, 185–192. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.P.; Bhave, S.G.; Chowdari, K.V.; Apte, G.S.; Dhonukshe, B.L.; Lalitha, K.; Ranjekar, P.K.; Gupta, V.S. Use of DNA markers in prediction of hybrid performance and heterosis for a three-line hybrid system in rice. Biochem. Genet. 2001, 39, 179–199. [Google Scholar] [CrossRef]
- Cho, Y.; Park, C.W.; Kwon, S.W.; Chin, J.H.; Ji, H.S.; Park, K.J.; McCouch, S.R.; Koh, H.J. Key DNA markers for predicting heterosis in F1 hybrids of japonica rice. Breed. Sci. 2004, 54, 389–397. [Google Scholar] [CrossRef] [Green Version]
- Griffing, B. Concept of general and specific combining ability in relation to diallel hybriding systems. Aust. J. Biol. Sci. 1956, 9, 463–493. [Google Scholar] [CrossRef]
- Jodon, N.E. Experiments on artificial hybridization of rice. J. Amer. Soc. Agron. 1938, 30, 249–305. [Google Scholar] [CrossRef]
- IRRI. Minimum list of descriptors and descriptor-states for rice Oryza sativa L. In IRRI, Descriptor for Rice Oryza sativa L.; IRRI: Manila, Philippines, 1980. [Google Scholar]
- Mather, K.; Jinks, J.L. Biometrical Genetics, 3rd ed.; Chapman and Hall: London, UK, 1982. [Google Scholar]
- Wynne, J.C.; Emery, D.A.; Rice, P.W. Combining ability estimates in Arachis hypogaea L. II. field performance of F1 hybrids. Crop Sci. 1970, 10, 713–715. [Google Scholar] [CrossRef]
- Akagi, H.; Yokozeki, Y.; Inagaki, A.; Fujimura, T. Microsatellite DNA markers for rice chromosomes. Theor. Appl. Genet. 1996, 93, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Temnykh, S.; Park, W.D.; Ayres, N.; Cartinhour, S.; Hauck, N.; Lipovich, L.; Cho, Y.G.; Ishii, T.; McCouch, S.R. Mapping and genome organization of microsatellite sequences in rice (Oryza sativa L.). Theor. Appl. Genet. 2000, 100, 697–712. [Google Scholar] [CrossRef]
- Nei, M.; Tajima, F.; Tateno, Y. Accuracy of estimated phylogenetic trees from molecular data: II. Gene frequency data. J. Mol. Evol. 1983, 19, 153–170. [Google Scholar] [CrossRef] [PubMed]
- Sneath, P.H.A.; Sokal, R.R. Numerical taxonomy. In The Principles and Practice of Numerical Classification; Freeman: San Francisco, CA, USA, 1973. [Google Scholar]
- Singh, R.K.; Chaudhary, B.D. Biometrical Methods in Quantitative Genetic Analysis; Kalyani Publishers: New Delhi, India, 1979. [Google Scholar]
- IBM Corporation. IBM SPSS Statistics for Windows, Version 15.0 IBM Corp, Armonk, NY, USA, 2010. Available online: http://www-01.ibm.com/software/analytics/spss/products/statistics/ (accessed on 15 November 2009).
- Rohlf, F.J. NTSYS-pc: Numerical Taxonomy and Multivariate Analysis System, version 2.1; Exeter: New York, NY, USA, 2000. [Google Scholar]
No. | Microsatellite Markers | Allele Size | Number of Alleles | Genetic Diversity | |
---|---|---|---|---|---|
Min Allele | Max Allele | ||||
1 | RM 1 | 67 | 119 | 4 | 0.534 |
2 | RM 452 | 192 | 213 | 4 | 0.654 |
3 | RM 338 | 178 | 184 | 4 | 0.456 |
4 | RM 124 | 257 | 289 | 3 | 0.789 |
5 | RM 162 | 191 | 244 | 2 | 0.549 |
6 | RM118 | 149 | 165 | 3 | 0.687 |
7 | RM 433 | 216 | 248 | 3 | 0.827 |
8 | RM 316 | 194 | 216 | 4 | 0.597 |
9 | RM 271 | 80 | 120 | 4 | 0.751 |
10 | RM 144 | 216 | 295 | 4 | 0.652 |
11 | RM 19 | 192 | 250 | 4 | 0.745 |
Total | ------- | ------- | ------- | 39 | ------- |
Mean | ------- | ------- | ------- | 3.54 | 0.658 |
Hybrids | Plant Height | Number of Panicles per Plant | Panicle Length | Panicle Weight | ||||
---|---|---|---|---|---|---|---|---|
MP | BP | MP | BP | MP | BP | MP | BP | |
P1 × P2 | 5.68 ** | −1.76 ns | 6.67 ** | −1.75 ns | 5.06 ** | 2.19 ** | 6.03 ** | −3.13 ** |
P1 × P3 | −2.41 ns | −4.33 * | 18.92 ** | 15.79 ** | 6.91 ** | 5.78 ** | −5.72 ** | −8.39 ** |
P1 × P4 | 6.20 ** | 0.74 ns | 24.44 ** | 7.69 ** | 13.82 ** | 7.14 ** | 2.13 ** | 0.10 ns |
P1 × P5 | 7.92 ** | −2.01 ns | 15.97 ** | 11.29 ** | 21.63 ** | 12.64 ** | −1.68 ** | −2.22 ** |
P1 × P6 | 0.20 ns | −3.07 * | 5.26 ** | 5.26 ** | 6.70 ** | 6.10 ** | −13.24 ** | −16.48 ** |
P1 × P7 | 5.16 ** | −1.43 ns | −3.28 ** | −9.23 ** | 8.94 ** | 4.42 ** | 2.34 ** | −0.51 ** |
P1 × P8 | 17.58 ** | 15.94 ** | 20.93 ** | 8.33 ** | 12.81 ** | 1.86 ** | 6.85 ** | 6.53 ** |
P2 × P3 | 11.90 ** | 5.99 ** | −17.65 ** | −22.22 ** | 10.31 ** | 6.19 ** | 7.82 ** | 1.18 ** |
P2 × P4 | −1.08 ns | −3.17 * | 19.05 ** | −3.85 ** | 6.60 ** | 3.06 ** | 8.33 ** | −2.82 ** |
P2 × P5 | 6.69 ** | 4.01 ** | 23.64 ** | 9.68 ** | 17.44 ** | 11.66 ** | 12.03 ** | 2.86 ** |
P2 × P6 | −1.65 ns | −5.63 ** | 20.00 ** | 10.53 ** | 4.28 ** | 2.00 ** | 5.94 ** | 0.33 ** |
P2 × P7 | −1.24 ns | −2.11 ns | 29.20 ** | 12.31 ** | 8.16 ** | 6.54 ** | 8.56 ** | 1.82 ** |
P2 × P8 | −4.30 ** | −9.86 ** | 3.33 ** | −13.89 ** | 12.32 ** | 4.04 ** | 13.62 ** | 3.52 ** |
P3 × P4 | 1.14 ns | −2.21 ns | 13.64 ** | −3.85 ** | 2.37 ** | −4.59 ** | 4.33 ** | −0.58 ** |
P3 × P5 | 1.99 ns | −5.69 ** | 24.14 ** | 16.13 ** | 17.28 ** | 7.55 ** | 1.52 ** | −0.82 ** |
P3 × P6 | 2.14 ns | 0.77 ns | 18.92 ** | 15.79 ** | 3.97 ** | 2.29 ** | 1.95 ** | 0.96 ** |
P3 × P7 | 3.19 * | −1.43 ns | 0.84 ns | −7.69 ** | −4.10 ** | −9.01 ** | 3.91 ** | 3.85 ** |
P3 × P8 | 3.76 ** | 3.15 * | 0.00 ns | −12.50 ** | 14.41 ** | 2.33 ** | 11.41 ** | 7.94 ** |
P4 × P5 | −2.28 ns | −6.69 ** | 15.71 ** | 3.85 ** | 7.60 ** | 5.75 ** | 10.66 ** | 7.86 ** |
P4 × P6 | 6.57 ** | 4.41 ** | −0.74 ns | −14.10 ** | 10.51 ** | 4.59 ** | 6.02 ** | 0.10 ns |
P4 × P7 | 2.00 ns | 0.72 ns | 21.68 ** | 11.54 ** | 10.92 ** | 8.84 ** | 7.43 ** | 2.43 ** |
P4 × P8 | −0.96 ns | −4.78 ** | 8.00 ** | 3.85 ** | 9.58 ** | 4.81 ** | 6.07 ** | 4.27 ** |
P5 × P6 | 10.36 ** | 3.34 * | 15.97 ** | 11.29 ** | 4.76 ** | −2.46 ** | 11.36 ** | 7.77 ** |
P5 × P7 | 14.19 ** | 10.37 ** | −3.94 ** | −6.15 ** | 10.98 ** | 7.06 ** | 0.73 ** | −1.53 ** |
P5 × P8 | 5.45 ** | −3.01 * | 1.49ns | −5.56 ** | 6.30 ** | 3.42 ** | 8.57 ** | 7.64 ** |
P6 × P7 | −1.11 | −4.30 ** | 3.28 ** | −3.08 ** | −8.52 ** | −11.84 ** | 5.46 ** | 4.39 ** |
P6 × P8 | −6.25 ** | −8.05 ** | 6.98 ** | −4.17 ** | −5.73 ** | −14.44 ** | 1.36 ** | −2.71 ** |
P7 × P8 | 9.06 ** | 3.58 * | −3.65 ** | −8.33 ** | 0.33 ns | −5.75 ** | 3.58 ** | 0.40 ** |
L.S.D. at 0.05 | 2.45 | 2.83 | 1.67 | 1.93 | 0.68 | 0.78 | 0.11 | 0.12 |
L.S.D. at 0.01 | 3.25 | 3.76 | 2.21 | 2.55 | 0.89 | 1.04 | 0.14 | 0.16 |
Hybrids | Filled Grains per Panicle | Sterility Percentage | 100-Grain Weight | Grain Yield per Plant | ||||
---|---|---|---|---|---|---|---|---|
MP | BP | MP | BP | MP | BP | MP | BP | |
P1 × P2 | 6.23 ** | 4.07 * | 9.45 ** | 1.27 ** | −0.90 ** | −5.97 ** | −4.24 ** | −7.05 ** |
P1 × P3 | 2.01 ns | −4.07 * | 1.40 ** | −4.36 ** | −4.62 ** | −7.67 ** | 8.97 ** | −0.04 ns |
P1 × P4 | 13.25 ** | 8.85 ** | 1.18 ** | −9.92 ** | −2.65 ** | −5.97 ** | 22.57 ** | 5.78 ** |
P1 × P5 | 13.63 ** | 7.85 ** | 16.66 ** | 7.98 ** | −3.76 ** | −9.09 ** | 19.51 ** | 7.77 ** |
P1 × P6 | −2.98 ns | −10.17 ** | −3.01 ** | −14.31 ** | 3.83 ** | 3.68 ** | 7.04 ** | 2.50 ** |
P1 × P7 | 2.61 ns | 2.31 ns | −0.40 ns | −16.59 ** | 4.34 ** | 2.90 ** | 17.85 ** | 9.62 ** |
P1 × P8 | 9.32 ** | 6.32 ** | −4.43 ** | −22.01 ** | 6.95 ** | 3.74 ** | 12.87 ** | 1.37 * |
P2 × P3 | 9.00 ** | 4.55 * | 0.001 ns | −12.31 ** | 1.01 ** | −1.06 ** | −9.53 ** | −14.66 ** |
P2 × P4 | 11.81 ** | 5.36 ** | 1.29 ** | −2.88 ** | 4.04 ** | 2.13 ** | 7.25 ** | −9.72 ** |
P2 × P5 | 1.72 ns | −1.52 ns | 30.02 ** | 29.95 ** | 2.07 ** | 1.58 ** | 2.16 ** | −10.28 ** |
P2 × P6 | −3.05 ns | −8.48 ** | 14.65 ** | 9.02 ** | 0.15 ** | −5.10 ** | 0.45 ns | −6.50 ** |
P2 × P7 | 8.58 ** | 6.07 ** | 76.37 ** | 58.18 ** | 2.06 ** | −4.42 ** | 1.81 ** | −7.87 ** |
P2 × P8 | 2.88 ns | −1.92 ns | 55.89 ** | 35.87 ** | 4.42 ** | −3.74 ** | 1.21 * | −11.46 ** |
P3 × P4 | 13.61 ** | 2.95 ns | 58.26 ** | 33.86 ** | 8.59 ** | 8.35 ** | −8.35 ** | −26.40 ** |
P3 × P5 | 9.80 ** | 8.74 ** | 66.74 ** | 46.27 ** | 0.54 ** | −1.97 ** | −8.24 ** | −23.35 ** |
P3 × P6 | 5.70 ** | 3.96 * | −1.20 ** | −17.02 ** | 5.35 ** | 1.84 ** | −3.64 ** | −15.01 ** |
P3 × P7 | 10.32 ** | 3.47 ns | −2.34 ** | −21.95 ** | 6.15 ** | 1.38 ** | 29.32 ** | 11.09 ** |
P3 × P8 | 18.74 ** | 8.79 ** | −10.33 ** | −30.05 ** | 3.84 ** | −2.40 ** | 3.80 ** | −13.61 ** |
P4 × P5 | 25.22 ** | 14.48 ** | 45.04 ** | 39.00 ** | 9.67 ** | 7.16 ** | 15.02 ** | 9.47 ** |
P4 × P6 | 16.52 ** | 4.02 * | 36.01 ** | 34.83 ** | 0.15 ** | −3.40 ** | 14.42 ** | 2.59 ** |
P4 × P7 | 2.09 ns | −1.61 ns | 27.56 ** | 18.95 ** | 0.87 ** | −3.87 ** | 15.74 ** | 6.71 ** |
P4 × P8 | 11.53 ** | 10.19 ** | 16.96 ** | 5.84 ** | 4.77 ** | −1.74 ** | 13.52 ** | 8.51 ** |
P5 × P6 | 30.56 ** | 27.18 ** | 21.26 ** | 15.26 ** | 3.15 ** | −2.69 ** | 0.12 ns | −5.99 ** |
P5 × P7 | 26.41 ** | 19.65 ** | 45.18 ** | 30.15 ** | 6.67 ** | −0.55 ** | 10.56 ** | 6.92 ** |
P5 × P8 | 12.93 ** | 4.40 * | 10.35 ** | −3.86 ** | 6.62 ** | −2.14 ** | 6.56 ** | 6.07 ** |
P6 × P7 | 10.80 ** | 2.31 ns | 20.41 ** | 13.20 ** | 4.34 ** | 3.04 ** | 2.78 ** | −0.30 ns |
P6 × P8 | 2.28 ns | −7.69 ** | 5.79 ** | −3.52 ** | 5.70 ** | 2.67 ** | 2.86 ** | −3.82 ** |
P7 × P8 | −11.83 ** | −14.01 ** | 20.24 ** | 16.41 ** | 5.63 ** | 3.87 ** | 6.32 ** | 2.37 ** |
L.S.D. at 0.05 | 3.34 | 3.86 | 0.63 | 0.73 | 0.03 | 0.04 | 1.05 | 1.21 |
L.S.D. at 0.01 | 4.43 | 5.12 | 0.84 | 0.97 | 0.04 | 0.05 | 1.39 | 1.60 |
Trait | MPH | BPH | ||
---|---|---|---|---|
r | r | |||
Plant height | −0.016 | ns | −0.025 | ns |
Number of panicles per plant | 0.310 | ns | −0.066 | ns |
Panicle length | −0.030 | ns | 0.109 | ns |
Panicle weight | −0.088 | ns | 0.166 | ns |
Filled grains per panicle | 0.006 | ns | 0.126 | ns |
Sterility | 0.390 | * | 0.352 | * |
100-grain weight | 0.241 | ns | 0.315 | ns |
Grain yield per plant | −0.040 | ns | 0.345 | * |
Genotypes | Pedigree | Source of Seeds | Origin | Main Characteristics |
---|---|---|---|---|
Sakha 101 (P1) | Giza 176/Milyang 79 | ARC | Egypt | Japonica type, medium grain, moderately maturing, semi-dwarf, susceptible to blast, high yielding and released in 1997 |
Sakha 102 (P2) | Giza177\GZ4096-7-1 | ARC | Egypt | Japonica type, early maturing variety, short-grain length and susceptible to drought conditions, slightly tall stature, resistance to blast, high yielding and released in 1997 |
Sakha 104 (P3) | GZ 4096-8-1/ GZ4100-9-1) | ARC | Egypt | Short Japonica, Moderate tolerance to drought |
GZ7576-10-3-2-1 (P4) | IR 1615-31/BG94-2349 | ARC | Egypt | Indica-Japonica type, medium grain, early maturing, salt-tolerant, short stature, resistant to blast, moderately high yielding, the promising line under salinity soil conditions. |
IET1444 (P5) | TN1\CO 29 | ARC | India | Indica type, early maturing, semi-dwarf, resistance to blast, median grain length, tolerant to drought conditions and high yielding |
WAB880-SG33 (P6) | CG 20/Wab 181-18 | ARC | India | Long Indica type, drought-tolerant |
Giza 179 (P7) | GZ1368 S-5/GZ626269 | ARC | Egypt | Indica-Japonica type, medium grain, early maturing, salt-tolerant, short stature, resistant to blast, moderately high yielding, promising line under salinity soil condition. |
Sakha 103 (P8) | Giza 177/Suweon 349 | ARC | Egypt | Japonica type, early maturing, semi-dwarf, resistance to blast, short-grain length, and high yielding |
No. | Microsatellite Markers | Chromosomal Location | Position cM | Motif | Annealing Temperature Tm (°C) | Repeat Category | Expected Fragment Size (bp) |
---|---|---|---|---|---|---|---|
1 | RM 1 | 1 | 94.9 | (GA)14 | 55 | di | 84 |
2 | RM 19 | 3 | 94.9 | (GA)17 | 55 | di | 213 |
3 | RM 18 | 6 | 58.4 | (CT)8 | 60 | di | 224 |
4 | RM 124 | 2 | 216.4 | (GA)21 | 60 | di | 106 |
5 | RM 144 | 5 | 0 | (AG)20 | 60 | di | 116 |
6 | RM 162 | 10 | 150.1 | (GATG)5 | 55 | tetra | 328 |
7 | RM 271 | 9 | 26.7 | (CT)16 | 55 | di | 126 |
8 | RM 316 | 12 | 108.3 | (GA)11 | 55 | di | 108 |
9 | RM 388 | 4 | 0 | (AT)14(GT)21 | 55 | complex | 104 |
10 | RM 433 | 8 | 0 | (CT)13 | 55 | di | 109 |
11 | RM 452 | 5 | 26.7 | (AG)11 | 50 | di | 65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salem, K.F.M.; Alghuthaymi, M.A.; Elabd, A.B.; Elabsawy, E.A.; Mierah, H.H. Prediction of Heterosis for Agronomic Traits in Half-Diallel Cross of Rice (Oryza sativa L.) under Drought Stress Using Microsatellite Markers. Plants 2022, 11, 1532. https://doi.org/10.3390/plants11121532
Salem KFM, Alghuthaymi MA, Elabd AB, Elabsawy EA, Mierah HH. Prediction of Heterosis for Agronomic Traits in Half-Diallel Cross of Rice (Oryza sativa L.) under Drought Stress Using Microsatellite Markers. Plants. 2022; 11(12):1532. https://doi.org/10.3390/plants11121532
Chicago/Turabian StyleSalem, Khaled F. M., Mousa A. Alghuthaymi, Abdelmoaty B. Elabd, Elsayed A. Elabsawy, and Hossam H. Mierah. 2022. "Prediction of Heterosis for Agronomic Traits in Half-Diallel Cross of Rice (Oryza sativa L.) under Drought Stress Using Microsatellite Markers" Plants 11, no. 12: 1532. https://doi.org/10.3390/plants11121532
APA StyleSalem, K. F. M., Alghuthaymi, M. A., Elabd, A. B., Elabsawy, E. A., & Mierah, H. H. (2022). Prediction of Heterosis for Agronomic Traits in Half-Diallel Cross of Rice (Oryza sativa L.) under Drought Stress Using Microsatellite Markers. Plants, 11(12), 1532. https://doi.org/10.3390/plants11121532