Genetic Resources of Cereal Crops for Aphid Resistance
Abstract
:1. Introduction
2. Types of Plant Resistance to Aphids
- (1)
- Both antibiosis and antixenosis equally cause the appearance of pest biotypes that overcome the resistance in the host plant;
- (2)
- There is no need to breed resistant varieties separately for antibiosis and antixenosis since the weakly damaged genotypes selected from the segregating populations possess both types of resistance.
3. Mechanisms of Passive (Constitutional) Resistance of Cereals to Aphids
4. Aphid–Host Plant Interaction
5. Mechanisms of Active (Induced) Resistance of Cereals to Aphids
6. Genes of Aphid Resistance in Cereal Crops
6.1. Genes Controlling Aphid Resistance in Wheat
6.2. Genes Controlling Aphid Resistance in Barley, Oats, and Rye
6.3. Genes Controlling Aphid Resistance in Maize and Sorghum
7. Gene Pool and Cereal Crops Breeding for Resistance to Aphids
8. Conclusions and Future Outlooks
- -
- Alternation of varieties with different resistance genes in time;
- -
- Cultivation of mixtures of genetically different varieties or even crops aligned only for precocity;
- -
- “Mosaics”, i.e., simultaneous cultivation of a large number of varieties with different resistance genes in the pest area;
- -
- Breeding of multiline varieties, i.e., mechanical mixtures of phenotypically similar lines differing in resistance genes;
- -
- Pyramiding, i.e., association of various resistance factors in one genotype.
Author Contributions
Funding
Conflicts of Interest
References
- Xu, X.; Bai, G.; Carver, B.F.; Zhan, K.; Huang, Y.; Mornhinweg, D. Evaluation and reselection of wheat resistance to Russian wheat aphid biotype 2. Crop Sci. 2015, 55, 695–701. [Google Scholar] [CrossRef]
- Puterka, G.J.; Hammon, R.W.; Franklin, M.; Mornhinweg, D.W.; Springer, T.; Armstrong, J.S.; Brown, M.W. Distribution of a new invasive species, Sipha maydis (Hemiptera: Aphididae), on cereals and wild grasses in the Southern plains and Rocky Mountain states. J. Econ. Entomol. 2019, 112, 1713–1721. [Google Scholar] [CrossRef] [PubMed]
- Mornhinweg, D.W.; Puterka, G.J.; Armstrong, J.S. Resistance in Barley (Hordeum vulgare L.) to new invasive aphid, hedgehog grain aphid (Sipha maydis, Passerini) (Hemiptera: Aphididae). Amer. J. Plant Sci. 2020, 11, 869–879. [Google Scholar] [CrossRef]
- Souza, M.F.; Davis, J.A. Characterizing host plant resistance to Melanaphis sacchari (Hemiptera: Aphididae) in selected sorghum plant introductions. J. Econ. Entomol. 2019, 112, 1713–1721. [Google Scholar] [CrossRef]
- Apablaza, J.U.; Robinson, A.G. Effects of three species of aphids on barley, wheat or oats at various stages of plant growth. Can. J. Plant Sci. 1967, 47, 367–373. [Google Scholar] [CrossRef]
- Kuroli, G. Damage by oat aphids (Rhopalosiphum padi L.) in cereals. Z. Angew. Entomol. 1983, 96, 463–469. [Google Scholar] [CrossRef]
- Pike, K.S.; Schaffner, R.L. Development of autumn populations of cereal aphids, Rhopalosiphum padi (L.) and Schizaphis graminum (Rondani) (Homoptera: Aphididae) and their effects on winter wheat in Washington state. J. Econ. Entomol. 1985, 78, 676–680. [Google Scholar] [CrossRef]
- Rautapaa, J. The effect of the English grain aphid Macrosiphum avenae (F.) (Hom. Aphididae) on the yield and quality of wheat. Ann. Agric. Fenn. 1966, 5, 334–341. [Google Scholar]
- Lee, G.; Stevens, D.J.; Stokes, S.; Wratten, S.D. Duration of cereal aphid populations and the effects on wheat yield and breadmaking quality. Ann. Appl. Biol. 1981, 98, 169–178. [Google Scholar] [CrossRef]
- Dorschner, K.W.; Ryan, J.D.; Johnson, R.C.; Eikenbary, R.D. Modification of host nitrogen levels by the greenbug (Homoptera: Aphididae): Its role in resistance of winter wheat to aphids. Environm. Entomol. 1987, 16, 1007–1011. [Google Scholar] [CrossRef]
- Wang, T.; Quisenberry, S.S.; Ni, X.; Tolmay, V. Aphid (Hemiptera: Aphididae) resistance in wheat near-isogenic lines. J. Econ. Entomol. 2004, 97, 646–653. [Google Scholar] [CrossRef] [PubMed]
- Porter, D.R.; Webster, J.A. Russian wheat aphid-induced protein alterations in spring wheat. Euphytica 2000, 111, 199–203. [Google Scholar] [CrossRef]
- Gildow, F.E. Increased production of alatae by aphids reared on oats infected with barley yellow dwarf virus. Ann. Entomol. Soc. Amer. 1980, 73, 343–347. [Google Scholar] [CrossRef]
- Markkula, M.; Laurema, S. Changes in the concentration of free amino acids in plants induced by virus diseases and the reproduction of aphids. Ann. Agric. Fenn. 1964, 3, 265–271. [Google Scholar]
- Ajayi, O.; Dewar, A.M. The effect of barley yellow dwarf virus on field populations of the cereal aphids, Sitobion avenae and Metopolophium dirhodum. Ann. Appl. Biol. 1983, 103, 1–11. [Google Scholar] [CrossRef]
- Katis, N.; Gibson, R.W. Transmission of beet mosaic virus by cereal aphids. Plant Pathol. 1984, 33, 425–427. [Google Scholar] [CrossRef]
- Mondal, S.; Wenninger, E.J.; Hutchinson, P.J.S.; Whitworth, J.L.; Shrestha, D.; Eigenbrode, S.D.; Bosque-Pérez, N.A. Comparison of transmission efficiency of various isolates of Potato virus Y among three aphid vectors. Entomol. Exp. Appl. 2016, 158, 258–268. [Google Scholar] [CrossRef]
- Dixon, A.F.G. Aphid Ecology: An Optimization Approach, 2nd ed.; Chapman & Hall: London, UK; New York, NY, USA, 1998. [Google Scholar] [CrossRef]
- Painter, R.H. Insect Resistance in Crop Plants; Macmillan Co.: New York, NY, USA, 1951. [Google Scholar]
- Kogan, M.; Ortman, E.F. Antixenosis—A new term proposed to define Painter’s “non-preference” modality of resistance. Bull. Entomol. Soc. Amer. 1978, 24, 175–176. [Google Scholar] [CrossRef] [Green Version]
- Argandona, V.H.; Corcuera, L.J.; Niemeyer, H.M.; Campbell, B.C. Toxicity and feeding deterrency of hydroxamic acids from Gramineae in synthetic diets against the greenbug, Schizaphis graminum. Entomol. Exp. Appl. 1983, 34, 134–138. [Google Scholar] [CrossRef]
- Corcuera, L.J. Effects of indole alkaloids from Gramineae on aphids. Phytochemistry 1984, 23, 539–541. [Google Scholar] [CrossRef]
- Castro, A.M.; Martin, A.; Martin, L.M. Location of genes controlling resistance to greenbug (Schizaphis graminum) in Hordeum chilense. Plant Breed. 1996, 115, 335–338. [Google Scholar] [CrossRef]
- Castro, A.M.; Ramos, S.; Vasicek, A.; Worland, A.; Giménez, D.; Clúa, A.A.; Suárez, E. Identification of wheat chromosomes involved with different types of resistance against greenbug (Schizaphis graminum, Rond.) and the Russian wheat aphid (Diuraphis noxia, Mordvilko). Euphytica 2001, 118, 321–330. [Google Scholar] [CrossRef]
- Castro, A.M.; Vasicek, A.; Ramos, S.; Martin, A.; Martin, L.M.; Dixon, A.F.G. Resistance against greenbug, Schizaphis graminum Rond. and Russian wheat aphid, Diuraphis noxia Mordvilko, in tritordeum amphiploids. Plant Breed. 1998, 117, 515–522. [Google Scholar] [CrossRef]
- Castro, A.M.; Vasicek, A.; Ramos, S.; Worland, A.; Suárez, E.; Munoz, M.; Giménez, D.; Clúa, A.A. Different types of resistance against greenbug, Schizaphis graminum Rond, and the Russian wheat aphid, Diuraphis noxia Mordvilko, in wheat. Plant Breed. 1999, 118, 131–137. [Google Scholar] [CrossRef]
- Zhu, L.C.; Smith, C.M.; Reese, J.C. Categories of resistance to greenbug (Homoptera: Aphididae) biotype K in wheat lines containing Aegilops tauschii genes. J. Econ. Entomol. 2005, 98, 2260–2265. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Lazar, M.D.; Michels, G.J.; Rudd, J.C. Phenotypic mechanisms of host resistance against greenbug (Homoptera: Aphididae) revealed by near isogenic lines of wheat. J. Econ. Entomol. 2004, 97, 654–660. [Google Scholar] [CrossRef]
- Radchenko, E.E.; Berim, M.N.; Zubov, A.A. Genetic control of different types of the aphid resistance in cereal crops. Entomol. Rev. 2007, 87, 253–262. [Google Scholar] [CrossRef]
- Vavilov, N.I. Selected Works; Nauka: Moscow, Russia; Leningrad, Russia, 1964; Volume 4. [Google Scholar]
- Starks, K.J.; Merkle, O.G. Low level resistance in wheat to greenbug. J. Econ. Entomol. 1977, 70, 305–306. [Google Scholar] [CrossRef]
- Papp, M.; Mesterhazy, A. Resistance to bird cherry-oat aphid (Rhopalosiphum padi L.) in winter wheat varieties. Euphytica 1993, 67, 49–57. [Google Scholar] [CrossRef]
- Roberts, J.J.; Foster, J.E. Effect of leaf pubescence in wheat on the bird cherry oat aphid (Homoptera: Aphididae). J. Econ. Entomol. 1983, 76, 1320–1322. [Google Scholar] [CrossRef]
- Correa, L.J.; Maciel, O.V.B.; Bücker-Neto, L.; Pilati, L.; Morozini, A.M.; Faria, M.V.; Da-Silva, P.R. A comprehensive analysis of wheat resistance to Rhopalosiphum padi (Hemiptera: Aphididae) in Brazilian wheat cultivars. J. Econ. Entomol. 2020, 113, 1493–1503. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Quisenberry, S.S. Effect of wheat leaf epicuticular structure on host selection and probing rhythm of Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 1997, 90, 1400–1407. [Google Scholar] [CrossRef]
- Lage, J.; Skovmand, B.; Andersen, S.B. Resistance categories of synthetic hexaploid wheats resistant to the Russian wheat aphid (Diuraphis noxia). Euphytica 2004, 136, 291–296. [Google Scholar] [CrossRef]
- Farrell, J.A.; Stufkens, M.W. Resistance to the rose-grain aphid (Metopolophium dirhodum (Walk.)) in non-glaucous spring barley. N. Z. J. Exp. Agr. 1988, 16, 305–306. [Google Scholar] [CrossRef]
- Tsumuki, H.; Kanehisa, K.; Kawada, K. Leaf surface wax as a possible resistance factor of barley to cereal aphids. Appl. Entomol. Zool. 1989, 24, 295–301. [Google Scholar] [CrossRef] [Green Version]
- Moharramipour, S.; Tsumuki, H.; Sato, K.; Murata, S.; Kanehisa, A. Effects of leaf color, epicuticular wax amount and gramine content in barley hybrids on cereal aphid populations. Appl. Entomol. Zool. 1997, 32, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Ni, X.; Quisenberry, S.S.; Siegfried, B.D.; Lee, K.W. Influence of cereal leaf epicuticular wax on Diuraphis noxia probing behavior and nymphoposition. Entomol. Exp. Appl. 1998, 89, 111–118. [Google Scholar] [CrossRef]
- Peiretti, R.A.; Araj, A.; Weibel, D.E.; Starks, K.J.; McNew, R.W. Relationship of “bloomless” (bm bm) sorghum to greenbug resistance. Crop Sci. 1980, 20, 173–176. [Google Scholar] [CrossRef] [Green Version]
- Starks, K.J.; Weibel, D.E. Resistance in bloomless and sparse-bloom sorghum to greenbugs. Environ. Entomol. 1981, 10, 963–965. [Google Scholar] [CrossRef]
- Peterson, G.C.; Suksayretrup, K.; Weibel, D.E. Inheritance of some bloomless and sparse-bloom mutants in sorghum. Crop Sci. 1982, 22, 63–67. [Google Scholar] [CrossRef] [Green Version]
- Niraz, S.; Leszczynski, B.; Ciepiela, A.; Urbanska, A.; Warchoe, J. Biochemical aspects of winter wheat resistance to aphids. Insect Sci. Appl. 1985, 6, 253–257. [Google Scholar] [CrossRef]
- Ciepiela, A. Biochemical basis of winter wheat resistance to the grain aphid, Sitobion avenae. Entomol. Exp. Appl. 1989, 51, 269–275. [Google Scholar] [CrossRef]
- Dreyer, D.L.; Jones, K.C. Feeding deterrency of flavonoids and related phenolics towards Schizaphis graminum and Myzus persicae: Aphid feeding deterrents in wheat. Phytochemistry 1981, 20, 2489–2493. [Google Scholar] [CrossRef]
- Leszczynski, B. Changes in phenols content and metabolism in leaves of susceptible and resistant winter wheat cultivars infested by Rhopalosiphum padi (L.) (Hom., Aphididae). Z. Angew. Entomol. 1985, 100, 343–348. [Google Scholar] [CrossRef]
- Niraz, S.; Leszczynski, B.; Ciepiela, A.; Urbanska, A. The importance of various plant chemical compounds to constitutive aphid resistance in winter wheats. Rocz. Nauk. Rol. Ser. E 1987, 17, 61–75. [Google Scholar]
- Corcuera, L.J.; Queirolo, C.B.; Argandona, V.H. Effects of 2-b-D-glycosyl-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one on Schizaphis graminum (Rondani) (Insecta, Aphididae) feeding on artificial diets. Experientia 1985, 41, 514–516. [Google Scholar] [CrossRef]
- Jonczyk, R.; Schmidt, H.; Osterrieder, A.; Fiesselmann, A.; Schullehner, K.; Haslbeck, M.; Sicker, D.; Hofmann, D.; Yalpani, N.; Simmons, C.; et al. Elucidation of the final reactions of DIMBOA-glucoside biosynthesis in maize: Characterization of Bx6 and Bx7. Plant Physiol. 2008, 146, 1053–1063. [Google Scholar] [CrossRef] [Green Version]
- Handrick, V.; Robert, C.A.M.; Ahern, K.R.; Zhou, S.; Machado, R.A.R.; Maag, D.; Glauser, G.; Fernandez-Penny, F.E.; Chandran, J.N.; Rodgers-Melnik, E.; et al. Biosynthesis of 8-O-methylated benzoxazinoid defense compounds in maize. Plant Cell 2016, 28, 1682–1700. [Google Scholar] [CrossRef] [Green Version]
- Nomura, T.; Ishihara, A.; Yanagita, R.C.; Endo, T.R.; Iwamura, H. Three genomes differentially contribute to the biosynthesis of benzoxazinones in hexaploid wheat. Proc. Nat. Acad. Sci. USA 2005, 102, 16490–16495. [Google Scholar] [CrossRef] [Green Version]
- Sue, M.; Nakamura, C.; Nomura, T. Dispersed benzoxazinone gene cluster: Molecular characterization and chromosomal localization of glucosyltransferase and glucosidase genes in wheat and rye. Plant Physiol. 2011, 157, 985–997. [Google Scholar] [CrossRef] [Green Version]
- Bakera, B.; Rakoczy-Trojanowska, M. Isolation and structural analysis of the Bx6 and Bx7 genes controlling the biosynthesis of benzoxazinoids in rye (Secale cereale L.). Acta Physiol. Plant. 2020, 42, 56. [Google Scholar] [CrossRef] [Green Version]
- Grün, S.; Frey, M.; Gierl, A. Evolution of the indole alkaloid biosynthesis in the genus Hordeum. Distribution of gramine and DIBOA and isolation of the benzoxazinoid biosynthesis genes from Hordeum lechleri. Phytochemistry 2005, 66, 1264–1272. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.; Quisenberry, S.S. Comparison of DIMBOA concentrations among wheat isolines and corresponding plant introduction lines. Entomol. Exp. Appl. 2000, 96, 275–279. [Google Scholar] [CrossRef]
- Kanehisa, K.; Rustamani, M.A.; Cheng, W.Y.; Tsumuki, H.; Shiraga, T. Quantitative variations of a resistance substance, DIMBOA, against aphids in wheat varieties. Bull. Res. Inst. Bioresour. Okayama Univ. 1995, 3, 17–26. [Google Scholar]
- Rustamani, M.A.; Kanehisa, K.; Tsumuki, H.; Shiraga, T. The relationship between DIMBOA concentration in corn lines and resistance to aphids. Bull. Res. Inst. Bioresour. Okayama Univ. 1996, 4, 33–42. [Google Scholar]
- Salas, M.L.; Corcuera, L.J. Effect of environment on gramine content in barley leaves and susceptibility to the aphid Schizaphis graminum. Phytochemistry 1991, 30, 3237–3240. [Google Scholar] [CrossRef]
- Kawada, K.; Lohar, M.K. Effect of gramine on the fecundity, longevity and probing behaviour of the greenbug, Schizaphis graminum (Rondani). Ber. Ohara Inst. Landw. Biol. Okayama Univ. 1989, 20, 199–204. [Google Scholar]
- Moharramipour, S.; Murata, S.; Kanehisa, K.; Tsumuki, H. Relationship between gramine concentration and cereal aphid populations in seedling and maturation stages in barley lines. Bull. Res. Inst. Bioresour. Okayama Univ. 1996, 4, 49–58. [Google Scholar]
- Moharramipour, S.; Takeda, K.; Sato, K.; Yoshida, H.; Tsumuki, H. Inheritance of gramine content in barley. Euphytica 1999, 106, 181–185. [Google Scholar] [CrossRef]
- Moharramipour, S.; Yoshida, H.; Sato, K.; Takeda, K.; Iida, T.; Tsumuki, H. Mapping cereal aphid resistance in Steptoe/Morex doubled haploid population. Barley Genet. Newsl. 1997, 27, 48–50. [Google Scholar]
- Yoshida, H.; Iida, T.; Sato, K.; Moharramipour, S.; Tsumuki, H. Mapping a gene for gramine synthesis in barley. Barley Genet. Newsl. 1997, 27, 22–24. [Google Scholar]
- Macaulay, M.; Ramsay, L.; Åhman, I. Quantitative trait locus for resistance to the aphid Rhopalosiphum padi L. in barley (Hordeum vulgare L.) is not linked with a genomic region for gramine concentration. Arthropod-Plant Interact. 2020, 14, 57–65. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.; Dilkes, B.; Sela, H.; Tzin, V. The effectiveness of physical and chemical defense responses of wild emmer wheat against aphids depends on leaf position and genotype. Front. Plant Sci. 2021, 12, 667820. [Google Scholar] [CrossRef] [PubMed]
- Louis, J.; Shah, J. Plant defense against aphids: The PAD4 signaling nexus. J. Exp. Bot. 2015, 66, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Dangol, A.; Shavit, R.; Yaakov, B.; Strickler, S.R.; Jander, G.; Tzin, V. Characterizing serotonin biosynthesis in Setaria viridis leaves and its effect on aphids. Plant. Mol. Biol. 2022; in press. [Google Scholar] [CrossRef] [PubMed]
- Dreyer, D.L.; Campbell, B.C. Association of the degree of methylation of intercellular pectin with plant resistance to aphids and with induction of aphid biotypes. Experientia 1984, 40, 224–226. [Google Scholar] [CrossRef]
- Campbell, B.C.; Jones, K.C.; Dreyer, D.L. Discriminative behavioral responses by aphids to various plant matrix polysaccharides. Entomol. Exp. Appl. 1986, 41, 17–24. [Google Scholar] [CrossRef]
- Flor, H.H. Current status of the gene-for-gene concept. Annu. Rev. Phytopathol. 1971, 9, 275–296. [Google Scholar] [CrossRef]
- Puterka, G.J.; Peters, D.C. Inheritance of greenbug, Schizaphis graminum (Rondani), virulence to Gb2 and Gb3 resistance genes in wheat. Genome 1989, 32, 109–114. [Google Scholar] [CrossRef]
- Puterka, G.J.; Peters, D.C. Genetics of greenbug (Homoptera: Aphididae) virulence to resistance in sorghum. J. Econ. Entomol. 1995, 88, 421–429. [Google Scholar] [CrossRef]
- Starks, K.J.; Burton, R.L.; Merkle, O.G. Greenbugs (Homoptera: Aphididae) plant resistance in small grains and sorghum to biotype E. J. Econ. Entomol. 1983, 76, 877–880. [Google Scholar] [CrossRef]
- Tyler, J.M.; Webster, J.A.; Smith, E.L. Biotype E greenbug resistance in wheat streak mosaic virus-resistant wheat germplasm lines. Crop Sci. 1985, 25, 686–688. [Google Scholar] [CrossRef]
- Webster, J.A.; Inayatullah, C.; Merkle, O.G. Susceptibility of “Largo” wheat to biotype B greenbug (Homoptera: Aphididae). Environm. Entomol. 1986, 15, 700–702. [Google Scholar] [CrossRef]
- Porter, K.B.; Peterson, G.L.; Vise, O. A new greenbug biotype. Crop Sci. 1982, 22, 847–850. [Google Scholar] [CrossRef]
- Lazar, M.D.; Peterson, G.L.; Hu, J. Multigenic inheritance of biotype-E greenbug resistance in wheat. Plant Breed. 1995, 114, 492–496. [Google Scholar] [CrossRef]
- Dahms, R.G. Comparative tolerance of small grains to greenbugs from Oklahoma and Mississippi. J. Econ. Entomol. 1948, 41, 825–826. [Google Scholar] [CrossRef]
- Harvey, T.L.; Wilde, G.E.; Kofoid, K.D. Designation of a new greenbug biotype K, injurious to resistant sorghum. Crop Sci. 1997, 37, 989–991. [Google Scholar] [CrossRef]
- Burd, J.D.; Porter, D.R. Biotypic diversity in greenbug (Hemiptera: Aphididae): Characterizing new virulence and host associations. J. Econ. Entomol. 2006, 99, 959–965. [Google Scholar] [CrossRef]
- Weng, Y.; Perumal, A.; Burd, J.D.; Rudd, J.C. Biotypic diversity in greenbug (Hemiptera: Aphididae): Microsatellite-based regional divergence and host-adapted differentiation. J. Econ. Entomol. 2010, 103, 1454–1463. [Google Scholar] [CrossRef]
- Armstrong, J.S.; Mornhinweg, D.W.; Payton, M.E.; Puterka, G.J. The discovery of resistant sources of spring barley, Hordeum vulgare ssp. spontaneum, and unique greenbug biotypes. J. Econ. Entomol. 2016, 109, 434–436. [Google Scholar] [CrossRef]
- Radchenko, E.E.; Kuznetsova, T.L.; Zubov, A.A. Long-term seasonal polymorphism of the Krasnodar greenbug population for virulence to sorghum varieties carrying different resistance genes. Russ. J. Ecol. 2012, 43, 204–209. [Google Scholar] [CrossRef]
- Radchenko, E.E.; Alpatieva, N.V.; Chumakov, M.A.; Abdullaev, R.A. Variability of the North Caucasian populations of the greenbug for host virulence and discovered by molecular marker. Russ. J. Genet. 2019, 55, 1417–1425. [Google Scholar] [CrossRef]
- Nkongolo, K.K.; Quick, J.S.; Meyer, W.L.; Piairs, F.B. Russian wheat aphid resistance of wheat, rye, and triticale in greenhouse tests. Cereal Res. Commun. 1989, 17, 227–232. [Google Scholar]
- Haley, S.D.; Peairs, F.B.; Walker, C.B.; Rudolph, J.B.; Randolph, T.L. Occurrence of a new Russian wheat aphid biotype in Colorado. Crop Sci. 2004, 44, 1589–1592. [Google Scholar] [CrossRef] [Green Version]
- Porter, D.R.; Baker, C.A.; El-Bouhssini, M. Resistance in wheat to a new North American–Russian wheat aphid biotype. Plant Breed. 2005, 124, 603–604. [Google Scholar] [CrossRef]
- Burd, J.D.; Porter, D.R.; Puterka, G.J.; Haley, S.D.; Peairs, F.B. Biotypic variation among North American Russian wheat aphid (Homoptera: Aphididae) populations. J. Econ. Entomol. 2006, 99, 1862–1866. [Google Scholar] [CrossRef]
- Weiland, A.A.; Peairs, F.B.; Randolph, T.L.; Rudolph, J.B.; Haley, S.D.; Puterka, G.J. Biotypic diversity in Colorado Russian wheat aphid (Hemiptera: Aphididae) populations. J. Econ. Entomol. 2008, 101, 569–574. [Google Scholar] [CrossRef] [PubMed]
- Wilde, G.; Feese, H. A new corn leaf aphid biotype and its effect on some cereal and small grains. J. Econ. Entomol. 1973, 66, 570–571. [Google Scholar] [CrossRef]
- Xu, Z.H.; Chen, J.L.; Cheng, D.F.; Sun, J.R.; Liu, Y.; Francis, F. Discovery of English grain aphid (Hemiptera: Aphididae) biotypes in China. J. Econ. Entomol. 2011, 104, 1080–1086. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhai, Y.; Liu, D.; Zhang, N.; Li, C.; Shi, X. Identification and genetic differentiation of Sitobion avenae (Hemiptera: Aphididae) biotypes in China. J. Econ. Entomol. 2020, 113, 407–414. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; Boyko, E.V. The molecular bases of plant resistance and defense responses to aphid feeding: Current status. Entomol. Exp. Appl. 2007, 122, 1–16. [Google Scholar] [CrossRef]
- Dodds, P.N.; Rathjen, J.P. Plant immunity: Towards an integrated view of plant-pathogen interactions. Nat. Rev. Genet. 2010, 11, 539–548. [Google Scholar] [CrossRef] [PubMed]
- Vakhrusheva, O.A.; Nedospasov, S.A. System of innate immunity in plants. Mol. Biol. 2011, 45, 16–23. [Google Scholar] [CrossRef]
- Krattinger, S.G.; Keller, B. Molecular genetics and evolution of disease resistance in cereals. New Phytol. 2016, 212, 320–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seah, S.; Sivasithamparam, K.; Karakousis, A.; Lagudah, E.S. Cloning and characterisation of a family of disease resistance gene analogs from wheat and barley. Theor. Appl. Genet. 1998, 97, 937–945. [Google Scholar] [CrossRef]
- Lacock, L.; Van Niekerk, C.; Loots, S.; Du Preez, F.; Botha, A.M. Functional and comparative analysis of expressed sequences from Diuraphis noxia infested wheat obtained utilizing the conserved nucleotide binding site. Afr. J. Biotechnol. 2003, 2, 75–81. [Google Scholar] [CrossRef]
- Kapos, P.; Devendrakumara, K.T.; Li, X. Plant NLRs: From discovery to application. Plant Sci. 2019, 279, 3–18. [Google Scholar] [CrossRef]
- Vos, P.; Simons, G.J.; Wijbrandi, J.T.; Heinen, L.; Hogers, R.; Frijters, A.; Groenendijk, J.; Diergaarde, P.; Reijans, M.; Fierens-Onstenk, J.; et al. The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat. Biotechnol. 1998, 16, 1365–1369. [Google Scholar] [CrossRef]
- Dogimont, C.; Bendahmane, A.; Chovelon, V.; Boissot, N. Host plant resistance to aphids in cultivated crops: Genetic and molecular bases, and interactions with aphid populations. Comptes Rendus Biol. 2010, 333, 566–573. [Google Scholar] [CrossRef]
- Casaretto, J.A.; Corcuera, L.J. Proteinase inhibitor accumulation in aphid-infested barley leaves. Phytochemistry 1998, 49, 2279–2286. [Google Scholar] [CrossRef]
- Miller, H.L.; Neese, P.A.; Ketring, D.L.; Dillwith, J.W. Involvement of ethylene in aphid infestation of barley. J. Plant Growth Regul. 1994, 13, 167–171. [Google Scholar] [CrossRef]
- Argandoña, V.H.; Chaman, M.; Cardemil, L.; Muñoz, O.; Zúñiga, G.E.; Corcuera, L.J. Ethylene production and peroxidase activity in aphid-infested barley. J. Chem. Ecol. 2001, 27, 53–68. [Google Scholar] [CrossRef] [PubMed]
- Van der Westhuizen, A.J.; Pretortus, Z. Biochemical and physiological responses of resistant and susceptible wheat to Russian wheat aphid infestation. Cereal Res. Commun. 1995, 23, 305–313. [Google Scholar]
- Van der Westhuizen, A.J.; Pretortus, Z. Protein composition of wheat apoplastic fluid and resistance to the Russian wheat aphid. Aust. J. Plant Physiol. 1996, 23, 645–648. [Google Scholar] [CrossRef]
- Park, S.J.; Huang, Y.; Ayobi, P. Identification of expression profiles of sorghum genes in response to greenbug phloem-feeding using cDNA subtraction and microarray analysis. Planta 2006, 223, 932–947. [Google Scholar] [CrossRef]
- Jaouannet, M.; Rodriguez, P.A.; Thorpe, P.; Lenoir, C.J.G.; MacLeod, R.; Escudero-Martinez, C.; Bos, J.I.B. Plant immunity in plant–aphid interactions. Front. Plant Sci. 2014, 5, 663. [Google Scholar] [CrossRef] [Green Version]
- Van der Westhuizen, A.J.; Qian, X.M.; Botha, A.M. Differential induction of apoplastic peroxidase and chitinase activities in susceptible and resistant wheat cultivars by Russian wheat aphid infestation. Plant Cell Rep. 1998, 8, 132–137. [Google Scholar] [CrossRef]
- Van der Westhuizen, A.J.; Qian, X.M.; Wilding, M.; Botha, A.M. Purification and immunocytochemical localization of a wheat beta-1,3-glucanase induced by Russian wheat aphid infestation. S. Afr. J. Sci. 2002, 98, 197–202. [Google Scholar]
- Mohase, L.; Van der Westhuizen, A.J. Salicylic acid is involved in resistance responses in the Russian wheat aphid-wheat interaction. J. Plant Physiol. 2002, 159, 585–590. [Google Scholar] [CrossRef]
- Moloi, M.J.; Van der Westhuizen, A.J. The reactive oxygen species are involved in resistance responses of wheat to the Russian wheat aphid. J. Plant Physiol. 2006, 163, 1118–1125. [Google Scholar] [CrossRef]
- Boyko, E.V.; Smith, C.M.; Thara, V.K.; Bruno, J.M.; Deng, Y.; Starkey, S.R.; Klaahsen, D.L. Molecular basis of plant gene expression during aphid invasion: Wheat Pto- and Pti-like sequences are involved in interactions between wheat and Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 2006, 99, 1430–1445. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; Liu, X.; Wang, L.J.; Liu, X.; Chen, M.S.; Starkey, S.; Bai, J. Aphid feeding activates expression of a transcriptome of oxylipin-based defense signals in wheat involved in resistance to herbivory. J. Chem. Ecol. 2010, 36, 260–276. [Google Scholar] [CrossRef] [Green Version]
- Botha, A.-M.; Swanevelder, Z.H.; Lapitan, N.L.V. Transcript profiling of wheat genes expressed during feeding by two different biotypes of Diuraphis noxia. Environ. Entonol. 2010, 39, 1206–1231. [Google Scholar] [CrossRef]
- Lapitan, N.L.V.; Hess, A.; Wang, H.; Van Eck, L.; Scofield, S.; Botha, A.M. Different sets of wheat genes are used in Dn7-mediated resistance to feeding by two biotypes of Russian wheat aphid. In Proceedings of the 11th International Wheat Genetic Symposium, Brisbane, Australia, 24–29 August 2008; Sydney University Press: Sydney, Australia, 2008; Volume 3, pp. 765–767. [Google Scholar]
- Botha, A.M.; Swanevelder, Z.H.; Schultz, T.; Van Eck, L.; Lapitan, N.L.V. Deciphering defense strategies that are elucidated in wheat containing different Dn resistance genes. In Proceedings of the 11th International Wheat Genetic Symposium, Brisbane, Australia, 24–29 August 2008; Sydney University Press: Sydney, Australia, 2008; Volume 1, pp. 83–85. [Google Scholar]
- Weng, Y.; Michels, G.J., Jr.; Lazar, M.D.; Rudd, J.C. Spatial and temporal distribution of induced resistance to greenbug (Homoptera: Aphididae) herbivory in preconditioned resistant and susceptible near isogenic plants of wheat. J. Econ. Entomol. 2005, 98, 1024–1031. [Google Scholar] [CrossRef]
- Zhu-Salzman, K.; Salzman, R.A.; Ahn, J.E.; Koiwa, H. Transcriptional regulation of sorghum defense determinants against a phloem feeding aphid. Plant Physiol. 2004, 134, 420–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tzin, V.; Fernandez-Pozo, N.; Richter, A.; Schmelz, E.A.; Schoettner, M.; Schäfer, M.; Ahern, K.R.; Meihls, L.N.; Kaur, H.; Huffaker, A.; et al. Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol. 2015, 169, 1727–1743. [Google Scholar] [CrossRef] [Green Version]
- Hogenhout, S.A.; Bos, J.I.B. Effector proteins that modulate plant-insect interactions. Curr. Opin. Plant Biol. 2011, 14, 422–428. [Google Scholar] [CrossRef] [PubMed]
- Züst, T.; Agrawal, A.A. Mechanisms and evolution of plant resistance to aphids. Nat. Plants 2016, 2, 15206. [Google Scholar] [CrossRef]
- Nalam, V.; Louis, J.; Shah, J. Plant defense against aphids, the pest extraordinaire. Plant Sci. 2019, 279, 96–197. [Google Scholar] [CrossRef]
- Smith, C.M.; Clement, S.L. Molecular bases of plant resistance to arthropods. Annu. Rev. Entomol. 2012, 57, 309–328. [Google Scholar] [CrossRef]
- Dixon, A.G.O.; Bramel-Cox, P.J.; Harvey, T.L. Diallel analysis of resistance in sorghum to greenbug biotype E: Antibiosis and tolerance. Crop Sci. 1990, 30, 1055–1059. [Google Scholar] [CrossRef]
- Dixon, A.G.O.; Bramel-Cox, P.J.; Harvey, T.L. Complementarity of genes for resistance to greenbug [Schizaphis graminum (Rondani)], biotype E, in sorghum [Sorghum bicolor (L.) Moench]. Theor. Appl. Genet. 1991, 81, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Harvey, T.L.; Wilde, G.E.; Kofoid, K.D.; Bramel-Cox, P.J. Temperature effects on resistance to greenbug (Homoptera: Aphididae) biotype I in sorghum. J. Econ. Entomol. 1994, 87, 500–503. [Google Scholar] [CrossRef]
- Friebe, B.; Zhang, W.; Raupp, J.W.; Gill, B.S.; Porter, D.R. Non-homoeologous wheat-rye chromosomal translocations conferring resistance to greenbug. Euphytica 1995, 84, 121–125. [Google Scholar] [CrossRef]
- Van der Westhuizen, A.J.; Qian, X.M.; Botha, A.M. β-1,3-Glucanases in wheat and resistance to the Russian wheat aphid. Physiol. Plant. 1998, 103, 125–131. [Google Scholar] [CrossRef]
- Rudd, J.C.; Devkota, R.N.; Baker, J.A.; Peterson, G.L.; Lazar, M.D.; Bean, B.; Worrall, D.; Baughman, T.; Marshall, D.; Sutton, R.; et al. ‘TAM 112′ wheat, resistant to greenbug and wheat curl mite and adapted to the dryland production system in the southern high plains. J. Plant Regist. 2014, 8, 291–297. [Google Scholar] [CrossRef] [Green Version]
- Tyler, J.M.; Webster, J.A.; Merkle, O.G. Designations for genes in wheat germplasm conferring greenbug resistance. Crop Sci. 1987, 27, 526–527. [Google Scholar] [CrossRef]
- Sebesta, E.E.; Wood, E.A., Jr. Transfer of greenbug resistance from rye to wheat with X-rays. Agron. Abstr. 1978, 70, 61–62. [Google Scholar] [CrossRef]
- Hollenhorst, M.M.; Joppa, L.R. Chromosomal location of genes for resistance to greenbug in “Largo” and “Amigo” wheats. Crop Sci. 1983, 23, 91–93. [Google Scholar] [CrossRef]
- Porter, D.R.; Webster, J.A.; Friebe, B. Inheritance of greenbug biotype G resistance in wheat. Crop Sci. 1994, 34, 625–628. [Google Scholar] [CrossRef]
- Lu, H.; Rudd, J.C.; Burd, J.D.; Weng, Y. Molecular mapping of greenbug resistance genes Gb2 and Gb6 in T1AL.1RS wheat-rye translocations. Plant Breed. 2010, 129, 472–476. [Google Scholar] [CrossRef]
- Boyko, E.; Starkey, S.; Smith, M. Molecular genetic mapping of Gby, a new greenbug resistance gene in bread wheat. Theor. Appl. Genet. 2004, 109, 1230–1236. [Google Scholar] [CrossRef] [PubMed]
- Dubcovsky, J.; Lukaszewski, A.J.; Echaide, M.; Antonelli, E.F.; Porter, D.R. Molecular characterization of two Triticum speltoides interstitial translocations carrying leaf rust and greenbug resistance genes. Crop Sci. 1998, 38, 1655–1660. [Google Scholar] [CrossRef] [Green Version]
- Joppa, L.R.; Timian, R.G.; Williams, N.D. Inheritance of resistance to greenbug toxicity in an amphiploid of Triticum turgidum/T. tauschii. Crop Sci. 1980, 209, 343–344. [Google Scholar] [CrossRef]
- Martin, T.J.; Harvey, T.L.; Hatchett, J.H. Registration of greenbug and Hessian fly resistant wheat germplasm. Crop Sci. 1982, 22, 1089. [Google Scholar] [CrossRef]
- Zhu, L.C.; Smith, C.M.; Fritz, A.; Boyko, E.; Voothuluru, P.; Gill, B.S. Inheritance and molecular mapping of new greenbug resistance genes in wheat germplasms derived from Aegilops tauschii. Theor. Appl. Genet. 2005, 111, 831–837. [Google Scholar] [CrossRef] [PubMed]
- Weng, Y.; Li, W.; Devkota, R.N.; Rudd, J.C. Microsatellite markers associated with two Aegilops tauschii-derived greenbug resistance loci in wheat. Theor. Appl. Genet. 2005, 110, 462–469. [Google Scholar] [CrossRef]
- Xu, X.; Li, G.; Carver, B.F.; Armstrong, J.S. Gb8, a new gene conferring resistance to economically important greenbug biotypes in wheat. Theor. Appl. Genet. 2020, 133, 615–622. [Google Scholar] [CrossRef]
- Zhu, L.C.; Smith, C.M.; Fritz, A.; Boyko, E.V.; Flinn, M.B. Genetic analysis and molecular mapping of a wheat gene conferring tolerance to the greenbug (Schizaphis graminum Rondani). Theor. Appl. Genet. 2004, 109, 289–293. [Google Scholar] [CrossRef]
- Marais, G.F.; Horn, M.; Du Toit, F. Intergeneric transfer (rye to wheat) of a gene(s) for Russian wheat aphid resistance. Plant Breed. 1994, 113, 265–271. [Google Scholar] [CrossRef]
- Peng, J.; Wang, H.; Haley, S.D.; Peairs, F.B.; Lapitan, N.L.V. Molecular mapping of the Russian wheat aphid resistance gene Dn2414 in wheat. Crop Sci. 2007, 47, 2418–2429. [Google Scholar] [CrossRef]
- Navabi, Z.; Shiran, B.; Assad, M.T. Microsatellite mapping of a Russian wheat aphid resistance gene on chromosome 7B of an Iranian tetraploid wheat line: Preliminary results. Cereal Res. Commun. 2004, 32, 451–457. [Google Scholar] [CrossRef]
- Nkongolo, K.K.; Quick, J.S.; Limin, A.E.; Fowler, D.B. Sources and inheritance of resistance to Russian wheat aphid in Triticum species amphiploids and Triticum tauschii. Can. J. Plant Sci. 1991, 71, 703–708. [Google Scholar] [CrossRef]
- Saidi, A.; Quick, J.S. Inheritance and allelic relationships among Russian wheat aphid resistance genes in winter wheat. Crop Sci. 1996, 36, 256–258. [Google Scholar] [CrossRef]
- Ma, Z.Q.; Saidi, A.; Quick, J.S.; Lapitan, N.L.V. Genetic mapping of Russian wheat aphid resistance genes Dn2 and Dn4 in wheat. Genome 1998, 41, 303–306. [Google Scholar] [CrossRef]
- Du Toit, F. Inheritance of resistance in two Triticum aestivum lines to Russian wheat aphid (Homoptera: Aphididae). J. Econ. Entomol. 1989, 82, 1251–1253. [Google Scholar] [CrossRef]
- Schroeder-Teeter, S.; Zemetra, R.S.; Schotzko, D.J.; Smith, C.M.; Rafi, M. Monosomic analysis of Russian wheat aphid (Diuraphis noxia) resistance in Triticum aestivum line PI 137739. Euphytica 1994, 74, 117–120. [Google Scholar] [CrossRef]
- Du Toit, F.; Wessels, W.G.; Marais, G.F. The chromosome arm location of the Russian wheat aphid resistance gene, Dn5. Cereal Res. Commun. 1995, 23, 15–17. [Google Scholar]
- Heyns, I.; Groenewald, E.; Marais, F.; Du Toit, F.; Tolmay, V. Chromosomal location of the Russian wheat aphid resistance gene, Dn5. Crop Sci. 2006, 46, 630–636. [Google Scholar] [CrossRef]
- Dong, H.; Quick, J.S. Inheritance and allelism of resistances to the Russian wheat aphid in seven wheat lines. Euphytica 1995, 81, 299–303. [Google Scholar] [CrossRef]
- Liu, X.M.; Smith, C.M.; Gill, B.S. Identification of microsatellite markers linked to Russian wheat aphid resistance genes Dn4 and Dn6. Theor. Appl. Genet. 2002, 104, 1042–1048. [Google Scholar] [CrossRef]
- Liu, X.M.; Smith, C.M.; Gill, B.S.; Tolmay, V. Microsatellite markers linked to six Russian wheat aphid resistance genes in wheat. Theor. Appl. Genet. 2001, 102, 504–510. [Google Scholar] [CrossRef]
- Li, G.; Xu, X.; Carver, B.F.; Guo, P.; Puterka, G. Dn10, a new gene conferring resistance to Russian wheat aphid biotype 2 in Iranian wheat landrace PI 682675. Crop Sci. 2018, 58, 1219–1225. [Google Scholar] [CrossRef]
- Tonk, F.A.; Istipliler, D.; Tosun, M.; Turanli, F.; Ilbi, H.; Cakir, M. Genetic mapping and inheritance of Russian wheat aphid resistance gene in accession IG 100695. Plant Breed. 2016, 135, 21–25. [Google Scholar] [CrossRef]
- Valdez, V.A.; Byrne, P.F.; Lapitan, N.L.V.; Peairs, F.B.; Bernardo, A.; Bai, G.; Haley, S.D. Inheritance and genetic mapping of Russian wheat aphid resistance in Iranian wheat landrace accession PI 626580. Crop Sci. 2012, 52, 676–682. [Google Scholar] [CrossRef]
- Liu, X.L.; Yang, X.F.; Wang, C.Y.; Wang, Y.J.; Zhang, H.; Ji, W.Q. Molecular mapping of resistance gene to English grain aphid (Sitobion avenae F.) in Triticum durum wheat line C273. Theor. Appl. Genet. 2012, 124, 287–293. [Google Scholar] [CrossRef]
- Castro, A.M.; Worland, A.J.; Vasicek, A.; Ellerbrook, C.; Giménez, D.O.; Tocho, E.; Tacaliti, M.S.; Clúa, A.; Snape, J.W. Mapping quantitative trait loci for resistance against greenbug and Russian wheat aphid. Plant Breed. 2004, 123, 361–365. [Google Scholar] [CrossRef]
- Castro, A.M.; Vasicek, A.; Manifiesto, M.; Giménez, D.O.; Tacaliti, M.S.; Dobrovolskaya, O.; Röder, M.S.; Snape, J.W.; Börner, A. Mapping antixenosis genes on chromosome 6A of wheat to greenbug and to a new biotype of Russian wheat aphid. Plant Breed. 2005, 124, 229–233. [Google Scholar] [CrossRef]
- Castro, A.M.; Clúa, A.A.; Gimenez, D.O.; Tocho, E.; Tacaliti, M.S.; Collado, M.; Worland, A.; Bottini, R.; Snape, J.W. Genetic resistance to greenbug is expressed with higher contents of proteins and non-structural carbohydrates in wheat substitution lines. In Wheat Production in Stressed Environments; Buck, H.T., Nisi, J.E., Salomón, N., Eds.; Springer: Dordrecht, The Netherlands, 2007; Volume 12, pp. 139–147. [Google Scholar] [CrossRef]
- Quick, J.S.; Nkongolo, K.K.; Meyer, W.; Peairs, F.B.; Weaver, S. Russian wheat aphid reaction and agronomic and quality traits of a resistant wheat. Crop Sci. 1991, 31, 50–53. [Google Scholar] [CrossRef]
- Puterka, G.J.; Xu, X.; Li, G.; Carver, B.F.; Guo, P. Mechanisms of resistance of new wheat gene Dn10 in comparison with other Dn genes resistant to Russian wheat aphid. Crop Sci. 2020, 60, 1782–1788. [Google Scholar] [CrossRef]
- Elsidaig, A.; Zwer, P.K. Genes for resistance to Russian wheat aphid in PI 294994 wheat. Crop Sci. 1993, 33, 998–1001. [Google Scholar] [CrossRef]
- Zhang, Y.; Quick, J.S.; Liu, S. Genetic variation in PI 294994 wheat for resistance to Russian wheat aphid. Crop Sci. 1998, 38, 527–530. [Google Scholar] [CrossRef]
- Liu, X.M.; Smith, C.M.; Friebe, B.R.; Gill, B.S. Molecular mapping and allelic relationships of Russian wheat aphid–resistance genes. Crop Sci. 2005, 45, 2273–2280. [Google Scholar] [CrossRef]
- El Bouhssini, M.; Ogbonnaya, F.C.; Ketata, H.; Mosaad, M.M.; Street, K.; Amri, A.; Keser, M.; Rajaram, S.; Morgounov, A.; Rihawi, F.; et al. Progress in host plant resistance in wheat to Russian wheat aphid (Hemiptera: Aphididae) in North Africa and West Asia. Austr. J. Crop Sci. 2011, 5, 1108–1113. [Google Scholar] [CrossRef]
- Dorry, H.R.; Assad, M.T. Inheritance of leaf shape and its association with chlorosis in wheat infested by Russian wheat aphid (Diuraphis noxia). J. Agric. Sci. 2001, 137, 169–172. [Google Scholar] [CrossRef]
- Peng, J.H.; Bai, Y.; Haley, S.D.; Lapitan, N.L.V. Microsatellite-based molecular diversity of bread wheat germplasm and association mapping of wheat resistance to the Russian wheat aphid. Genetica 2009, 135, 95–122. [Google Scholar] [CrossRef]
- Ricciardi, M.; Tocho, E.; Tacaliti, M.S.; Vasicek, A.; Giménez, D.O.; Paglione, A.; Simmonds, J.; Snape, J.W.; Cakir, M.; Castro, A.M. Mapping quantitative trait loci for resistance against Russian wheat aphid (Diuraphis noxia) in wheat (Triticum aestivum). Crop Pasture Sci. 2010, 61, 970–977. [Google Scholar] [CrossRef]
- Duan, C.X.; Wang, X.M.; Zhang, Z.D. Screening and evaluation of wheat germplasm for resistance to the aphid (Sitobion avenae). J. Plant Genet. Resour. 2006, 7, 297–300. [Google Scholar]
- Hu, B.F.; Ma, X.L.; Shi, G.Y.; Li, B.C.; Meng, Y.X.; Shang, X.W.; Wang, H.J. Genetic analysis of aphid (Macrosiphum avenae) resistant in spring wheat line ‘J231’ and ‘J248’. J. Gansu Agric. Univ. 2009, 44, 58–63. [Google Scholar]
- Crespo-Herrera, L.A.; Akhunov, E.; Garkava-Gustavsson, L.; Jordan, K.W.; Smith, C.M.; Singh, R.P.; Åhman, I. Mapping resistance to the bird cherry-oat aphid and the greenbug in wheat using sequence-based genotyping. Theor. Appl. Genet. 2014, 127, 1963–1973. [Google Scholar] [CrossRef] [Green Version]
- Merkle, O.G.; Starks, K.J. Resistance of wheat to the yellow sugarcane aphid (Homoptera: Aphididae). J. Econ. Entomol. 1985, 78, 127–128. [Google Scholar] [CrossRef]
- Castro, A.M.; Tocho, E.F.; Tacaliti, M.S.; Vasicek, A.; Giménez, D.O.; Börner, A.; Snape, J.W. Gene discovery in recombinant doubled haploid populations for breeding wheat resistance against aphids. In Proceedings of the 11th International Wheat Genetic Symposium, Brisbane, Australia, 24–29 August 2008; Sydney University Press: Sydney, Australia, 2008; Volume 3, pp. 721–723. [Google Scholar]
- Atkins, I.M.; Dahms, R.G. Reaction of Small-Grain Varieties to Green Bug Attack; Technical Bulletin; US Department of Agriculture: Washington, DC, USA, 1945; No. 901; pp. 1–30.
- Gardenhire, J.H.; Chada, H.L. Inheritance of greenbug resistance in barley. Crop Sci. 1961, 1, 349–352. [Google Scholar] [CrossRef]
- Smith, O.D.; Schlehuber, A.M.; Curtis, B.C. Inheritance studies of greenbug (Toxoptera graminum Rond.) resistance in four varieties of winter barley. Crop Sci. 1962, 2, 489–491. [Google Scholar] [CrossRef] [Green Version]
- Gardenhire, J.H. Inheritance and linkage studies on greenbug resistance in barley (Hordeum vulgare L.). Crop Sci. 1965, 5, 28–29. [Google Scholar] [CrossRef] [Green Version]
- Gardenhire, J.H.; Tuleen, N.A.; Stewart, K.W. Trisomic analysis of greenbug resistance in barley, Hordeum vulgare L. Crop Sci. 1973, 13, 684–685. [Google Scholar] [CrossRef]
- Azhaguvel, P.; Mornhinweg, D.; Vidya-Saraswathi, D.; Rudd, J.C.; Chekhovskiy, K.; Saha, M.; Close, T.J.; Dahleen, L.S.; Weng, Y. Molecular mapping of greenbug (Schizaphis graminum) resistance gene Rsg1 in barley. Plant Breed. 2014, 133, 227–233. [Google Scholar] [CrossRef]
- Edwards, L.H.; Smith, E.L.; Pass, H.; Morgan, G.H. Registration of Post barley. Crop Sci. 1985, 25, 363. [Google Scholar] [CrossRef]
- Mornhinweg, D.W.; Edwards, L.H.; Smith, E.L.; Morgan, G.H.; Webster, J.A.; Porter, D.R.; Carver, B.F. Registration of “Post 90” barley. Crop Sci. 2004, 44, 2263. [Google Scholar] [CrossRef]
- Webster, J.A.; Starks, K.J. Sources of resistance in barley to two biotypes of the greenbug Schizaphis graminum (Rondani), Homoptera: Aphididae. Protect. Ecol. 1984, 6, 51–55. [Google Scholar]
- Puterka, G.J.; Peters, D.C.; Kerns, D.L.; Slosser, J.E.; Bush, L.; Worrall, D.W.; McNew, R.W. Designation of two new greenbug (Homoptera: Aphididae) biotypes G and H. J. Econ. Entomol. 1988, 81, 1754–1759. [Google Scholar] [CrossRef]
- Harvey, T.L.; Kofoid, K.D.; Martin, T.J.; Sloderbeck, P.E. A new greenbug virulent to E-biotype resistant sorghum. Crop Sci. 1991, 31, 1689–1691. [Google Scholar] [CrossRef]
- Anstead, J.A.; Burd, J.D.; Shufran, K.A. Over-summering and biotypic diversity of Schizaphis graminum (Homoptera: Aphididae) populations on noncultivated grass hosts. Environ. Entomol. 2003, 32, 662–667. [Google Scholar] [CrossRef] [Green Version]
- Merkle, O.G.; Webster, J.A.; Morgan, G.H. Inheritance of a second source of greenbug resistance in barley. Crop Sci. 1987, 27, 241–243. [Google Scholar] [CrossRef]
- Porter, D.R.; Mornhinweg, D.W. Characterization of greenbug resistance in barley. Plant Breed. 2004, 123, 493–494. [Google Scholar] [CrossRef]
- Porter, D.R.; Burd, J.D.; Mornhinweg, D.W. Differentiating greenbug resistance genes in barley. Euphytica 2007, 153, 11–14. [Google Scholar] [CrossRef]
- Porter, D.R.; Mornhinweg, D.W. New sources of resistance to greenbug in barley. Crop Sci. 2004, 44, 1245–1247. [Google Scholar] [CrossRef]
- Xu, X.; Mornhinweg, D.W.; Bai, G.; Steffenson, B.; Bian, R.; Li, G.; Bernardo, A. Rsg1.a3: A new allele conferring unique resistance to greenbug Biotype H at the Rsg1 locus in Hordeum vulgare ssp. spontaneum. Crop Sci. 2021, 61, 3578–3585. [Google Scholar] [CrossRef]
- Xu, X.; Mornhinweg, D.; Bernardo, A.; Li, G.; Bian, R.; Steffenson, B.J.; Bai, G. Characterization of Rsg2.a3: A new greenbug resistance allele at the Rsg2 locus from wild barley (Hordeum vulgare ssp. spontaneum). Crop J. 2022; in press. [Google Scholar] [CrossRef]
- Bonman, J.M.; Bockelman, H.E.; Jackson, L.F.; Steffenson, B.J. Disease and insect resistance in cultivated barley accessions from the USA National Small Grains Collection. Crop Sci. 2005, 45, 1271–1280. [Google Scholar] [CrossRef]
- Mornhinweg, D.W.; Porter, D.R.; Webster, J.A. Registration of STARS-9301B Russian wheat aphid resistant barley germplasm. Crop Sci. 1995, 35, 603. [Google Scholar] [CrossRef] [Green Version]
- Mornhinweg, D.W.; Porter, D.R.; Webster, J.A. Registration of STARS-9577B Russian wheat aphid resistant barley germplasm. Crop Sci. 1999, 39, 882–883. [Google Scholar] [CrossRef]
- Mornhinweg, D.W.; Porter, D.R.; Webster, J.A. Inheritance of Russian wheat aphid resistance in spring barley germplasm. Crop Sci. 1995, 35, 1368–1371. [Google Scholar] [CrossRef] [Green Version]
- Nieto-Lopez, R.M.; Blake, T.K. Russian wheat aphid resistance in barley: Inheritance and linked molecular markers. Crop Sci. 1994, 34, 655–659. [Google Scholar] [CrossRef]
- Mittal, S.; Dahleen, L.S.; Mornhinweg, D.W. Locations of quantitative trait loci conferring Russian wheat aphid resistance in barley germplasm STARS 9301B. Crop Sci. 2008, 48, 1452–1458. [Google Scholar] [CrossRef]
- Mittal, S.; Dahleen, L.S.; Mornhinweg, D.W. Barley germplasm STARS 9577B lacks a Russian wheat aphid resistance allele at a quantitative trait locus present in STARS 9301B. Crop Sci. 2009, 49, 1999–2004. [Google Scholar] [CrossRef]
- Bregitzer, P.; Mornhinweg, D.W.; Hammon, R.; Stack, M.; Baltensperger, D.D.; Hein, G.L.; O’Neill, M.K.; Whitmore, J.C.; Fiedler, D.J. Registration of “Burton” barley. Crop Sci. 2005, 45, 1166. [Google Scholar] [CrossRef]
- Bregitzer, P.; Mornhinweg, D.W.; Obert, D.E.; Windes, J. Registration of “RWA 1758” wheat aphid-resistant spring barley. J. Plant Registr. 2008, 2, 5–9. [Google Scholar] [CrossRef] [Green Version]
- Puterka, G.J.; Burd, J.D.; Mornhinweg, D.W.; Haley, S.D.; Peairs, F.B. Response of resistant and susceptible barley to infestations of five Diuraphis noxia (Homoptera: Aphididae) biotypes. J. Econ. Entomol. 2006, 99, 2151–2155. [Google Scholar] [CrossRef]
- Mornhinweg, D.W.; Brewer, M.J.; Porter, D.R. Effect of Russian wheat aphid on yield components of field grown susceptible and resistant spring barley. Crop Sci. 2006, 46, 36–42. [Google Scholar] [CrossRef]
- Mornhinweg, D.W.; Bregitzer, P.; Porter, D.R. Registration of seventeen spring two-rowed barley germplasm lines resistant to Russian wheat aphid. J. Plant Registr. 2007, 1, 135–136. [Google Scholar] [CrossRef] [Green Version]
- Mornhinweg, D.W. Bregitzer, P. Porter, D.R. Registration of nineteen spring six-rowed barley germplasm lines resistant to Russian wheat aphid. J. Plant Registr. 2007, 1, 137–138. [Google Scholar] [CrossRef]
- Mornhinweg, D.W.; Bregitzer, P.; Porter, D.R. Registration of seven spring two-rowed barley germplasm lines resistant to Russian wheat aphid. J. Plant Registr. 2008, 2, 230–234. [Google Scholar] [CrossRef]
- Calhoun, D.S.; Burnett, P.A.; Robinson, J.; Vivar, H.E. Field resistance to Russian wheat aphid in barley: I. Sympton expression. Crop Sci. 1991, 31, 1464–1467. [Google Scholar] [CrossRef]
- Robinson, J.; Vivar, H.E.; Burnett, P.A.; Calhoun, D.S. Resistance to Russian wheat aphid (Homoptera: Aphididae) in barley genotypes. J. Econ. Entomol. 1991, 84, 674–679. [Google Scholar] [CrossRef]
- Robinson, J. Modes of resistance in barley seedlings to six aphid (Homoptera: Aphididae) species. J. Econ. Entomol. 1992, 85, 2510–2515. [Google Scholar] [CrossRef]
- Robinson, J.; Delgado, F.; Vivar, H.E.; Burnett, P.A. Inheritance of resistance to Russian wheat aphid in barley. Euphytica 1992, 62, 213–217. [Google Scholar] [CrossRef]
- Assad, M.T.; Ravary, Z.; Pourhadji, A.; Ahmadi, A.A.; Emam, Y. Evaluation and inheritance of resistance to Russian wheat aphid in barley. J. Agric. Sci. 1999, 13, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Aung, T. Intergeneric hybrids between Hordeum vulgare and Elymus trachycaulus resistant to Russian wheat aphid. Genome 1991, 34, 954–960. [Google Scholar] [CrossRef]
- Weibull, J. Resistance to Rhopalosiphum padi (Homoptera: Aphididae) in Hordeum vulgare subsp. spontaneum and in hybrids with H. vulgare subsp. vulgare. Euphytica 1994, 78, 97–101. [Google Scholar] [CrossRef]
- Moharramipour, S.; Tsumuki, H.; Sato, K.; Yoshida, H. Mapping resistance to cereal aphids in barley. Theor. Appl. Genet. 1997, 94, 592–596. [Google Scholar] [CrossRef]
- Verma, R.P.S.; Malik, R.; Kumar, R.; Singh, S.S. Genetics of corn leaf aphid (Rhopalosiphum maidis) resistance in barley. Cereal Res. Commun. 2011, 39, 130–136. [Google Scholar] [CrossRef]
- Gardenhire, J.H. Inheritance of greenbug resistance in oats. Crop Sci. 1964, 4, 443. [Google Scholar] [CrossRef]
- Wilson, R.L.; Starks, K.J.; Pass, H.; Wood, E.A., Jr. Resistance in four oat lines to two biotypes of the greenhug. J. Econ. Entomol. 1978, 71, 886–887. [Google Scholar] [CrossRef]
- Boozaya-Angoon, D.; Starks, K.J.; Edwards, L.H.; Pass, H. Inheritance of resistance in oats to two biotypes of the greenbug. Environ. Entomol. 1981, 10, 557–559. [Google Scholar] [CrossRef] [Green Version]
- Kindler, S.D.; Spomer, S.M. Biotypic status of six greenbug (Homoptera: Aphididae) isolates. Environ. Entomol. 1986, 15, 567–572. [Google Scholar] [CrossRef]
- Livers, R.W.; Harvey, T.L. Greenbug resistance in rye. J. Econ. Entomol. 1969, 62, 1368–1370. [Google Scholar] [CrossRef]
- Harvey, T.L.; Hackerott, H.L. Plant resistance to a greenbug biotype injurious to sorghum. J. Econ. Entomol. 1969, 62, 1271–1274. [Google Scholar] [CrossRef]
- Arriaga, H.O.; Re, R.R. Comportamiento hereditario de la resistencia a la toxemia del pulgon verde en centeno, cebada y trigo. Rev. Fac. Agron. Univ. Nac. Plata Terc. Epoca 1963, 39, 35–50. [Google Scholar]
- Wood, E.A., Jr.; Sebesta, E.E.; Starks, K.J. Resistance of Gaucho triticale to Schizaphis graminum. Environ. Entomol. 1974, 3, 720–721. [Google Scholar] [CrossRef]
- Sebesta, E.E.; Wood, E.A., Jr.; Porter, D.R.; Webster, J.A. Development of a triticale resistant to the greenbug: An historical perspective. Euphytica 1996, 87, 65–67. [Google Scholar] [CrossRef]
- Mater, Y.; Baenziger, S.; Gill, K.; Graybosch, R.; Whitcher, L.; Baker, C.; Specht, J.; Dweikat, I. Linkage mapping of powdery mildew and greenbug resistance genes in recombinant 1RS from “Amigo” and “Kavkaz” wheat-rye translocations of chromosome 1RS.1AL. Genome 2004, 47, 292–298. [Google Scholar] [CrossRef] [Green Version]
- Tyler, J.M.; Webster, J.A.; Merkle, O.G. Identification of rye genotypes resistant to biotypes B, C, E, and F of the greenbug. Euphytica 1988, 37, 65–68. [Google Scholar] [CrossRef]
- Lu, X.W.; Brewbaker, J.L. Genetics of resistance in maize to the corn leaf aphid (Homoptera: Aphididae). Maize Newsl. 1999, 73, 36–37. [Google Scholar]
- So, Y.S.; Ji, H.C.; Brewbaker, J.L. Resistance to corn leaf aphid (Rhopalosiphum maidis Fitch) in tropical corn (Zea mays L.). Euphytica 2010, 172, 373–381. [Google Scholar] [CrossRef]
- Wood, E.A., Jr. Biological studies of a new greenbug biotype. J. Econ. Entomol. 1961, 54, 1171–1173. [Google Scholar] [CrossRef]
- Hackerott, H.L.; Harvey, T.L.; Ross, W.M. Registration of KS 30 sorghum germplasm. Crop Sci. 1972, 12, 719. [Google Scholar] [CrossRef]
- Weibel, D.E.; Starks, K.J.; Wood, E.A., Jr.; Morrison, R.D. Sorghum cultivars and progenies rated for resistance to greenbugs. Crop Sci. 1972, 12, 334–336. [Google Scholar] [CrossRef]
- Tuinstra, M.R.; Wilde, G.E.; Kriegshauser, T. Genetic analysis of biotype I greenbug resistance in sorghum. Euphytica 2001, 121, 87–91. [Google Scholar] [CrossRef]
- Katsar, K.S.; Paterson, A.H.; Teetes, G.L.; Peterson, G.C. Molecular analysis of sorghum resistance to the greenbug (Homoptera: Aphididae). J. Econ. Entomol. 2002, 95, 448–457. [Google Scholar] [CrossRef]
- Agrama, H.A.; Widle, G.E.; Reese, J.C.; Campbell, L.R.; Tuinstra, M.R. Genetic mapping of QTLs associated with greenbug resistance and tolerance in Sorghum bicolor. Theor. Appl. Genet. 2002, 104, 1373–1378. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Huang, Y.; Tauer, C.G.; Porter, D.R. Genetic diversity of sorghum accessions resistant to greenbugs as assessed with AFLP markers. Genome 2006, 49, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Radchenko, E.E. Identification of genes for resistance to greenbug in sorghum. Russ. J. Genet. 2000, 36, 510–519. [Google Scholar]
- Radchenko, E.E. Inheritance of greenbug resistance in several forms of grain sorghum and sudangrass. Russ. J. Genet. 2006, 42, 55–69. [Google Scholar] [CrossRef]
- Radchenko, E.E.; Odintsova, I.G.; Vlasova, T.V. Inheritance of a sign of a weekly expressed greenbug resistance in sorghum. Russ. J. Genet. 2001, 37, 1144–1149. [Google Scholar] [CrossRef]
- Chang, J.H.; Cui, J.H.; Wei, X.U.E.; Zhang, Q.W. Identification of molecular markers for a aphid resistance gene in sorghum and selective efficiency using these markers. J. Integr. Agric. 2012, 11, 1086–1092. [Google Scholar] [CrossRef]
- Wang, F.; Zhao, S.; Han, Y.; Shao, Y.; Dong, Z.; Gao, Y.; Zhang, K.; Liu, X.; Li, D.; Chang, J.; et al. Efficient and fine mapping of RMES1 conferring resistance to sorghum aphid Melanaphis sacchari. Mol. Breed. 2013, 31, 777–784. [Google Scholar] [CrossRef]
- Zhang, J.; Li, W.; Lv, P.; Yang, X.; Xu, W.; Ni, X.; Feng, H.; Zhao, G.; Pu, M.; Zhou, S.; et al. Whole-genome resequencing and transcriptome analysis provide insights on aphid-resistant quantitative trait loci/genes in Sorghum bicolor. Plant Breed. 2021, 140, 618–629. [Google Scholar] [CrossRef]
- Radchenko, E.E.; Zubov, A.A.; Berim, M.N. Effect of virulence genes complementary to the effective resistance genes in sorghum on fitness of the greenbug, Schizaphis graminum Rondani (Homoptera, Aphididae). Entomol. Rev. 2007, 87, 1174–1179. [Google Scholar] [CrossRef]
- Puterka, G.J.; Burd, J.D.; Porter, D.; Shufran, K.; Baker, C.; Bowling, B.; Patrick, C. Distribution and diversity of Russian wheat aphid (Hemiptera: Aphididae) biotypes in North America. J. Econ. Entomol. 2007, 100, 1679–1684. [Google Scholar] [CrossRef]
- Kerns, D.L.; Peters, D.C.; Puterka, G.J. Greenbug biotype and grain sorghum seed sale surveys in Oklahoma. Southwest. Entomol. 1987, 12, 237–243. [Google Scholar]
- Reese, J.C.; Bramel-Cox, P.; Ma, R.; Dixon, A.G.O.; Mize, T.W.; Schmidt, D.J. Greenbug and other pest resistance in sorghum. In Proceedings of the 44th Annual Corn and Sorghum Research Conference, American Seed Trade Association, Washington, DC, USA, 6–7 December 1989; Volume 44, pp. 1–29. [Google Scholar]
- Bouhssini, M.E.; Street, K.; Amri, A.; Mackay, M.; Ogbonnaya, F.C.; Omran, A.; Abdalla, O.; Baum, M.; Dabbous, A.; Rihawi, F. Sources of resistance in bread wheat to Russian wheat aphid (Diuraphis noxia) in Syria identified using the Focused Identification of Germplasm Strategy (FIGS). Plant Breed. 2011, 130, 96–97. [Google Scholar] [CrossRef]
- Radchenko, E.E.; Kuznetsova, T.L.; Zveinek, I.A.; Kovaleva, O.N. Greenbug resistance in barley accessions from East and South Asia. Russian Agric. Sci. 2014, 40, 117–120. [Google Scholar] [CrossRef]
- Radchenko, E.E.; Kuznetsova, T.L.; Chumakov, M.A.; Loskutov, I.G. Greenbug (Schizaphis graminum) resistance in oat (Avena spp.) landraces from Asia. Genet. Resour. Crop Evol. 2018, 65, 571–576. [Google Scholar] [CrossRef]
- Leybourne, D.J.; Valentine, T.A.; Robertson, J.A.H.; Pérez-Fernández, E.; Main, A.M.; Karley, A.J.; Bos, J.I.B. Defence gene expression and phloem quality contribute to mesophyll and phloem resistance to aphids in wild barley. J. Exp. Bot. 2019, 70, 4011–4026. [Google Scholar] [CrossRef] [PubMed]
- Zemetra, R.; Johnson, J.; Quisenberry, S.; Knudsen, G.; Souza, E.; Schotzko, D.; Smith, C.M.; Bechinski, E.; Eng, M.F.; Schroeder-Teeter, S.; et al. Developing integrated control strategies for the Russian wheat aphid in wheat. In Proceedings of the 1st International Crop Science Congress, Ames, IA, USA, 14–22 July 1992; Crop Science Society of America: Madison, WI, USA, 1993; pp. 84–85. [Google Scholar]
- Tyagi, S.; Kesiraju, K.; Saakre, M.; Rathinam, M.; Raman, V.; Pattanayak, D.; Sreevathsa, R. Genome editing for resistance to insect pests: An emerging tool for crop improvement. ACS Omega 2020, 5, 20674–20683. [Google Scholar] [CrossRef] [PubMed]
Chromosome | Resistance Genes of T. aestivum | Resistance Genes of Related Species |
---|---|---|
S. graminum resistance genes | ||
No data available | Gb1 [132] | - |
1A | - | Gb2 (S. cereale) [133,134] Gb6 (S. cereale), linked to Gb2 [135,136] |
7A | Gby [137] | Gb5 (Ae. speltoides) [138] |
7D | - | Gb3 (Ae. tauschii) [134,139] Gb4 (Ae. tauschii), either tightly linked to or allelic with Gb3 [140,141] Gb7 (Ae. tauschii), linked to Gb3 [142] Gb8 (Ae. tauschii) [143] Gbx1, Gba, Gbb, Gbc, Gbd, Gbz (Ae. tauschii), either allelic with or tightly linked to Gb3 [141,144] |
D. noxia resistance genes | ||
1B | - | Dn7 (S. cereale) [145] Dn2414 (S. cereale) [146] |
7B | - | Dn1881 (T. durum) [147] |
D genome | - | Dn3 (Ae. tauschii) [148] |
1D | Dn4 [149,150] | - |
7D | Dn1 [151,152] Dn2 [150,151] Dn1 and Dn2, probably, allelic [149] Dn5 [153,154] Dn6 [149,155], either allelic with or tightly linked to Dn1, Dn2, and Dn5 [156] Dn8 [157] Dn9 [157] Dn10 [158] Dnx [157] Dn2401 [158] Dn100695 [159] Dn626580 [160] | - |
S. avenae resistance genes | ||
6A | - | Sa1 (T. durum) [161] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Radchenko, E.E.; Abdullaev, R.A.; Anisimova, I.N. Genetic Resources of Cereal Crops for Aphid Resistance. Plants 2022, 11, 1490. https://doi.org/10.3390/plants11111490
Radchenko EE, Abdullaev RA, Anisimova IN. Genetic Resources of Cereal Crops for Aphid Resistance. Plants. 2022; 11(11):1490. https://doi.org/10.3390/plants11111490
Chicago/Turabian StyleRadchenko, Evgeny E., Renat A. Abdullaev, and Irina N. Anisimova. 2022. "Genetic Resources of Cereal Crops for Aphid Resistance" Plants 11, no. 11: 1490. https://doi.org/10.3390/plants11111490
APA StyleRadchenko, E. E., Abdullaev, R. A., & Anisimova, I. N. (2022). Genetic Resources of Cereal Crops for Aphid Resistance. Plants, 11(11), 1490. https://doi.org/10.3390/plants11111490