Path Coefficient and Principal Component Analyses for Biomass Allocation, Drought Tolerance and Carbon Sequestration Potential in Wheat
Abstract
:1. Introduction
2. Results
2.1. Analysis of Variance
2.2. Mean Performance
2.3. Principal Component and Biplot Analyses
2.4. Correlations of Root Biomass and Yield Components with Grain Yield under Drought-Stressed and Non-Stressed Conditions
2.5. Path Coefficient Analysis of Root Biomass and Yield Components on Grain Yield
3. Discussion
4. Materials and Methods
4.1. Plant Material and Population Development
4.2. Phenotyping for Root Biomass and Yield Components
4.2.1. Field Evaluation
- Experimental design and planting
- Imposing drought stress
4.2.2. Greenhouse Evaluation
- Imposing drought stress
4.3. Data Collection
4.4. Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Corbeels, M.; Cardinael, R.; Naudin, K.; Guibert, H.; Torquebiau, E. The 4 per 1000 goal and soil carbon storage under agroforestry and conservation agriculture systems in sub-Saharan Africa. Soil Tillage Res. 2019, 188, 16–26. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Residue management, conservation tillage and soil restoration for mitigating greenhouse effect by CO2-enrichment. Soil Tillage Res. 1997, 43, 81–107. [Google Scholar] [CrossRef]
- Chenu, C.; Angers, D.A.; Barre, P.; Derrien, D.; Arrouays, D.; Balesdent, J. Increasing organic stocks in agricultural soils: Knowledge gaps and potential innovations. Soil Tillage Res. 2019, 188, 41–52. [Google Scholar] [CrossRef]
- Rasse, D.P.; Rumpel, C.; Dignac, M.-F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
- Kätterer, T.; Bolinder, M.A.; Andrén, O.; Kirchmann, H.; Menichetti, L. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric. Ecosyst. Environ. 2011, 141, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Hirte, J.; Leifeld, J.; Abiven, S.; Oberholzer, H.-R.; Mayer, J. Below ground carbon inputs to soil via root biomass and rhizodeposition of field-grown maize and wheat at harvest are independent of net primary productivity. Agric. Ecosyst. Environ. 2018, 265, 556–566. [Google Scholar] [CrossRef]
- Kell, D.B. Breeding crop plants with deep roots: Their role in sustainable carbon, nutrient and water sequestration. Ann. Bot. 2011, 108, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Dolezal, J.; Jandova, V.; Macek, M.; Liancourt, P. Contrasting biomass allocation responses across ontogeny and stress gradients reveal plant adaptations to drought and cold. Funct. Ecol. 2020, 35, 32–42. [Google Scholar] [CrossRef]
- McCarthy, M.C.; Enquist, B. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 2007, 21, 713–720. [Google Scholar] [CrossRef]
- Eziz, A.; Yan, Z.; Tian, D.; Han, W.; Tang, Z.; Fang, J. Drought effect on plant biomass allocation: A meta-analysis. Ecol. Evol. 2017, 7, 11002–11010. [Google Scholar] [CrossRef]
- Lin, Y.; Yi, X.; Tang, S.; Chen, W.; Wu, F.; Yang, X.; Jiang, X.; Shi, H.; Ma, J.; Chen, G.; et al. Dissection of Phenotypic and Genetic Variation of Drought-Related Traits in Diverse Chinese Wheat Landraces. Plant Genome 2019, 12, 190025. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verma, H.; Borah, J.L.; Sarma, R. Variability Assessment for Root and Drought Tolerance Traits and Genetic Diversity Analysis of Rice Germplasm using SSR Markers. Sci. Rep. 2019, 9, 16513. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palta, J.A.; Chen, X.; Milroy, S.P.; Rebetzke, G.J.; Dreccer, M.F.; Watt, M. Large root systems: Are they useful in adapting wheat to dry environments? Funct. Plant Biol. 2011, 38, 347–354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Figueroa-Bustos, V.; Palta, J.A.; Chen, Y.; Siddique, K.H. Characterization of Root and Shoot Traits in Wheat Cultivars with Putative Differences in Root System Size. Agronomy 2018, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Fang, Y.; Xu, B.; Turner, N.C.; Li, F. Does root pruning increase yield and water-use efficiency of winter wheat? Crop Pasture Sci. 2010, 61, 899–910. [Google Scholar] [CrossRef]
- Schneider, H.M.; Lynch, J.P. Should Root Plasticity Be a Crop Breeding Target? Front. Plant Sci. 2020, 11, 546. [Google Scholar] [CrossRef]
- Lynch, J.P. Root phenes that reduce the metabolic costs of soil exploration: Opportunities for 21st century agriculture. Plant Cell Environ. 2015, 38, 1775–1784. [Google Scholar] [CrossRef]
- Hirte, J.; Leifeld, J.; Abiven, S.; Mayer, J. Maize and wheat root biomass, vertical distribution, and size class as affected by fertilization intensity in two long-term field trials. Field Crop. Res. 2018, 216, 197–208. [Google Scholar] [CrossRef]
- Friedli, C.N.; Abiven, S.; Fossati, D.; Hund, A. Modern wheat semi-dwarfs root deep on demand: Response of rooting depth to drought in a set of Swiss era wheats covering 100 years of breeding. Euphytica 2019, 215, 85. [Google Scholar] [CrossRef] [Green Version]
- Manschadi, A.M.; Christopher, J.; Devoil, P.; Hammer, G. The role of root architectural traits in adaptation of wheat to water-limited environments. Funct. Plant Biol. 2006, 33, 823–837. [Google Scholar] [CrossRef] [Green Version]
- Xie, Q.; Fernando, K.M.C.; Mayes, S.; Sparkes, D.L. Identifying seedling root architectural traits associated with yield and yield components in wheat. Ann. Bot. 2017, 119, 1115–1129. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.; Ge, Y.; Ashton, R.W.; Evans, J.; Milne, A.; Hawkesford, M.J.; Whalley, W.R.; Parry, M.A.J.; Melichar, J.; Feuerhelm, D.; et al. The relationships between seedling root screens, root growth in the field and grain yield for wheat. Plant Soil 2019, 440, 311–326. [Google Scholar] [CrossRef]
- Lynch, J.P. Roots of the Second Green Revolution. Aust. J. Bot. 2007, 55, 493–512. [Google Scholar] [CrossRef]
- Dwivedi, S.L.; Britt, A.B.; Tripathi, L.; Sharma, S.; Upadhyaya, H.D.; Ortiz, R. Haploids: Constraints and opportunities in plant breeding. Biotechnol. Adv. 2015, 33, 812–829. [Google Scholar] [CrossRef]
- Yan, G.; Liu, H.; Wang, H.; Lu, Z.; Wang, Y.; Mullan, D.; Hamblin, J.; Liu, C. Accelerated Generation of Selfed Pure Line Plants for Gene Identification and Crop Breeding. Front. Plant Sci. 2017, 8, 1786. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reynolds, M.P.; Pellegrineschi, A.; Skovmand, B. Sink-limitation to yield and biomass: A summary of some investigations in spring wheat. Ann. Appl. Biol. 2005, 146, 39–49. [Google Scholar] [CrossRef]
- Shamuyarira, K.W.; Shimelis, H.; Mathew, I.; Zengeni, R.; Chaplot, V. A meta-analysis of combining ability effects in wheat for agronomic traits and drought adaptation: Implications for optimizing biomass allocation. Crop Sci. 2022, 62, 139–156. [Google Scholar] [CrossRef]
- Chen, X.-X.; Zhang, W.; Liang, X.-Y.; Liu, Y.-M.; Xu, S.-J.; Zhao, Q.-Y.; Du, Y.-F.; Zhang, L.; Chen, X.-P.; Zou, C.-Q. Physiological and developmental traits associated with the grain yield of winter wheat as affected by phosphorus fertilizer management. Sci. Rep. 2019, 9, 16580. [Google Scholar] [CrossRef]
- Bastos, L.M.; Carciochi, W.; Lollato, R.P.; Jaenisch, B.R.; Rezende, C.R.; Schwalbert, R.; Prasad, P.V.; Zhang, G.; Fritz, A.K.; Foster, C.; et al. Winter Wheat Yield Response to Plant Density as a Function of Yield Environment and Tillering Potential: A Review and Field Studies. Front. Plant Sci. 2020, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Figueroa-Bustos, V.; Palta, J.A.; Chen, Y.; Siddique, K.H. Early Season Drought Largely Reduces Grain Yield in Wheat Cultivars with Smaller Root Systems. Plants 2019, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Středa, T.; Dostál, V.; Horáková, V.; Chloupek, O. Effective use of water by wheat varieties with different root system sizes in rain-fed experiments in Central Europe. Agric. Water Manag. 2012, 104, 203–209. [Google Scholar] [CrossRef]
- Fang, Y.; Du, Y.; Wang, J.; Wu, A.; Qiao, S.; Xu, B.; Zhang, S.; Siddique, K.; Chen, Y. Moderate Drought Stress Affected Root Growth and Grain Yield in Old, Modern and Newly Released Cultivars of Winter Wheat. Front. Plant Sci. 2017, 8, 672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Severini, A.D.; Wasson, A.P.; Evans, J.R.; Richards, R.A.; Watt, M. Root phenotypes at maturity in diverse wheat and triticale genotypes grown in three field experiments: Relationships to shoot selection, biomass, grain yield, flowering time, and environment. Field Crop. Res. 2020, 255, 107870. [Google Scholar] [CrossRef]
- Qi, Y.; Wei, W.; Chen, C.; Chen, L. Plant root-shoot biomass allocation over diverse biomes: A global synthesis. Glob. Ecol. Conserv. 2019, 18, e00606. [Google Scholar] [CrossRef]
- Ma, S.-C.; Li, F.-M.; Xu, B.; Huang, Z.-B. Effect of lowering the root/shoot ratio by pruning roots on water use efficiency and grain yield of winter wheat. Field Crop. Res. 2010, 115, 158–164. [Google Scholar] [CrossRef]
- Chang, H.; Chen, D.; Kam, J.; Richardson, T.; Drenth, J.; Guo, X.; McIntyre, C.L.; Chai, S.; Rae, A.L.; Xue, G.-P. Abiotic stress upregulated TaZFP34 represses the expression of type-B response regulator and SHY2 genes and enhances root to shoot ratio in wheat. Plant Sci. 2016, 252, 88–102. [Google Scholar] [CrossRef] [Green Version]
- Bacher, H.; Sharaby, Y.; Walia, H.; Peleg, Z. Modifying root-to-shoot ratio improves root water influxes in wheat under drought stress. J. Exp. Bot. 2021, 73, 1643–1654. [Google Scholar] [CrossRef]
- Lilley, J.; Kirkegaard, J. Benefits of increased soil exploration by wheat roots. Field Crop. Res. 2011, 122, 118–130. [Google Scholar] [CrossRef]
- Feng, F.; Han, Y.; Wang, S.; Yin, S.; Peng, Z.; Zhou, M.; Gao, W.; Wen, X.; Qin, X.; Siddique, K. The Effect of Grain Position on Genetic Improvement of Grain Number and Thousand Grain Weight in Winter Wheat in North China. Front. Plant Sci. 2018, 9, 129. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R. The importance of grain or kernel number in wheat: A reply to Sinclair and Jamieson. Field Crop. Res. 2008, 105, 15–21. [Google Scholar] [CrossRef]
- Shokat, S.; Sehgal, D.; Vikram, P.; Liu, F.; Singh, S. Molecular Markers Associated with Agro-Physiological Traits under Terminal Drought Conditions in Bread Wheat. Int. J. Mol. Sci. 2020, 21, 3156. [Google Scholar] [CrossRef] [PubMed]
- Arjona, J.; Royo, C.; Dreisigacker, S.; Ammar, K.; Villegas, D. Effect of Ppd-A1 and Ppd-B1 Allelic Variants on Grain Number and Thousand Kernel Weight of Durum Wheat and Their Impact on Final Grain Yield. Front. Plant Sci. 2018, 9, 888. [Google Scholar] [CrossRef]
- Stella, T.; Mouratiadou, I.; Gaiser, T.; Berg-Mohnicke, M.; Wallor, E.; Ewert, F.; Nendel, C. Estimating the contribution of crop residues to soil organic carbon conservation. Environ. Res. Lett. 2019, 14, 094008. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Department of Agriculture, Forestry and Fisheries (DAFF). Wheat Production Guideline; Department of Agriculture, Forestry and Fisheries: Pretoria, South Africa, 2016; Available online: https://www.nda.agric.za/Portals/0/Brochures%20and%20Production%20guidelines/Wheat%20-%20Production%20Guideline.pdf (accessed on 19 April 2021).
- Payne, R.; Murray, D.; Harding, S. An Introduction to the GenStat Command Language; VSN International: Hempstead, UK, 2017. [Google Scholar]
- Dewey, D.R.; Lu, K.H. A Correlation and Path-Coefficient Analysis of Components of Crested Wheatgrass Seed Production. Agron. J. 1959, 51, 515–518. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 10 February 2022).
SOV | d.f | DTH | DTM | PH | TN | SL | SPS | KPS | TKW | SB | RB | PB | RS | GY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Replication | 1 | 30.06 | 228.44 *** | 142.45 | 335.34 *** | 5.95 * | 18.01 * | 212.15 | 421.16 *** | 4484.00 | 10,390.90 *** | 220,237.00 * | 0.49 *** | 43,869.00 * |
Block | 18 | 29.41 *** | 27.11 | 176.89 * | 21.30 | 2.06 * | 6.352 | 115.63 * | 56.25 ** | 25,982.00 *** | 994.50 * | 67,304.00 | 0.04 | 21,502.00 ** |
Genotype (Gen) | 99 | 60.16 *** | 41.60 *** | 243.27 *** | 16.10 | 4.09 *** | 11.61 *** | 142.25 *** | 58.08 *** | 18,128.00 *** | 769.50 ** | 69,654.00 *** | 0.02 | 14,638.00 ** |
Water Regime (WR) | 1 | 36.23 | 11,794.04 *** | 11,091.44 *** | 205.42 ** | 59.49 *** | 202.55 *** | 7189.67 *** | 9737.33 *** | 938,657.00 *** | 10,709.50 *** | 12,251,041.00 *** | 1.68 *** | 5,465,271.00 *** |
Site | 1 | 46,292.11 *** | 128,227.14 *** | 89,648.69 *** | 15,460.90 *** | 1630.17 *** | 5094.70 *** | 67,179.66 *** | 64,551.23 *** | 2,054,036.00 *** | 24,588.50 *** | 1,132,252.00 *** | 0.05 | 165,356.00 *** |
Gen * WR | 99 | 13.34 * | 20.84 | 104.61 | 20.34 * | 1.59 * | 7.20 *** | 71.70 | 32.42 * | 11,642.00 | 631.90 | 53,980.00 | 0.03 * | 13,481.00 * |
Gen * Site | 98 | 37.36 *** | 17.86 | 149.27 *** | 17.57 | 2.28 *** | 10.32 *** | 94.62 * | 32.11 * | 17,491.00 *** | 756.10 * | 67,155.00 ** | 0.03 | 14,496.00 * |
Gen.WR.Site | 97 | 12.37 | 17.73 | 116.64 | 13.40 | 1.73 ** | 7.13 *** | 72.21 | 37.09 *** | 12,166.00 | 577.70 | 45,619.00 | 0.03 | 12,154.00 |
Residual | 368 | 9.79 | 19.02 | 91.79 | 14.67 | 1.148 | 4.352 | 66.81 | 23.58 | 10,071.00 | 533.00 | 43,026.00 | 0.03 | 10,167.00 |
Traits | Non-Stress | Drought-Stress | |||||||
---|---|---|---|---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC1 | PC2 | PC3 | PC4 | PC5 | |
DTH | 0.08 | −0.38 | 0.17 | −0.33 | 0.05 | 0.44 | 0.35 | 0.22 | 0.33 |
DTM | 0.06 | −0.29 | 0.01 | 0.45 | −0.11 | −0.49 | 0.18 | 0.34 | 0.27 |
PH | 0.32 | 0.00 | 0.25 | −0.29 | 0.35 | 0.07 | 0.33 | 0.07 | 0.10 |
TN | 0.29 | 0.25 | −0.27 | 0.04 | 0.26 | −0.09 | −0.30 | −0.25 | 0.26 |
SL | 0.32 | −0.24 | 0.36 | −0.12 | 0.35 | 0.13 | 0.26 | 0.24 | −0.16 |
SPS | 0.34 | −0.29 | 0.24 | 0.07 | 0.35 | 0.11 | 0.14 | 0.25 | −0.21 |
KPS | 0.26 | −0.37 | 0.03 | 0.22 | 0.27 | −0.16 | 0.00 | 0.14 | −0.60 |
TKW | 0.04 | 0.31 | 0.24 | −0.56 | −0.18 | −0.37 | 0.42 | 0.20 | 0.25 |
SB | 0.39 | 0.07 | −0.28 | −0.05 | 0.39 | 0.06 | 0.05 | −0.20 | 0.23 |
RB | 0.22 | 0.43 | 0.28 | 0.28 | 0.27 | 0.04 | −0.43 | 0.25 | 0.39 |
PB | 0.41 | 0.16 | −0.21 | 0.04 | 0.39 | −0.22 | −0.06 | −0.09 | 0.19 |
RS | −0.04 | 0.31 | 0.60 | 0.37 | −0.08 | 0.07 | −0.44 | 0.69 | −0.03 |
GY | 0.39 | 0.14 | −0.19 | 0.05 | 0.23 | −0.55 | −0.05 | −0.02 | −0.10 |
Eigenvalue | 4.82 | 1.99 | 1.40 | 1.35 | 5.10 | 1.79 | 1.52 | 1.23 | 1.02 |
Per Var (%) | 37.04 | 15.27 | 10.74 | 10.35 | 39.19 | 13.77 | 11.66 | 9.45 | 7.81 |
Cum Var (%) | 37.04 | 52.31 | 63.05 | 73.40 | 39.19 | 52.96 | 64.62 | 74.07 | 81.88 |
Traits | DTH | DTM | PH | TN | SL | SPS | KPS | TKW | SB | RB | PB | RS | GY |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
DTH | 1 | 0.03 | 0.23 * | −0.05 | 0.21 * | 0.13 | 0.12 | 0.02 | 0.1 | −0.16 | 0.03 | −0.17 | 0.02 |
DTM | −0.29 ** | 1 | −0.01 | −0.01 | 0.05 | 0.32 ** | 0.05 | −0.21 * | 0.11 | 0.03 | 0.03 | −0.01 | 0.02 |
PH | 0.28 ** | −0.25 * | 1 | 0.32 ** | 0.55 *** | 0.51 *** | 0.28 ** | 0.32 ** | 0.53 *** | 0.31 ** | 0.51 *** | −0.05 | 0.48 *** |
TN | −0.04 | −0.1 | 0.30 ** | 1 | 0.22 * | 0.24 * | 0.15 | 0.05 | 0.59 *** | 0.42 *** | 0.62 *** | 0.03 | 0.60 *** |
SL | 0.27 ** | −0.27 ** | 0.74 *** | 0.31 ** | 1 | 0.76 *** | 0.49 *** | 0.1 | 0.45 *** | 0.22 * | 0.41 *** | −0.06 | 0.41 *** |
SPS | 0.13 | −0.15 | 0.64 *** | 0.32 ** | 0.79 *** | 1 | 0.62 *** | −0.04 | 0.49 *** | 0.2 | 0.47 *** | −0.07 | 0.48 *** |
KPS | −0.04 | −0.06 | 0.39 *** | 0.25 * | 0.49 *** | 0.55 *** | 1 | −0.25 * | 0.29 ** | 0.04 | 0.40 *** | −0.11 | 0.48 *** |
TKW | −0.13 | 0.37 *** | −0.17 ** | −0.22 * | −0.24 * | −0.38 *** | −0.29 ** | 1 | 0.05 | 0.09 | 0.1 | 0.08 | 0.13 |
SB | 0.15 | −0.23 * | 0.71 *** | 0.55 *** | 0.63 *** | 0.59 *** | 0.41 *** | −0.40 *** | 1 | 0.37 *** | 0.84 *** | −0.24 * | 0.72 *** |
RB | 0.06 | −0.03 | 0.37 *** | 0.51 *** | 0.36 *** | 0.40 *** | 0.23 * | −0.33 *** | 0.58 *** | 1 | 0.49 *** | 0.65 *** | 0.41 *** |
PB | −0.06 | −0.03 | 0.60 *** | 0.57 *** | 0.54 *** | 0.58 *** | 0.50 *** | −0.26 ** | 0.88 *** | 0.64 *** | 1 | −0.05 | 0.94 *** |
RS | 0.03 | 0.1 | −0.24 * | −0.06 | −0.13 | −0.13 | −0.11 | −0.05 | −0.31 ** | 0.39 *** | −0.19 *** | 1 | −0.03 |
GY | −0.38 *** | 0.24 * | 0.26 ** | 0.33 *** | 0.24 * | 0.25 * | 0.55 *** | 0.09 | 0.39 *** | 0.28 ** | 0.67 *** | −0.14 | 1 |
Genotype | Pedigree |
---|---|
LM26 | ATTILA * 2/PBW65//TAM200/TUI |
LM47 | FRET2/KUKUNA//FRET2/3/YANAC/4/FRET2/KIRITATI |
LM48 | FRET2/KUKUNA//FRET2/3/PASTOR//HXL7573/2 * BAU/5/FRET2 *2/4/SNI/TRAP#1/3/KAUZ * 2/TRAP//KAUZ |
LM71 | BABAX/3/PRL/SARA//TSI/VEE#5/4/CROC_1/AE.SQUARROSA (224)//2 * OPATA |
LM75 | BUC/MN72253//PASTOR |
BW141 | CGSS05B00243T-099TOPY-099M-099NJ-099NJ-1WGY-0B |
BW152 | CGSS05B00258T-099TOPY-099M-099NJ-1WGY-0B |
BW162 | CGSS05B00304T-099TOPY-099M-099NJ-099NJ-3WGY-0B |
LM70 | Local check |
BW140 | Local check |
Month | Max Temp (°C) | Min Temp (°C) | Humidity (%) | Rain (mm) |
---|---|---|---|---|
July | 19.9 | 5.4 | 60 | 31 |
August | 21.8 | 7.7 | 60 | 37 |
September | 23.1 | 10 | 67 | 59 |
October | 23.3 | 12 | 75 | 100 |
November | 23.7 | 13.5 | 79 | 121 |
December | 24.8 | 15.3 | 81 | 137 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shamuyarira, K.W.; Shimelis, H.; Figlan, S.; Chaplot, V. Path Coefficient and Principal Component Analyses for Biomass Allocation, Drought Tolerance and Carbon Sequestration Potential in Wheat. Plants 2022, 11, 1407. https://doi.org/10.3390/plants11111407
Shamuyarira KW, Shimelis H, Figlan S, Chaplot V. Path Coefficient and Principal Component Analyses for Biomass Allocation, Drought Tolerance and Carbon Sequestration Potential in Wheat. Plants. 2022; 11(11):1407. https://doi.org/10.3390/plants11111407
Chicago/Turabian StyleShamuyarira, Kwame W., Hussein Shimelis, Sandiswa Figlan, and Vincent Chaplot. 2022. "Path Coefficient and Principal Component Analyses for Biomass Allocation, Drought Tolerance and Carbon Sequestration Potential in Wheat" Plants 11, no. 11: 1407. https://doi.org/10.3390/plants11111407
APA StyleShamuyarira, K. W., Shimelis, H., Figlan, S., & Chaplot, V. (2022). Path Coefficient and Principal Component Analyses for Biomass Allocation, Drought Tolerance and Carbon Sequestration Potential in Wheat. Plants, 11(11), 1407. https://doi.org/10.3390/plants11111407