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and Āris Jansons *

Latvian State Forest Research Institute ‘Silava’, 111 Rigas Str., LV-2169 Salaspils, Latvia;
oskars.krisans@silava.lv (O.K.); roberts.matisons@silava.lv (R.M.); janis.vuguls@silava.lv (J.V.);
andris.seipulis@silava.lv (A.S.); valters.samariks@silava.lv (V.S.); renate.saleniece@silava.lv (R.S.)
* Correspondence: aris.jansons@silava.lv; Tel.: +371-2910-9529

Abstract: Under the intensifying cyclonic activity, the wind resistance of European forests could be
increased through science-based adaptive forest management, which requires the quantification of
tree stability. In this regard, the dimensions of the soil–root plate can be directly attributed to tree
wind resistance; however, naturally uprooted trees might be a biased source of information for the
evaluation of adaptive measures due to uncontrolled conditions and uneven sample size. Therefore,
the dimensions of the soil–root plates of naturally windthrown silver birch trees (Betula pendula Roth.)
are compared to artificially overturned trees under a static tree-pulling test in Eastern Baltic region.
The application of static tree-pulling overestimated the dimensions of the soil–root plates of silver
birch compared to windthrown trees. The overestimation of soil–root plate dimensions was consistent
spatially and across soil types, which is likely a regional adaptation to local wind climate. This implies
that static tree-pulling is representative of the assessment of the effects of adaptive management on
tree stability via the dimensions of the soil–root plates.

Keywords: soil–root plate; silver birch; Betula pendula; windthrow; static tree-pulling

1. Introduction

In the Eastern Baltic region, forest stands are subjected to an increasing frequency
of wind disturbances due to the intensifying cyclonic activity from late autumn to early
spring [1–4]. Wind damage is further amplified by the shortening of frozen soil
periods [5–7], which leads to substantial economic losses [8], thus emphasizing the necessity
for science-based climate-smart forest management [9–13]. In this regard, the properties
of the soil–root plate are informative proxies of tree wind stability, allowing for a quan-
tification of the effects of adaptive forest management [14,15]. Although the properties of
the soil–root plate can be assessed for naturally windthrown trees, such trees can rarely
form a reasonable sample size to evaluate the effects of management, as wind damage is
largely stochastic [15]. Another option is experimental overthrowing by static tree-pulling
tests, which have been widely applied to assess the tree mechanical stability [16–18]. Under
static pulling, the tree is subjected to a continuous loading until a fatal failure as stem
breakage or uprooting occurs; however, such an evaluation might result in biased estimates
of the properties of the soil–root plate due to the lack of dynamic components of stability,
such as inertia and swaying [19]. Accordingly, the assessment of the relationships between
properties of the soil–root plate acquired by static tree-pulling tests and after windthrow
are essential for a reliable evaluation of adaptive management [15]. Tree populations adapt
to regional (e.g., wind climate) and local (e.g., soil) growing conditions [14,15]; hence, local
data are necessary to reduce the bias when estimating tree wind loading resistance.
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The aim of the present study is to compare the soil–root plates of middle-aged trees
uprooted by windthrow and static tree-pulling tests on freely draining mineral, drained
deep peat, and waterlogged mineral soils. Silver birch (Betula pendula Roth.), which is
widespread on mineral and organic soils [20] and has high ecological and economic im-
portance in North-East Europe [21], was used as a model species. Birch is reported to
have a high plasticity of wind loading adaptation across a wide gradient of soil types [22].
Accordingly, we hypothesize that the static tree-pulling test overestimates the soil–root
plates compared to windthrown trees.

2. Results and Discussion

In the Eastern Baltic region, the application of static-pulling overestimated the di-
mensions of soil–root plates of middle-aged silver birch compared to windthrown trees
(Figure 1; Table 1). The differences were strong (Wald’s χ2 ≥ 11.80) and highly significant
(p < 0.001) for the volume, depth, and particularly for width of the soil–root plate. The
overestimation was spatially consistent, as indicated by a non-significant (p > 0.22) effect
(random) of the studied sub-regions (the geobotanical district [23]) on the differences of soil–
root plate dimensions, as determined by mixed-effect models (Table 1). The overestimation
of soil–root plate width and depth was, on average, 53% and 46%, respectively, while for
volume, which is a function of the two, it was 206%. The overestimation differed by soil
type; it was lower for drained deep peat compared to periodically waterlogged mineral
and particularly on freely draining mineral soils (52%, 101%, and 152%, respectively).
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Figure 1. Estimated marginal mean (±95% standard error) volume (A) (expressed per stemwood
volume), depth (B), and width (C) (expressed per stem diameter at breast height) of soil–root plates
of pulled and windthrown trees of Eastern Baltic silver birch on freely draining mineral, drained
deep peat, and periodically waterlogged mineral soils.
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Table 1. Strength (Wald’s χ2) and significance (p-value) of the fixed effects of uprooting cause
and soil type, as well as random variances and significance of the geobotanical district and model
performance (R2) for the volume (expressed per stemwood volume), depth, and width (expressed
per stem diameter at breast height) of soil–root plate of Eastern Baltic silver birch on freely draining
mineral, drained deep peat, and periodically waterlogged mineral soils.

Relative Volume Relative Depth Relative Width

Fixed Effects χ2 p-Value χ2 p-Value χ2 p-Value

(Intercept) 25.97 <0.001 238.97 <0.001 202.73 <0.001
Uprooting cause 11.21 <0.001 11.80 <0.001 28.86 <0.001

Soil type 52.68 <0.001 2.37 0.30 42.60 <0.001
Uprooting cause

by soil type 2.34 0.31 0.89 0.64 3.50 0.17

Random Effects Var. p-Value Var. p-Value Var. p-Value

Geobotanical
district:

(Intercept) 0.86 0.23 1.12 × 10−5 0.48 3.13 × 10−5 0.95
Uprooting cause

(wind) 0.87 0.22 1.65 × 10−5 0.42 2.17 × 10−6 0.96

Residual 2.38 4.03 × 10−5 9.48 × 10−5

Ntrees 177 176 178
Ndistrict 8 8 8

Marginal R2 0.42 0.31 0.48
Conditional R2 0.53 0.46 0.60

Under static loading, larger soil–root plates were torn out, likely due to the lack of
dynamic components of tree stability, such as tree swaying and inertia of soil [19], which
was particularly prevalent for mineral soils (Figure 1). Accordingly, a larger amount of
soil remained attached to the roots [24]. Additionally, due to a slower course of uprooting
under static loading, root breakage occurred at smaller diameters [25], hence at a greater
distance from the stem, thus explaining the explicit overestimation of soil–root plate width.
Alternatively, the overestimation of the dimensions of the soil–root plate might be partially
related to the specific selection of sample trees for the static tree-pulling, as vital, dominant
trees without visual signs of mechanical damage were tested [18,22]. In contrast, the
set of studied windthrown trees likely contained the weakest individuals in the stands,
probably due to various reasons, such as lower vitality, which might include pathogen
infestation [26,27]. For instance, root-rot is known to reduce the spread of the soil–root
plate [28]; although, the decay of structural roots was not visible for the windthrown
trees. The relationship between the basal bending moment at the fatal failure (BBM) and
the volume of the soil–root plate for the pulled trees was linear, irrespective of soil type,
though with some regional specifics (Figure 2, Table 2). For the windthrown trees, such
a relationship was not assessed to avoid bias, as BBM could only be roughly estimated.
However, the estimates of BBM of windthrown and pulled trees overlapped with the
exception of freely draining mineral soils, where windthrown trees appeared smaller and
weaker (Figure 2).



Plants 2022, 11, 1509 4 of 9

Plants 2022, 11, x FOR PEER REVIEW  4  of  9 
 

 

local wind climate [34], supporting the adaptive significance of tree mechanical stability 

[35]. The consistency of deviations between uprooting cause, regardless of local/regional 

climate, landscape, and soil conditions, supports the comparability of the dimensions of 

the soil–root plates between static tree‐pulling and windthrow. Thereby, the current re‐

sults support static tree‐pulling as a reliable approach for the assessment of the relation‐

ships between the properties of the soil–root plate, which is essential for a sufficient eval‐

uation of adaptive management [15]. 

 

Figure 2. The relationship between relative stem basal bending moment (BBM in kNm) (expressed 

per stemwood volume in m3) and the volume of soil–root plate (in m3) of pulled and windthrown 

trees of Eastern Baltic silver birch on freely draining mineral, drained deep peat, and periodically 

waterlogged mineral soils. 

Table 2. Strength (Wald’s χ2) and significance (p‐value) of the fixed effects of stem basal bending 

moment (BBM) and soil type, random variances and significance of the geobotanical district and 

model performance  (R2)  for  the volume of soil–root plate of Eastern Baltic silver birch on  freely 

draining mineral, drained deep peat, and periodically waterlogged mineral soils. 

  Volume 

Fixed Effects  χ2  p‐Value 

BBM  65.95  <0.001 

Soil type  20.21  <0.001 

BBM by soil type  1.72  0.42 

Random Effects  Var.  p‐Value 

Geobotanical district:     

(Intercept)  0.17  0.02 

Residual  0.71   

Ntrees  115   

Ndistrict  3   

Marginal R2  0.40   

Conditional R2  0.52   

3. Materials and Methods 

3.1. Data Acquisition and Measurements 

Data  for  the soil–root plates overturned by static  tree‐pulling were acquired  from 

earlier studies assessing the mechanical stability of Eastern Baltic silver birch [18,22] in the 

Figure 2. The relationship between relative stem basal bending moment (BBM in kNm) (expressed
per stemwood volume in m3) and the volume of soil–root plate (in m3) of pulled and windthrown
trees of Eastern Baltic silver birch on freely draining mineral, drained deep peat, and periodically
waterlogged mineral soils.

Table 2. Strength (Wald’s χ2) and significance (p-value) of the fixed effects of stem basal bending
moment (BBM) and soil type, random variances and significance of the geobotanical district and
model performance (R2) for the volume of soil–root plate of Eastern Baltic silver birch on freely
draining mineral, drained deep peat, and periodically waterlogged mineral soils.

Volume

Fixed Effects χ2 p-Value

BBM 65.95 <0.001
Soil type 20.21 <0.001

BBM by soil type 1.72 0.42

Random Effects Var. p-Value

Geobotanical district:
(Intercept) 0.17 0.02
Residual 0.71

Ntrees 115
Ndistrict 3

Marginal R2 0.40
Conditional R2 0.52

Silver birch is reported to have a high adaptability of soil–root plate to diverse soil
conditions [16,29,30], for instance, plastically increasing leverage and rooting depth on
loose soils [22,24]. Accordingly, soil type (freely draining mineral, drained deep peat,
and waterlogged mineral) had a significant (p < 0.001) effect on the soil–root plate vol-
ume and surface radii (width) for both static tree-pulling and windthrow trees (Figure 1;
Tables 1 and 2). Although tested soil types have different mechanical properties [31–33],
the absence of interaction between uprooting cause and soil type (p = 0.31) implied a
consistent overestimation of soil–root plate by static tree-pulling across the studied soil
types. Such a consistency can be related to the regional adaptation of Eastern Baltic silver
birch to the local wind climate [34], supporting the adaptive significance of tree mechan-
ical stability [35]. The consistency of deviations between uprooting cause, regardless of
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local/regional climate, landscape, and soil conditions, supports the comparability of the
dimensions of the soil–root plates between static tree-pulling and windthrow. Thereby, the
current results support static tree-pulling as a reliable approach for the assessment of the
relationships between the properties of the soil–root plate, which is essential for a sufficient
evaluation of adaptive management [15].

3. Materials and Methods
3.1. Data Acquisition and Measurements

Data for the soil–root plates overturned by static tree-pulling were acquired from
earlier studies assessing the mechanical stability of Eastern Baltic silver birch [18,22]
in the hemiboreal forests of the Eastern Baltic region in Latvia (55◦56′–57◦27′ N and
21◦40′–26◦23′ E; Table 3). The climate in the studied region is humid continental [36],
influenced by the dominant westerlies from the North Atlantic [37], under which continen-
tality increases eastwards [38]. The mean annual air temperature and the mean maximum
wind speed are higher at the elevation of 10 m and in the western part of Latvia, reach-
ing +7.9 ◦C and 27.5 m s−1, respectively, while in the eastern part, they are +6.3 ◦C and
11.9 m s−1, respectively [39,40]. In both coastal and inland areas, the warmest month
is July (+17.8 and 17.7 ◦C, respectively) and the coldest is February (−2.0 and −4.4 ◦C,
respectively) [39]. The mean annual sum of precipitation is 685.6 mm, with the highest
monthly mean in August (94.7 mm) [39].

Table 3. Tree (Tree n) and stand number (Stand n); mean (±standard error) stem diameter at breast
height (DBH); height (H), ratio of height, and stem diameter at breast height (H/DBH); stemwood
volume (Vstem); depth, width, and volume (Vroots) of soil–root plate of pulled and windthrown East-
ern Baltic silver birches on freely draining mineral, drained deep peat, and periodically waterlogged
mineral soils.

Soil Tree
n

Stand
n

DBH
(cm)

H
(m) H/DBH Vstem

(m3)
Width

(m)
Depth

(m)
Vroots
(m3)

Pulled

Dry 79 10 25.9 ± 0.8 27.3 ± 0.5 1.09 ± 0.02 0.75 ± 0.06 1.1 ± 0.1 0.7 ± 0.1 1.66 ± 0.13
Peat 15 3 21.0 ± 1.2 22.5 ± 0.6 1.10 ± 0.04 0.38 ± 0.06 1.4 ± 0.1 0.7 ± 0.1 2.31 ± 0.30
Wet 21 4 22.0 ± 0.9 22.0 ± 0.7 1.01 ± 0.02 0.41 ± 0.04 1.3 ± 0.1 0.7 ± 0.1 1.97 ± 0.25

Windthrown

Dry 22 10 34.5 ± 1.7 29.0 ± 0.8 0.86 ± 0.03 1.32 ± 0.16 0.9 ± 0.1 0.7 ± 0.1 0.93 ± 0.20
Peat 22 1 21.4 ± 0.9 23.0 ± 0.5 1.10 ± 0.03 0.40 ± 0.04 1.1 ± 0.1 0.6 ± 0.1 1.42 ± 0.28
Wet 18 4 29.4 ± 1.6 28.8 ± 0.4 1.03 ± 0.06 0.93 ± 0.10 1.2 ± 0.1 0.5 ± 0.1 1.15 ± 0.16

In total, data for 115 birch trees were collected in the destructive static tree-pulling
tests (Table 3), which were conducted during 2019–2021 [18,22]. During the tests, the
dimensions of the stem and crown were recorded and the BBM of the stem at the failure
was estimated. In these studies, sample trees were located in 17 naturally regenerated silver
birch stands with stand ages being 30–60 years, which predominantly contained spruce
in the understory (advanced growth). The admixture of light-demanding species in the
canopy was low, reaching 30% of the stand basal area. Three to ten trees were sampled
per stand. The studied stands were growing on mesotrophic freely draining mineral
(Hylocomiosa forest type with podzols), periodically waterlogged (wet) mesotrophic mineral
soils (Myrtilloso-sphagnosa forest type with gleyic podzol) and eutrophic drained deep peat
soils (Myrtillosa turf.mel. and Oxalidosa tuf. Mel. forest types with fibric histosols) [41,42].
The topography was flat.

For the representation of the dimensions of the soil–root plate of silver birch after
natural uprooting, 62 freshly windthrown trees were surveyed across the territory of Latvia
following cyclonic wind events under non-frozen soil conditions during January–March
2022 (Table 3). During the wind event, the maximum speed of wind (westerlies) ranged
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from 17.6–27.8 m s−1 with the strongest winds being recorded in the coastal western part
of Latvia [39]. Only freshly windthrown trees were assessed to reduce the bias due to soil
loosening and the erosion of soil–root plates. Similar to pulling tests, trees growing on
the edges of openings were avoided. The surveyed trees represented 15 stands similar to
those sampled during the static tree-pulling [18,22]. Canopy trees were surveyed, which
represented the mean dimensions of stands and all of them formed the canopy. The
surveyed stands on dry mineral and drained deep peat soils were mostly pure or admixed
with Norway spruce (Picea abies (L.) H. Karst.). In the stands on wet mineral soils, birch
was generally admixed by common aspen (Populus tremula L.). All of the studied stands
were conventionally managed, which implies natural regeneration after a clear cut, with
a rotation period of 71 years, and two to three thinnings. Such an approach intends to
target a stand density of 2000–2500 trees per hectare after pre-commercial thinning, with a
further consecutive reduction in the thinnings to 1000–1500 and 600–800 trees per hectare.
Accordingly, all of the stands underwent pre-commercial thinning; however, no recent
thinnings (5–10 years) have been conducted.

For all trees, the dimensions of the soil–root plate were measured by the same method-
ology. In brief, for each soil–root plate, five radii (at 0◦, 45◦, 90◦, 135◦, and 180◦) of the
surface were measured (Supplementary Materials, Figure S1). The maximum depth of
soil–root plates was estimated by piercing a steel rod near the stem base perpendicular to
the surface.

3.2. Data Analysis

The volume of the soil–root plate, which is the proxy of tree stability [25], was esti-
mated as the volume of an elliptical paraboloid as follows:

V =

(
1
2

)
·π·a·b·h, (1)

where h is the depth, and a and b are the longest and shortest of the five measured radii of the
soil–root plate, respectively (Supplementary Materials, Figure S1). Due to the differences in
sizes of the studied trees (Table 3), relative dimensions of the soil–root plate were calculated.
The relative volume of the soil–root plate was expressed per stemwood volume, yet relative
width and depth of soil–root plate per diameter at breast height. Stemwood volume was
calculated using local equation [43]:

V = 0.0000909·H0.71677·DBH0.072·ln(H)+1.7570 (2)

where H is the tree height and DBH is the stem diameter at breast height.
For the windthrown trees, BBM was approximated according to Jones (1984) [44] as:

BBM = 0.25· π·C ·u2·p/(R·T)·w·h, (3)

where C is a dimensionless species-specific drag coefficient (0.12); u, p, and T are the
maximum wind speed, atmospheric pressure, and temperature during the strongest wind
event in January–March 2022 recorded by the nearest meteorological station (less than 40
km); and w and h are the width and height of the canopy, respectively.

The differences in the soil–root plate according to the uprooting cause and soil type
were assessed using a linear mixed-effects model:

yij = µ + ucij + sij + ucij × sij + (dj) + (ucij | dj) + ε, (4)

where yij is the relative dimension of the soil–root plate (volume, depth, and width), ucij
is the fixed effect of the uprooting cause (windthrow or static tree-pulling test), sij is the
fixed effect of soil type, ucij × sij is the interaction between uprooting cause and soil type,
and (dj) and (ucij | dj) are the random intercept and random slope of uprooting cause by
the local geobotanical district [23]. Geobotanical districts are local divisions of growing
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conditions according to edaphic and climatic factors, which affect the local adaptation of
Eastern Baltic silver birch [35].

The relationship between BBM and the volume of soil–root plate was assessed using a
linear mixed-effects model:

vij = µ + bbmij × sij + sij + (dj) + ε, (5)

where vij is the volume of soil–root plate, sij is a fixed effect of soil type, bbmij × sij is
the fixed interaction of stem basal bending moment and soil type, and (dj) is the random
intercept of the local geobotanical district. The significance of fixed effects was estimated
by Wald’s χ2 test; the leave-one-out test [45] was used to determine the significance of
random effects. Data analysis was performed in R software (v 4.1.0.) (R Core Team, Vienna,
Austria) [46] using the packages “MuMIn” [47], “lmerTest” [45], “emmeans” [48], and
“lme4” [49].

4. Conclusions

Static pulling consistently overestimated the dimensions of the soil–root plate of
Eastern Baltic silver birch, regardless of landscape and soil type, approving the hypothesis
of the study. Such a systematical overestimation implies the comparability of soil–root plate
dimensions acquired by static tree-pulling across environmental gradients and management
practices. Despite the local data, such relationships likely apply to a wider geographic
range, at least as a methodological development. Therefore, static tree-pulling can be
encouraged to be used in the assessment of tree stability as a highly informative method.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/plants11111509/s1; Figure S1: Five radii on the surface of
soil–root plate (0◦, 45◦, 90◦, 135◦, and 180◦).

Author Contributions: Conceptualization, R.M., Ā.J. and V.S.; methodology, O.K. and J.V.; formal
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