Evaluation of Resistance of Eleven Maize Races (Zea mays L.) to the Red Spider Mite (Tetranychus merganser, Boudreaux)
Abstract
:1. Introduction
2. Results
2.1. Qualitative Phytochemical Analysis
2.2. Quantitative Phytochemical Analysis
2.3. Stomata and Leaf Thickness
2.4. Antixenosis
2.5. Antibiosis
2.6. Mortality
2.7. Principal Component Analysis (PCA)
3. Discussion
4. Materials and Methods
4.1. Red Spider Mite Colony
4.2. Plant Material
4.3. Preparation of Maize Plants and Screening for Resistance
4.4. Phytochemical Extract Analysis
4.4.1. Preparation of Extracts
4.4.2. Total Phenolic Compounds (TPC)
4.4.3. Determination of Total Flavonoids
4.4.4. Antioxidant Capacity Detection Using FRAP
4.4.5. Detection of Phenolic Compounds with KMnO4
4.4.6. Detection of Polyphenols with FeCl3
4.4.7. Detection of Sterols by Liebermann–Burchard Reaction
4.4.8. Detection of Alkaloids by Wagner Reaction
4.4.9. Flavonoid Detection by Shinoda Reaction
4.4.10. Tannin Detection
4.4.11. Detection of Saponins
4.4.12. Detection of Starch
4.4.13. Detection of Reducing Sugars by Fehling Test
4.4.14. Detection of Carotenoids
4.5. Morphological Characteristics
4.5.1. Density and Area of Stomata
4.5.2. Leaf Thickness
4.6. Experimental Design
4.6.1. Antixenosis
4.6.2. Mortality
4.7. Statistic Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vielle-Calzada, J.P.; Padilla, J. The Mexican landraces: Description, classification and diversity. In Handbook of Maize: Its Biology; Bennetzen, J.L., Hake, S.C., Eds.; Springer: New York, NY, USA, 2009; pp. 543–561. [Google Scholar]
- Ureta, C.; Martinez-Meyer, E.; Perales, H.R.; Álvarez-Buylla, E.R. Projecting the effects of climate change on the distribution of maize races and their wild relatives in Mexico. Glob. Change Biol. 2012, 18, 1073–1082. [Google Scholar] [CrossRef]
- González-Martínez, J.; Rocandio-Rodríguez, M.; Contreras-Toledo, A.R.; Joaquín-Cancino, S.; Vanoye-Eligio, V.; Chacón-Hernández, J.C.; Hernández-Bautista, A. Diversidad morfológica y agronómica de maíces nativos del Altiplano de Tamaulipas, México. Rev. Fitotec. Mex. 2020, 43, 361–370. [Google Scholar] [CrossRef]
- USDA. World Agricultural Production. Foreign Agricultural Service. Circular Series WAP 7-21. 2021; 45p. Available online: https://apps.fas.usda.gov/psdonline/circulars/production.pdf (accessed on 25 January 2022).
- Oerke, E.-C. Crop losses to pests. J. Agric. Sci. 2006, 14, 31–43. [Google Scholar] [CrossRef]
- Deutsch, C.A.; Tewksbury, J.J.; Tigchelaar, M.; Battisti, D.S.; Merrill, S.C.; Huey, R.B.; Naylor, R.L. Increase in crop losses to insect pests in a warming climate. Science 2018, 361, 916–919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bui, H.; Greenhalgh, R.; Gill, G.S.; Ji, M.; Kurlovs, A.H.; Ronnow, C.; Lee, S.; Ramirez, R.A.; Clark, R.M. Maize inbred line B96 is the source of large-effect loci for resistance to generalist but not specialist spider mites. Front. Plant Sci. 2021, 12, 693088. [Google Scholar] [CrossRef]
- Carena, M.J.; Glogoza, P. Resistance of maize to the corn leaf aphid: A review. Maydica 2004, 49, 241–254. [Google Scholar]
- Hassan, Y.; Abbas, N.; Li, Y.; Zhang, Y. Selection for resistance, life history traits and the biochemical mechanism of resistance to thiamethoxam in the maize armyworm, Mythimna separata (Lepidoptera: Noctuidae). Phytoparasitica 2018, 46, 627–634. [Google Scholar] [CrossRef]
- Malook, S.; Xu, Y.; Qi, J.; Wang, L.; Wu, J. Mythimna separata herbivory primes maize resistance in systemic leaves. J. Exp. Bot. 2021, 72, 3792–3805. [Google Scholar] [CrossRef]
- Migeon, A.; Dorkeld, F. Spider Mites Web: A Comprehensive Database for the Tetranychidae. Available online: http://www1.montpellier.inra.fr/CBGP/spmweb (accessed on 10 January 2022).
- Bui, H.; Greenhalgh, R.; Ruckert, A.; Gill, G.S.; Lee, S.; Ramirez, R.A.; Clark, R.M. Generalist and specialist mite herbivores induce similar defense responses in maize and barley but differ in susceptibility to benzoxazinoids. Front. Plant Sci. 2018, 9, 1222. [Google Scholar] [CrossRef] [Green Version]
- Bacon, O.G.; Lyons, T.; Baskett, R.S. Effects of spider mite infestations on dent corn in California. J. Econ. Entomol. 1962, 55, 823–825. [Google Scholar] [CrossRef]
- Bynum, E.D.; Michels, J.; MacDonald, J.C.; Bible, J.B. Impact of banks grass mite1 damage to yield and quality of maize silage. Southwest. Entomol. 2015, 40, 251–262. [Google Scholar] [CrossRef]
- Fathipour, Y.; Maleknia, B. Mite Predators. In Ecofriendly Pest Management for Food Security; Omkar, O., Ed.; Academic Press: London, UK, 2016; pp. 329–366. [Google Scholar]
- López-Bautista, E. Incidencia de Daño y Estrategias de Control de Tetranychus merganser en el Cultivo de Papaya (Carica papaya L.). Ph.D. Thesis, Colegio de Postgraduados Campus Montecillo, Texcoco, Mexico, 2014. [Google Scholar]
- López-Bautista, E.; Santillán-Galicia, M.T.; Suárez-Espinosa, J.; Cruz-Huerta, N.; Bautista-Martínez, N.; Alcántara-Jiménez, J.A. Damage caused by mite Tetranychus merganser (Trombidiformes: Tetranychidae) on Carica papaya (Violales: Caricaceae) plants and effect of two species of predatory mite. Int. J. Acarol. 2016, 42, 303–309. [Google Scholar] [CrossRef]
- Smith, C.M. Plant Resistance to Arthropods: Molecular and Conventional Approaches; Springer: Dordrecht, The Netherlands, 2005; p. 423. [Google Scholar]
- Smith, C.M.; Clement, S.L. Molecular bases of plant resistance to arthropods. Annu. Rev. Entomol. 2012, 57, 309–328. [Google Scholar] [CrossRef] [PubMed]
- Kamali, K.; Dicke, F.F.; Guthrie, W.D. Resistance-susceptibility of maize genotypes to artificial infestations by twospotted spider mites. Crop Sci. 1989, 29, 936–938. [Google Scholar] [CrossRef]
- Franzin, M.L.; Coffler, J.M.; Matiello, M.A.; Ferreira, J.O.; Mendes, S.M. Multiple infestations induce direct defense of maize to Tetranychus urticae (Acari: Tetranychidae). Florida Entomol. 2020, 103, 307–315. [Google Scholar] [CrossRef]
- Mansour, E.; Bar-Zur, A.; Abo-Moch, E. Resistance of maize inbred lines to the carmine spider mite, Tetranychus cinnabarinus (Acari: Tetranychidae): Evaluation of antibiosis of selected lines at different growth stages. Maydica 1993, 38, 309–311. [Google Scholar]
- Tadmor, Y.; Lewinsohn, E.; Abo-Moch, F.; Bar-Zur, A.; Mansour, E. Antibiosis of maize inbred lines to the carmine spider mite, Tetranychus cinnabarinus. Phytoparasitica 1999, 27, 35–41. [Google Scholar] [CrossRef]
- Chacón-Hernández, J.C.; Ordaz-Silva, S.; Mireles-Rodriguez, E.; Rocandio-Rodríguez, M.; López-Sánchez, I.V.; Heinz-Castro, R.T.Q.; Reyes-Zepeda, F.; Castro-Nava, S. Resistance of wild chili (Capsicum annuum L. var. glabriusculum) to Tetranychus merganser1 Boudreaux. Southwest. Entomol. 2020, 45, 89–98. [Google Scholar] [CrossRef]
- Treviño-Barbosa, G.; Ordaz-Silva, S.; Gaona-García, G.; Hernández-Juárez, A.; Mora-Ravelo, S.G.; Chacón Hernández, J.C. The resistance of seven host plants to Tetranychus merganser Boudreaux (Acari: Tetranychidae). Insects 2022, 13, 167. [Google Scholar] [CrossRef]
- Ullah, M.S.; Moriya, D.; Badii, M.H.; Nachman, G.; Gotoh, T.A. comparative study of development and demographic parameters of Tetranychus merganser and Tetranychus kanzawai (Acari: Tetranychidae) at different temperatures. Exp. Appl. Acarol. 2011, 54, 1–19. [Google Scholar] [CrossRef]
- Reyes-Pérez, N.; Villanueva-Jiménez, J.A.; De-la-Cruz-Vargas-Mendoza, M.; Cabrera-Mireles, H.; Otero-Colina, G. Parámetros poblacionales de Tetranychus merganser Boudreaux (Acari: Tetranychidae) en papayo (Carica papaya L.) a diferentes temperaturas. Agrociencia 2013, 47, 147–157. [Google Scholar]
- Valencia-Domínguez, H.M.; Otero-Colina, G.; Santillán-Galicia, M.T.; Hernández-Castro, E. Acarofauna en papaya var. Maradol (Carica papaya L.) en el estado de Yucatán, México. Entomotropica 2011, 26, 17–30. [Google Scholar]
- Santamaria, M.E.; Arnaiz, A.; Gonzalez-Melendi, P.; Martinez, M.; Diaz, I. Plant perception and short-term responses to phytophagous insects and mites. Int. J. Mol. Sci. 2018, 19, 1356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shoorooei, M.; Lotfi, M.; Nabipour, A.; Mansouri, A.I.; Kheradmand, K.; Zalom, F.G.; Madadkhah, E.; Parsafar, A. Antixenosis and antibiosis of some melon (Cucumis melo) genotypes to the two-spotted spider mite (Tetranychus urticae) and a possible mechanism for resistance. J. Hort. Sci. Biotechnol. 2013, 88, 73–78. [Google Scholar] [CrossRef]
- Koul, O. Insect Antifeedants; CRC Press: Boca Raton, FL, USA, 2005; p. 1024. [Google Scholar]
- Pavela, R. Natural products as allelochemicals in pest management. In Natural Products in Plant Pest Management; Dubey, N.K., Ed.; CABI: Preston, UK, 2011; pp. 134–148. [Google Scholar]
- Marriott, J.; Florentine, S.; Raman, A. Effects of Tetranychus lintearius (Acari: Tetranychidae) on the structure and water potential in the foliage of the invasive Ulex europaeus (Fabaceae) in Australia. Int. J. Acarol. 2013, 39, 275–284. [Google Scholar] [CrossRef]
- Bensoussan, N.; Santamaria, M.E.; Zhurov, V.; Diaz, I.; Grbić, M.; Grbić, V. Plant-herbivore interaction: Dissection of the cellular pattern of Tetranychus urticae feeding on the host plant. Front. Plant Sci. 2016, 7, 1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najafabadi, S.S.M. Comparative biology and fertility life tables of Tetranychus urticae Koch (Acari: Tetranychidae) on different common bean cultivars. Int. J. Acarol. 2012, 38, 706–714. [Google Scholar] [CrossRef]
- Paulo, P.D.; Lima, C.G.; Dominiquini, A.B.; Fadini, M.A.M.; Mendes, S.M.; Marinho, C.G.S. Maize plants produce direct resistance elicited by Tetranychus urticae Koch (Acari: Tetranychidae). Braz. J. Biol. 2018, 78, 13–17. [Google Scholar] [CrossRef] [Green Version]
- Najafabadi, S.S.M. Evaluation of cucumber cultivars for resistance to Tetranychus urticae Koch. and Tetranychus turkestani Ugarov & Nikolski (Acari: Tetranychidae). Songklanakarin J. Sci. Technol. 2019, 41, 1390–1395. [Google Scholar]
- Najafabadi, S.S.M.; Bagheri, A.; Seyahooei, M.A. Cucumber cultivar responses to two tetranychid mites, two-spotted spider mite and strawberry spider mite in greenhouses. Syst. Appl. Acarol. 2019, 24, 1383–1393. [Google Scholar] [CrossRef]
- Puspitarini, R.D.; Fernando, I.; Rachmawati, R.; Hadi, M.S.; Rizali, A. Host plant variability affects the development and reproduction of Tetranychus urticae. Int. J. Acarol. 2021, 47, 381–386. [Google Scholar] [CrossRef]
- Ullah, F.; Lee, J.-H.; Farhatullh. Evaluation of cucumber (Cucumis sativus L.) accessions (cultivars and lines) against the two-spotted spider mite (Tetranychus urticae Koch.) and kanzawa spider mite (T. kanzawai Kishida, Acari: Tetranychidae). Songklanakarin J. Sci. Technol. 2006, 28, 709–715. [Google Scholar]
- Golizadeh, A.; Ghavidel, S.; Razmjou, J.; Fathi, S.A.A.; Hassanpour, M. Comparative life table analysis of Tetranychus urticae Koch (Acari: Tetranychidae) on ten rose cultivars. Acarologia 2017, 57, 607–616. [Google Scholar] [CrossRef]
- Arnason, J.T.; Conilh de Beyssac, B.; Philogene, B.J.R.; Bergvinson, D.; Serratos, J.A.; Mihm, J.A. Mechanisms of resistance in maize grain to the maize weevil and the larger grain borer. In Insect Resistant Maiz: Recent Advances and Utilization; Mihm, J.A., Ed.; CIMMYT: Mexico City, Mexico, 1994; pp. 91–95. [Google Scholar]
- Santiago, R.; Butron, A.; Reid, L.M.; Arnason, J.T.; Sandoya, G.; Souto, X.C.; Malvar, R.A. Diferulate content of maize sheaths is associated with resistance to the Mediterranean corn borer Sesamia nonagrioides (Lepidoptera: Noctuidae). J. Agric. Food Chem. 2006, 54, 9140–9144. [Google Scholar] [CrossRef] [PubMed]
- McMullen, M.D.; Frey, M.; Degenhardt, J. Genetics and biochemistry of insect resistance in maize. In Handbook of Maize: Its Biology; Bennetzen, J.L., Hake, S.C., Eds.; Springer: New York, NY, USA, 2009; pp. 271–289. [Google Scholar]
- Agut, B.; Gamir, J.; Jacas, J.A.; Hurtado, M.; Flors, V. Different metabolic and genetic responses in citrus may explain relative susceptibility to Tetranychus urticae. Pest. Manag. Sci. 2014, 70, 1728–1741. [Google Scholar] [CrossRef]
- Santamaria, M.E.; Arnaiz, A.; Rosa-Diaz, I.; González-Melendi, P.; Romero-Hernandez, G.; Ojeda-Martinez, D.A.; Garcia, A.; Contreras, E.; Martinez, M.; Diaz, I. Plant defenses against Tetranychus urticae: Mind the gaps. Plants 2020, 9, 464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zavala-López, M.; Flint-García, S.; García-Lara, S. Compositional variation in trans-ferulic, p-coumaric, and diferulic acids levels among kernels of modern and traditional maize (Zea mays L.) hybrids. Front. Nutr. 2020, 7, 600747. [Google Scholar] [CrossRef]
- Razmjou, J.; Vorburger, C.; Tavakkoli, H.; Fallahi, A. Comparative population growth parameters of the two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae), on different common bean cultivars. Syst. Appl. Acarol. 2009, 14, 83–90. [Google Scholar] [CrossRef]
- González-Martínez, J.; Rocandio-Rodríguez, M.; Chacón-Hernández, J.C.; Vanoye-Eligio, V.; Moreno-Ramírez, Y.R. Distribución y diversidad de maíces nativos (Zea mays L.) en el altiplano de Tamaulipas, México. Agroproductividad 2018, 11, 124–130. [Google Scholar]
- González-Martínez, J.; Vanoye-Eligio, V.; Chacón-Hernández, J.C.; Rocandio-Rodríguez, M. Diversidad y caracterización de maíces nativos de la Reserva de la Biósfera “El Cielo”, Tamaulipas, México. CienciaUAT 2019, 14, 6–17. [Google Scholar] [CrossRef]
- Ribeiro, M.G.P.M.; Filho, M.M.; Guedes, I.M.R.; Junqueira, A.M.R.; De-Liz, R.S. Effect of chemical fertilization on two-spotted-spider mite infestation and strawberry yield. Hortic. Bras. 2012, 30, 673–680. [Google Scholar] [CrossRef] [Green Version]
- Alizade, M.; Hosseini, M.; Modarres-Awal, M.; Goldani, M.; Hosseini, A. Effects of nitrogen fertilization on population growth of two-spotted spider mite. Syst. Appl. Acarol. 2016, 21, 947–956. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventos, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–179. [Google Scholar] [CrossRef]
- Chang, C.-C.; Yang, M.-H.; Wen, H.-M.; Chern, J.-C. Estimation of total flavonoid content in propolis by two complementary colometric methods. J. Food Drug Anal. 2002, 10, 176–182. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torres-Castillo, J.A.; Sinagawa-García, S.R.; Torres-Acosta, R.I.; García-García, L.D.; Ramos-Rodríguez, A.G.; Villanueva-Bocanegra, B.; Moreno-Ramírez, Y.R. Entomochemicals from Pterophylla beltrani Bolivar and Bolivar1: Antioxidants and other metabolites. Southwest. Entomol. 2018, 43, 369–381. [Google Scholar] [CrossRef]
- Mrak, E.M.; Phaff, H.J.; Mackinney, G. A simple test for carotenoid pigments in yeasts. J. Bacteriol. 1949, 57, 409–411. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, A. Demographic toxicology as a method for studying the dicofol two spotted spider mite (Acari: Tetranychidae) system. J. Econ. Entomol. 1983, 76, 239242. [Google Scholar] [CrossRef]
- Hussey, N.W.; Parr, W.J. The effect of glasshouse red spider mite (Tetranychus urticae Koch) on the yield of cucumbers. J. Hortic. Sci. 1963, 38, 255–263. [Google Scholar] [CrossRef]
- Nachman, G.; Zemek, R. Interactions in a tritrophic acarine predator-prey metapopulation system III: Effects of Tetranychus urticae (Acari: Tetranychidae) on host plant condition. Exp. Appl. Acarol. 2002, 26, 27–42. [Google Scholar] [CrossRef]
- Birch, L.C. The intrinsic rate of increase of an insect population. J. Anim. Ecol. 1948, 17, 15–26. [Google Scholar] [CrossRef]
- Stark, J.D.; Tanigoshi, L.; Bounfour, M.; Antonelli, A. Reproductive potential: Its influence on the susceptibility of a species to pesticides. Ecotoxicol. Environ. Saf. 1997, 37, 273–279. [Google Scholar] [CrossRef] [PubMed]
- Everitt, B.; Hothorn, T. An Introduction to Applied Multivariate Analysis with R; Springer: New York, NY, USA, 2011; p. 289. [Google Scholar]
- Kaiser, H.F. A note on Guttman’s lower bound for the number of common factors. Br. J. Stat. Psychol. 1961, 14, 1–2. [Google Scholar] [CrossRef]
- Kassambara, A. Practical Guide to Principal Component Methods in R: PCA, (M)CA, FAMD, MFA, HCPC, Factoextra; STHDA: Exeter, UK, 2017; p. 169. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 5 February 2022).
Races | Sap. | Alk. | Phe. | Phen. | Flav. | Sol. | Free | Tan. | Cara. | St. |
---|---|---|---|---|---|---|---|---|---|---|
Raton | − | − | − | + | − | − | − | − | + | − |
Olotillo | − | − | − | + | − | − | − | − | + | − |
Tuxpeño Norteño | − | − | − | + | − | − | − | − | + | − |
Bolita × Raton | − | − | − | + | − | − | − | − | + | − |
Elotes Occidentales × Tuxpeño | − | − | − | + | − | − | − | − | + | − |
Tabloncillo × Tuxpeño | − | − | − | + | − | − | − | − | + | − |
Chalqueño × Tuxpeño | − | − | − | − | − | − | − | − | + | − |
Celaya | − | − | − | + | − | − | − | − | + | − |
Vandeño | − | − | − | ++ | − | − | − | − | + | − |
Nal Tel × Raton | − | − | − | − | − | − | − | − | + | − |
Tuxpeño | − | − | − | + | − | − | − | − | + | − |
Races | Total Flavonoids (mg QE/g) * | Total Phenols (mg GAE/g) | Antioxidant Activity (mM ET/g) |
---|---|---|---|
Raton | 0.39 ± 0.01 a | 3.07 ± 0.77 b,c,d | 30.73 ± 1.92 a |
Olotillo | 0.25 ± 0.01 b | 3.78 ± 0.43 a,b | 23.99 ± 1.61 b,c |
Tuxpeño Norteño | 0.20 ± 0.01 c | 2.30 ± 0.13 d | 16.55 ± 1.50 d |
Bolita × Raton | 0.23 ± 0.02 b | 4.09 ± 0.70 a | 27.67 ± 2.76 a,b |
Elotes Occidentales × Tuxpeño | 0.23 ± 0.02 b | 3.44 ± 0.47 a,b,c | 25.61 ± 1.62 b,c |
Tabloncillo × Tuxpeño | 0.18 ± 0.01 c | 3.00 ± 0.24 b,c,d | 24.22 ± 1.98 b,c |
Chalqueño × Tuxpeño | 0.19 ± 0.01 c | 2.13 ± 0.68 d | 17.89 ± 3.10 d |
Celaya | 0.23 ± 0.02 b | 2.71 ± 0.41 c,d | 24.27 ± 1.21 b,c |
Vandeño | 0.25 ± 0.02 b | 3.80 ± 0.32 a,b | 25.34 ± 1.75 b,c |
Nal Tel × Raton | 0.14 ± 0.02 d | 2.34 ± 1.23 d | 12.10 ± 1.03 e |
Tuxpeño | 0.19 ± 0.01 c | 2.98 ± 0.15 b,c,d | 23.69 ± 4.37 c |
Race | Stomata Density (for Each 2 mm2) per Leaf * | Stoma Area (µm2) | Leaf Thickness (µm) | ||
---|---|---|---|---|---|
Upper | Lower | Upper | Lower | ||
Raton | 272.00 ± 23.27 a,b | 291.54 ± 26.32 b,c,d,e | 1173.11 ± 276.21 a,b,c | 1177.59 ± 228.07 a,b,c | 109.2 ± 1.48 d,e |
Olotillo | 229.33 ± 46.18 b,c | 316.44 ± 11.10 a,b | 1104.34 ± 139.12 a,b,c,d,e | 1107.44 ± 249.07 a,b,c | 118.00 ± 1.67 a,b |
Tuxpeño Norteño | 245.34 ± 29.68 a,b,c | 277.33 ± 18.47 c,d,e,f | 1044.11 ± 215.55 b,c,d,e | 1334.37 ± 560.27 a,b | 105.7 ± 1.47 f,g |
Bolita × Raton | 285.67 ± 45.35 a | 329.23 ± 15.13 a | 820.42 ± 15.79 e,f | 1120.90 ± 45.24 a,b,c | 107.00 ± 1.65 e,f |
Elotes Occidentales × Tuxpeño | 217.00 ± 40.03 c,d | 298.77 ± 43.18 a,d,c,d | 1352.83 ± 270.78 a | 1430.98 ± 313.81 a | 118.70 ± 1.54 a |
Tabloncillo × Tuxpeño | 237.31 ± 8.01 b,c | 304.00 ± 4.70 a,b,c | 1027.52 ± 126.87 c,d,e | 975.7 ± 68.11 b,c | 111.00 ± 1.39 d |
Chalqueño × Tuxpeño | 208.67 ± 10.72 c,d | 248.00 ± 7.85 f,g | 1131.20 ± 137.87 a,b,c,d | 923056 ± 89.90 b,c | 116.00 ± 1.35 b,c |
Celaya | 203.30 ± 3.99 c,d | 272.03 ± 6.95 d,e,f,g | 860.39 ± 130.69 d,e,f | 891.11 ± 78.21 b,c | 114.20 ± 1.20 c |
Vandeño | 208.37 ± 2.38 c,d | 266.41 ± 10.72 e,f,g | 988.67 ± 42.97 c,d,e | 1075.01 ± 196.48 a,b,c | 114.70 ± 1.39 c |
Nal Tel × Raton | 178.67 ± 4.31 d | 242.70 ± 5.76 g | 1312.42 ± 190.74 a,b | 1054.92 ± 35.73 a,b,c | 104.00 ± 1.39 g |
Tuxpeño | 238.30 ± 21.34 b,c | 280.63 ± 13.34 c,d,e | 654.94 ± 68.74 f | 834.33 ± 431.28 c | 110.70 ± 1.73 d |
Race | 24 h * | 48 h | 72 h | |||
---|---|---|---|---|---|---|
Eggs | Damage | Eggs | Damage | Eggs | Damage | |
Raton | 7.00 ± 5.00 b | 13.33 ± 5.77 b | 12.67 ± 8.02 b | 31.67 ± 7.64 a,b | 14.67 ± 9.29 b | 56.67 ± 20.82 a,b,c |
Olotillo | 15.33 ± 10.07 a,b | 16.67 ± 5.77 a,b | 22.67 ± 17.01 a,b | 38.33 ± 16.07 a,b | 27.33 ± 20.33 a,b | 60.00 ± 26.46 a,b,c |
Tuxpeño Norteño | 21.00 ± 4.36 a,b | 16.67 ± 2.89 a,b | 22.33 ± 4.93 a,b | 46.67 ± 11.55 a,b | 25.67 ± 4.51 a,b | 56.67 ± 11.55 a,b,c |
Bolita × Raton | 17.67 ± 8.74 a,b | 26.67 ± 5.77 a | 26.67 ± 8.74 a,b | 46.67 ± 5.77 a,b | 33.33 ± 6.03 a,b | 70.00 ± 0.00 a |
Elotes Occidentales × Tuxpeño | 9.67 ± 5.85 b | 26.67 ± 11.55 a | 15.33 ± 10.69 b | 36.67 ± 20.21 a,b | 17.67 ± 10.97 b | 45.00 ± 25.98 a,b,c |
Tabloncillo × Tuxpeño | 13.33 ± 7.37 a,b | 18.33 ± 7.64 a,b | 17.67 ± 10.69 a,b | 25.00 ± 8.66 a,b | 20.33 ± 9.29 a,b | 25.00 ± 8.66 c |
Chalqueño × Tuxpeño | 18.67 ± 9.29 a,b | 20.00 ± 0.00 a,b | 29.00 ± 14.11 a,b | 33.33 ± 5.77 a,b | 34.00 ± 19.67 a,b | 50.00 ± 17.32 a,b,c |
Celaya | 25.67 ± 17.04 a | 26.67 ± 15.28 a | 42.67 ± 26.86 a | 48.33 ± 29.30 a | 49.33 ± 28.54 a | 65.00 ± 35.00 a,b |
Vandeño | 13.33 ± 5.69 a,b | 11.67 ± 2.89 b | 18.00 ± 7.00 a,b | 21.67 ± 7.64 b | 20.33 ± 9.29 a,b | 30.00 ± 18.03 b,c |
Nal Tel × Raton | 18.33 ± 12.66 a,b | 20.00 ± 8.66 a,b | 33.67 ± 30.07 a,b | 40.00 ± 25.98 a,b | 44.33 ± 40.25 a,b | 55.00 ± 32.79 a,b,c |
Tuxpeño | 10.33 ± 6.81 a,b | 16.67 ± 2.89 a,b | 13.00 ± 6.56 b | 26.67 ± 2.89 a,b | 16.33 ± 8.08 b | 46.67 ± 5.77 a,b,c |
Race | Growth Rate * | ||
---|---|---|---|
24 h | 48 h | 72 h | |
Raton | 0.1482 ± 0.61 a | 0.2064 ± 0.36 a | 0.1660 ± 0.22 a |
Olotillo | 0.6804 ± 0.58 a | 0.377 ± 0.50 a | 0.3074 ± 0.31 a |
Tuxpeño Norteño | 1.0231 ± 0.23 a | 0.5026 ± 0.10 a | 0.3617 ± 0.07 a |
Bolita × Raton | 0.8386 ± 0.46 a | 0.5833 ± 0.17 a | 0.4524 ± 0.06 a |
Elotes Occidentales × Tuxpeño | 0.3006 ± 0.59 a | 0.2451 ± 0.36 a | 0.2013 ± 0.21 a |
Tabloncillo × Tuxpeño | 0.5736 ± 0.59 a | 0.3149 ± 0.43 a | 0.2809 ± 0.19 a |
Chalqueño × Tuxpeño | 0.843 ± 0.47 a | 0.5698 ± 0.27 a | 0.4139 ± 0.21 a |
Celaya | 0.9598 ± 0.92 a | 0.6984 ± 0.43 a | 0.5211 ± 0.25 a |
Vandeño | 0.5496 ± 0.49 a | 0.3869 ± 0.22 a | 0.2801 ± 0.17 a |
Nal Tel × Raton | 0.6898 ± 0.75 a | 0.5596 ± 0.43 a | 0.4346 ± 0.31 a |
Tuxpeño | 0.3384 ± 0.53 a | 0.2439 ± 0.26 a | 0.2074 ± 0.16 a |
Race | 24 h * | 48 h | 72 h |
---|---|---|---|
Raton | 40.00 ± 20.00 a | 50.00 ± 30.00 a | 56.67 ± 32.15 a |
Olotillo | 33.33 ± 20.82 a | 46.67 ± 40.41 a | 50.00 ± 40.00 a |
Tuxpeño Norteño | 26.67 ± 25.17 a | 46.67 ± 11.55 a | 56.67 ± 15.28 a |
Bolita × Raton | 30.00 ± 17.32 a | 33.33 ± 20.82 a | 40.00 ± 17.32 a |
Elotes Occidentales × Tuxpeño | 46.67 ± 23.09 a | 60.00 ± 26.46 a | 66.67 ± 25.17 a |
Tabloncillo × Tuxpeño | 36.67 ± 20.82 a | 46.67 ± 37.86 a | 46.67 ± 30.22 a |
Chalqueño × Tuxpeño | 36.67 ± 25.17 a | 46.67 ± 35.12 a | 46.67 ± 35.12 a |
Celaya | 30.00 ± 36.06 a | 33.33 ± 32.15 a | 33.33 ± 32.15 a |
Vandeño | 46.67 ± 25.17 a | 50.00 ± 20.00 a | 53.33 ± 15.28 a |
Nal Tel × Raton | 46.67 ± 30.55 a | 46.67 ± 30.55 a | 53.33 ± 35.12 a |
Tuxpeño | 50.00 ± 20.00 a | 53.33 ± 15.28 a | 63.33 ± 20.82 a |
Value | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Eigenvalue | 4.26 | 2.65 | 1.63 | 1.37 |
Percentage of explained variance | 35.56 | 22.06 | 13.57 | 11.45 |
Cumulative variance percentage | 35.56 | 57.63 | 71.19 | 82.64 |
Value | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Eigenvalue | 4.51 | 2.81 | 1.73 | 1.28 |
Percentage of explained variance | 37.62 | 23.42 | 14.47 | 10.67 |
Cumulative variance percentage | 37.62 | 61.04 | 75.51 | 86.19 |
Value | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|
Eigenvalue | 5.23 | 2.82 | 1.60 | 1.37 |
Percentage of explained variance | 40.22 | 21.68 | 12.32 | 10.51 |
Cumulative variance percentage | 40.22 | 61.91 | 74.23 | 84.74 |
ID | Race | Location | Latitude | Longitude | MASL |
---|---|---|---|---|---|
39 | Raton | Hidalgo | 24.28 | −99.42 | 413 |
1 | Olotillo | Jaumave | 23.51 | −99.38 | 783 |
4 | Tuxpeño Norteño | Jaumave | 23.39 | −99−.41 | 722 |
12 | Bolita × Raton | Jaumave | 23.35 | −99.43 | 846 |
21 | Elotes Occidentales × Tuxpeño | Tula | 23.01 | −99.62 | 1291 |
27 | Tabloncillo × Tuxpeño | Tula | 22.99 | −99.66 | 1233 |
51 | Chalqueño × Tuxpeño | Palmillas | 23.17 | −99.56 | 1549 |
75 | Celaya | Miquihuana | 23.46 | −99.63 | 1749 |
77 | Vandeño | Jaumave | 23.58 | −99.34 | 656 |
83 | Nal Tel × Raton | Jaumave | 23.74 | −99.45 | 841 |
91 | Tuxpeño | Ocampo | 22.87 | −99.39 | 407 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rocandio-Rodríguez, M.; Torres-Castillo, J.A.; Juárez-Aragón, M.C.; Chacón-Hernández, J.C.; Moreno-Ramírez, Y.d.R.; Mora-Ravelo, S.G.; Delgado-Martínez, R.; Hernández-Juárez, A.; Heinz-Castro, R.T.Q.; Reyes-Zepeda, F. Evaluation of Resistance of Eleven Maize Races (Zea mays L.) to the Red Spider Mite (Tetranychus merganser, Boudreaux). Plants 2022, 11, 1414. https://doi.org/10.3390/plants11111414
Rocandio-Rodríguez M, Torres-Castillo JA, Juárez-Aragón MC, Chacón-Hernández JC, Moreno-Ramírez YdR, Mora-Ravelo SG, Delgado-Martínez R, Hernández-Juárez A, Heinz-Castro RTQ, Reyes-Zepeda F. Evaluation of Resistance of Eleven Maize Races (Zea mays L.) to the Red Spider Mite (Tetranychus merganser, Boudreaux). Plants. 2022; 11(11):1414. https://doi.org/10.3390/plants11111414
Chicago/Turabian StyleRocandio-Rodríguez, Mario, Jorge Ariel Torres-Castillo, María Cruz Juárez-Aragón, Julio Cesar Chacón-Hernández, Yolanda del Rocio Moreno-Ramírez, Sandra Grisell Mora-Ravelo, Rafael Delgado-Martínez, Agustín Hernández-Juárez, Rapucel Tonantzin Quetzalli Heinz-Castro, and Francisco Reyes-Zepeda. 2022. "Evaluation of Resistance of Eleven Maize Races (Zea mays L.) to the Red Spider Mite (Tetranychus merganser, Boudreaux)" Plants 11, no. 11: 1414. https://doi.org/10.3390/plants11111414
APA StyleRocandio-Rodríguez, M., Torres-Castillo, J. A., Juárez-Aragón, M. C., Chacón-Hernández, J. C., Moreno-Ramírez, Y. d. R., Mora-Ravelo, S. G., Delgado-Martínez, R., Hernández-Juárez, A., Heinz-Castro, R. T. Q., & Reyes-Zepeda, F. (2022). Evaluation of Resistance of Eleven Maize Races (Zea mays L.) to the Red Spider Mite (Tetranychus merganser, Boudreaux). Plants, 11(11), 1414. https://doi.org/10.3390/plants11111414