The Destructive Static Tree-Pulling Test Provides Reliable Estimates of the Soil–Root Plate of Eastern Baltic Silver Birch (Betula pendula Roth.)
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Data Acquisition and Measurements
3.2. Data Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ossó, A.; Allan, R.P.; Hawkins, E.; Shaffrey, L.; Maraun, D. Emerging new climate extremes over Europe. Clim. Dyn. 2022, 58, 487–501. [Google Scholar] [CrossRef]
- Donis, J.; Kitenberga, M.; Snepsts, G.; Dubrovskis, E.; Jansons, A. Factors affecting windstorm damage at the stand level in hemiboreal forests in Latvia: Case study of 2005 winter storm. Silva Fenn. 2018, 52, 10009. [Google Scholar] [CrossRef] [Green Version]
- Gregow, H.; Laurila, T.K.; Mäkelä, A.; Rantanen, M. Review on Winds, Extratropical Cyclones and Their Impacts in Northern Europe and Finland; Finnish Meteorological Institute: Helsinki, Finland, 2020. [Google Scholar]
- Ikonen, V.P.; Kilpeläinen, A.; Strandman, H.; Asikainen, A.; Venäläinen, A.; Peltola, H. Effects of using certain tree species in forest regeneration on regional wind damage risks in Finnish boreal forests under different CMIP5 projections. Eur. J. For. Res. 2020, 139, 685–707. [Google Scholar] [CrossRef] [Green Version]
- Venäläinen, A.; Tuomenvirta, H.; Heikinheimo, M.; Kellomäki, S.; Peltola, H.; Strandman, H.; Väisänen, H. Impact of climate change on soil frost under snow cover in a forested landscape. Clim. Res. 2001, 17, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Peltola, H.; Ikonen, V.P.; Gregow, H.; Strandman, H.; Kilpeläinen, A.; Venäläinen, A.; Kellomäki, S. Impacts of climate change on timber production and regional risks of wind-induced damage to forests in Finland. For. Ecol. Manag. 2010, 260, 833–845. [Google Scholar] [CrossRef]
- Laapas, M.; Lehtonen, I.; Venäläinen, A.; Peltola, H.M. The 10-year return levels of maximum wind speeds under frozen and unfrozen soil forest conditions in Finland. Climate 2019, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [Green Version]
- Griess, V.C.; Knoke, T. Growth performance, windthrow, and insects: Meta-analyses of parameters influencing performance of mixed-species stands in boreal and northern temperate biomes. Can. J. For. Res. 2011, 41, 1141–1159. [Google Scholar] [CrossRef]
- Valinger, E.; Fridman, J. Factors affecting the probability of windthrow at stand level as a result of Gudrun winter storm in southern Sweden. For. Ecol. Manage. 2011, 262, 398–403. [Google Scholar] [CrossRef]
- Jactel, H.; Bauhus, J.; Boberg, J.; Bonal, D.; Castagneyrol, B.; Gardiner, B.; Gonzalez-Olabarria, J.R.; Koricheva, J.; Meurisse, N.; Brockerhoff, E.G. Tree diversity drives forest stand resistance to natural disturbances. Curr. For. Rep. 2017, 3, 223–243. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Barbaro, L.; Castagneyrol, B.; Forrester, D.I.; Gardiner, B.; González-Olabarria, J.R.; Lyver, P.O.B.; Meurisse, N.; Oxbrough, A.; Taki, H.; et al. Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodivers. Conserv. 2017, 26, 3005–3035. [Google Scholar] [CrossRef] [Green Version]
- Nabuurs, G.-J.; Verkerk, P.J.; Schelhaas, M.-J.; Ramón González Olabarria, J.; Trasobares, A.; Cienciala, E. Climate-Smart Forestry: Mitigation Impacts in Three European Regions. From Science to Policy 6; European Forest Institute: Joensuu, Finland, 2018; p. 32. [Google Scholar]
- Nicoll, B.C.; Ray, D. Adaptive growth of tree root systems in response to wind action and site conditions. Tree Physiol. 1996, 16, 891–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardiner, B.; Schuck, A.R.T.; Schelhaas, M.J.; Orazio, C.; Blennow, K.; Nicoll, B. What Science Can Tell Us. Living with Storm Damage to Forests; European Forest Institute: Joensuu, Finland, 2013; Volume 13, ISBN 978-952-5980-09-7. [Google Scholar]
- Nicoll, B.C.; Gardiner, B.A.; Rayner, B.; Peace, A.J. Anchorage of coniferous trees in relation to species, soil type, and rooting depth. Can. J. For. Res. 2011, 36, 1871–1883. [Google Scholar] [CrossRef]
- Peltola, H.; Kellomäki, S.; Hassinen, A.; Granander, M. Mechanical stability of Scots pine, Norway spruce and birch: An analysis of tree-pulling experiments in Finland. For. Ecol. Manage. 2000, 135, 143–153. [Google Scholar] [CrossRef]
- Krišāns, O.; Čakša, L.; Matisons, R.; Rust, S.; Elferts, D.; Seipulis, A.; Jansons, Ā. A static pulling test is a suitable method for comparison of the loading resistance of silver birch (Betula pendula roth.) between urban and peri-urban forests. Forests 2022, 13, 127. [Google Scholar] [CrossRef]
- James, K. Dynamic loading of trees. J. Arboric. 2003, 29, 165–171. [Google Scholar] [CrossRef]
- Terauds, A.; Brumelis, G.; Nikodemus, O. Seventy-year changes in tree species composition and tree ages in state-owned forests in Latvia. Scand. J. For. Res. 2011, 26, 446–456. [Google Scholar] [CrossRef]
- Hynynen, J.; Niemistö, P.; Viherä-Aarnio, A.; Brunner, A.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth and Betula pubescens Ehrh.) in Northern Europe. Forestry 2010, 83, 103–119. [Google Scholar] [CrossRef]
- Krišāns, O.; Matisons, R.; Kitenberga, M.; Donis, J.; Rust, S.; Elferts, D.; Jansons, Ā. Wind resistance of Eastern Baltic silver birch (Betula pendula roth.) suggests its suitability for periodically waterlogged sites. Forests 2021, 12, 21. [Google Scholar] [CrossRef]
- Prieditis, N. Geobotanical features of Latvian peatland forest communities. Flora 1993, 188, 413–424. [Google Scholar] [CrossRef]
- Coutts, M.P. Root architecture and tree stability. In Tree Root Systems and Their Mycorrhizas; Springer: Dordrecht, The Netherlands, 1983; pp. 171–188. [Google Scholar]
- Peltola, H.M. Mechanical stability of trees under static loads. Am. J. Bot. 2006, 93, 1501–1511. [Google Scholar] [CrossRef] [PubMed]
- Krišāns, O.; Saleniece, R.; Rust, S.; Elferts, D.; Kapostins, R.; Jansons, A.; Matisons, R. Effect of bark-stripping on mechanical stability of Norway Spruce. Forests 2020, 11, 357. [Google Scholar] [CrossRef] [Green Version]
- Krisans, O.; Matisons, R.; Rust, S.; Burnevica, N.; Bruna, L.; Elferts, D.; Kalvane, L.; Jansons, A. Presence of root rot reduces stability of Norway spruce (Picea abies): Results of static pulling tests in Latvia. Forests 2020, 11, 416. [Google Scholar] [CrossRef] [Green Version]
- Stenlid, J.; Redfern, D.B. Spread within the tree and stand. In Heterobasidion annosum: Biology, Ecology, Impact and Control; Woodward, S., Stenlid, J., Karjalainen, R., Hüttemann, A., Eds.; CAB International: Wallingford, CT, USA, 1998; pp. 125–143. [Google Scholar]
- Krišāns, O.; Samariks, V.; Donis, J.; Jansons, Ā. Structural root-plate characteristics of wind-thrown Norway spruce in hemiboreal forests of Latvia. Forests 2020, 11, 1143. [Google Scholar] [CrossRef]
- Samariks, V.; Īstenais, N.; Seipulis, A.; Miezīte, O.; Krišāns, O.; Jansons, Ā. Root-soil plate characteristics of silver birch on wet and dry mineral soils in Latvia. Forests 2021, 12, 20. [Google Scholar] [CrossRef]
- Ray, D.; Nicoll, B.C. The effect of soil water-table depth on root-plate development and stability of Sitka spruce. For. An Int. J. For. Res. 1998, 71, 169–182. [Google Scholar] [CrossRef] [Green Version]
- Lehtonen, I.; Venäläinen, A.; Kämäräinen, M.; Asikainen, A.; Laitila, J.; Anttila, P.; Peltola, H. Projected decrease in wintertime bearing capacity on different forest and soil types in Finland under a warming climate. Hydrol. Earth Syst. Sci. 2019, 23, 1611–1631. [Google Scholar] [CrossRef] [Green Version]
- Uusitalo, J.; Ala-Ilomäki, J. The significance of above-ground biomass, moisture content and mechanical properties of peat layer on the bearing capacity of ditched pine bogs. Silva Fenn. 2013, 47, 993. [Google Scholar] [CrossRef] [Green Version]
- Samariks, V.; Krisans, O.; Donis, J.; Silamikele, I.; Katrevics, J.; Jansons, A. Cost-benefit analysis of measures to reduce windstorm impact in pure Norway Spruce (Picea abies L. Karst.) stands in Latvia. Forests 2020, 11, 576. [Google Scholar] [CrossRef]
- Gailis, A.; Zeltiņš, P.; Matisons, R.; Purviņš, A.; Augustovs, J.; Vīndedzis, V.; Jansons, Ā. Local adaptation of phenotypic stem traits distinguishes two provenance regions of silver birch in Latvia. Silva Fenn. 2021, 55, 10524. [Google Scholar] [CrossRef]
- Belda, M.; Holtanová, E.; Halenka, T.; Kalvová, J. Climate classification revisited: From Köppen to Trewartha. Clim. Res. 2014, 59, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jaagus, J.; Briede, A.; Rimkus, E.; Remm, K. Precipitation pattern in the Baltic countries under the influence of large-scale atmospheric circulation and local. Int. J. Climatol. 2010, 30, 705–720. [Google Scholar] [CrossRef] [Green Version]
- Kļaviņš, M.; Avotniece, Z.; Rodinovs, V. Dynamics and impacting factors of ice regimes in Latvia inland and coastal waters. Proc. Latv. Acad. Sci. 2017, 70, 400–408. [Google Scholar] [CrossRef] [Green Version]
- LEGMC. Climate of Latvia. Available online: https://klimats.meteo.lv/klimats/latvijas_klimats/ (accessed on 21 March 2022).
- Karagali, I.; Hahmann, A.N.; Badger, M.; Hasager, C.; Mann, J. New European wind atlas offshore. J. Phys. Conf. Ser. 2018, 1037, 052007. [Google Scholar] [CrossRef]
- Bušs, K. Forest ecosystem classification in Latvia. Proc. Latv. Acad. Sci. 1997, 51, 204–218. [Google Scholar]
- FAO. IUSS Working Group WRB. 2015. World Reference Base for Soil Resources 2014. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. Update 2015; World Soil Resources Reports No. 106; Food and Agriculture Organization: Rome, Italy, 2015. [Google Scholar]
- Liepa, I. Pieauguma mācība [Increment Theory]; Latvia University of Agriculture: Jelgava, Latvia, 1996. [Google Scholar]
- Jones, H.G. Plants and Microclimate: A Quantitative Approach to Environmental Plant Physiology; Cambridge University Press: Cambridge, UK, 1984. [Google Scholar]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- R Core Team, R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015; Available online: http://www.r-project.org/ (accessed on 3 June 2022).
- Bartoń, K. MuMIn: Multi-Model Inference. Available online: https://cran.r-project.org/web/packages/MuMIn/index.html (accessed on 3 June 2022).
- Lenth, R.; Buerkner, P.; Herve, M.; Love, J.; Miguez, F.; Riebl, H.; Singmann, H. Emmeans: Estimated Marginal Means, aka Least-Squares Means. R Package Version 1.4.2. Available online: https://cran.r-project.org/web/packages/emmeans/index.html (accessed on 3 June 2022).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015, 67, 1–48. [Google Scholar] [CrossRef]
Relative Volume | Relative Depth | Relative Width | ||||
---|---|---|---|---|---|---|
Fixed Effects | χ2 | p-Value | χ2 | p-Value | χ2 | p-Value |
(Intercept) | 25.97 | <0.001 | 238.97 | <0.001 | 202.73 | <0.001 |
Uprooting cause | 11.21 | <0.001 | 11.80 | <0.001 | 28.86 | <0.001 |
Soil type | 52.68 | <0.001 | 2.37 | 0.30 | 42.60 | <0.001 |
Uprooting cause by soil type | 2.34 | 0.31 | 0.89 | 0.64 | 3.50 | 0.17 |
Random Effects | Var. | p-Value | Var. | p-Value | Var. | p-Value |
Geobotanical district: | ||||||
(Intercept) | 0.86 | 0.23 | 1.12 × 10−5 | 0.48 | 3.13 × 10−5 | 0.95 |
Uprooting cause (wind) | 0.87 | 0.22 | 1.65 × 10−5 | 0.42 | 2.17 × 10−6 | 0.96 |
Residual | 2.38 | 4.03 × 10−5 | 9.48 × 10−5 | |||
Ntrees | 177 | 176 | 178 | |||
Ndistrict | 8 | 8 | 8 | |||
Marginal R2 | 0.42 | 0.31 | 0.48 | |||
Conditional R2 | 0.53 | 0.46 | 0.60 |
Volume | ||
---|---|---|
Fixed Effects | χ2 | p-Value |
BBM | 65.95 | <0.001 |
Soil type | 20.21 | <0.001 |
BBM by soil type | 1.72 | 0.42 |
Random Effects | Var. | p-Value |
Geobotanical district: | ||
(Intercept) | 0.17 | 0.02 |
Residual | 0.71 | |
Ntrees | 115 | |
Ndistrict | 3 | |
Marginal R2 | 0.40 | |
Conditional R2 | 0.52 |
Soil | Tree n | Stand n | DBH (cm) | H (m) | H/DBH | Vstem (m3) | Width (m) | Depth (m) | Vroots (m3) |
---|---|---|---|---|---|---|---|---|---|
Pulled | |||||||||
Dry | 79 | 10 | 25.9 ± 0.8 | 27.3 ± 0.5 | 1.09 ± 0.02 | 0.75 ± 0.06 | 1.1 ± 0.1 | 0.7 ± 0.1 | 1.66 ± 0.13 |
Peat | 15 | 3 | 21.0 ± 1.2 | 22.5 ± 0.6 | 1.10 ± 0.04 | 0.38 ± 0.06 | 1.4 ± 0.1 | 0.7 ± 0.1 | 2.31 ± 0.30 |
Wet | 21 | 4 | 22.0 ± 0.9 | 22.0 ± 0.7 | 1.01 ± 0.02 | 0.41 ± 0.04 | 1.3 ± 0.1 | 0.7 ± 0.1 | 1.97 ± 0.25 |
Windthrown | |||||||||
Dry | 22 | 10 | 34.5 ± 1.7 | 29.0 ± 0.8 | 0.86 ± 0.03 | 1.32 ± 0.16 | 0.9 ± 0.1 | 0.7 ± 0.1 | 0.93 ± 0.20 |
Peat | 22 | 1 | 21.4 ± 0.9 | 23.0 ± 0.5 | 1.10 ± 0.03 | 0.40 ± 0.04 | 1.1 ± 0.1 | 0.6 ± 0.1 | 1.42 ± 0.28 |
Wet | 18 | 4 | 29.4 ± 1.6 | 28.8 ± 0.4 | 1.03 ± 0.06 | 0.93 ± 0.10 | 1.2 ± 0.1 | 0.5 ± 0.1 | 1.15 ± 0.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krišāns, O.; Matisons, R.; Vuguls, J.; Seipulis, A.; Samariks, V.; Saleniece, R.; Jansons, Ā. The Destructive Static Tree-Pulling Test Provides Reliable Estimates of the Soil–Root Plate of Eastern Baltic Silver Birch (Betula pendula Roth.). Plants 2022, 11, 1509. https://doi.org/10.3390/plants11111509
Krišāns O, Matisons R, Vuguls J, Seipulis A, Samariks V, Saleniece R, Jansons Ā. The Destructive Static Tree-Pulling Test Provides Reliable Estimates of the Soil–Root Plate of Eastern Baltic Silver Birch (Betula pendula Roth.). Plants. 2022; 11(11):1509. https://doi.org/10.3390/plants11111509
Chicago/Turabian StyleKrišāns, Oskars, Roberts Matisons, Jānis Vuguls, Andris Seipulis, Valters Samariks, Renāte Saleniece, and Āris Jansons. 2022. "The Destructive Static Tree-Pulling Test Provides Reliable Estimates of the Soil–Root Plate of Eastern Baltic Silver Birch (Betula pendula Roth.)" Plants 11, no. 11: 1509. https://doi.org/10.3390/plants11111509
APA StyleKrišāns, O., Matisons, R., Vuguls, J., Seipulis, A., Samariks, V., Saleniece, R., & Jansons, Ā. (2022). The Destructive Static Tree-Pulling Test Provides Reliable Estimates of the Soil–Root Plate of Eastern Baltic Silver Birch (Betula pendula Roth.). Plants, 11(11), 1509. https://doi.org/10.3390/plants11111509