Effect of Multi-Year Environmental and Meteorological Factors on the Quality Traits of Winter Durum Wheat
Abstract
:1. Introduction
2. Results
2.1. Effect of the Genotype, the Crop Years and Their Interaction on the Gluten Index and Minolta b* Values of Winter Durum Wheat Cultivars, Based on 16 Consecutive Crop Years
2.2. Identifying Superior Durum Wheat Genotypes Based on the Gluten Index and Minolta b* Values
Interaction between the Years and Winter Durum Wheat Cultivars on the Basis of Gluten Index and Minolta b* Data over 16 Years
2.3. Identification of the Meteorological Factors Determining the Gluten Index and Minolta b* Values
2.4. Combined Effect of Meteorological Factors on the Gluten Index and Minolta b* Values of the Cultivars Tested
- (aa) ‘GKB’ gluten index = 336.608 − 6.739 × mean temperature in 2nd 10 days of June − 12.798 × No. of heat days in 2nd 10 days of May − 5.758 × mean temperature in 1st 10 days of July − 0.310 × October rainfall − 1.956 × mean temperature in February
- (bb) ‘GKS’ gluten index: cannot be simplified
- (cc) ‘MVM’ gluten index = 44.806 + 28.670 × No. of heat days in 2nd 10 days of May − 4.098 × mean temperature in October + 0.195 × December rainfall
- (dd) ‘MVP’ gluten index = 120.549 − 0.792 × rainfall in 1st 10 days of April − 2.047 × No. of heat days in 2nd 10 days of June + 0.358 × rainfall in 1st 10 days of July + 6.024 × No. of heat days in 2nd 10 days of May − 1.414 × mean temperature in 1st 10 days of July
- (ee) ‘MVH’ gluten index = 239.199 − 1.445 × rainfall in 1st 10 days of April − 3.787 × mean temperature in February − 5.224 × mean temperature in 2nd 10 days of June + 12.551 × No. of heat days in 2nd 10 days of May − 3.313 × mean temperature in 1st 10 days of July
- (ff) Mean gluten index for the five cultivars: cannot be simplified.
- (εε) ‘MVH’ Minolta b* = 31.523 + 0.079 × rainfall in 1st 10 days of June − 0.489 × mean temperature in 1st 10 days of June + 0.615 × mean temperature in October − 0.228 × mean temperature in 1st 10 days of May
- (φφ) Average Minolta b* for the five cultivars = 27.603 + 0.575 × No. of heat days in 3rd 10 days of May − 0.459 × mean temperature in 1st 10 days of June + 0.333 × mean temperature in 3rd 10 days of April + 0.032 × August rainfall − 0.020 × September rainfall
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Plant Materials
5.2. Site Description and Set-Up for the Field Experiment
5.3. Determination of Gluten Index and Minolta b* Values
5.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grant, C.A.; Di Fonzo, N.; Pisante, M. Agronomy of durum wheat production. In Durum Wheat Chemistry and Technology, 2nd ed.; Sissons, M., Abecassis, J., Marchylo, B., Carcea, M., Eds.; AACC International: St. Paul, MN, USA, 2012; pp. 37–55. [Google Scholar]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Mücher, C.A.; Watkins, J.W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Lafferty, J. Durum-zwischen Ertrag und Qualität? (Durum-between yield and quality?). In Tagungsband der 61. Jahrestagung der Vereinigung der Pflanzenzüchter und Saatgutkaufleute Österreichs, 23–25 November 2010, Raumberg-Gumpenstein; Brandstetter, A., Geppner, M., Grausgruber, H., Buchgraber, K., Eds.; Höhere Bundeslehr- und Forschungsanstalt für Landwirtschaft Raumberg-Gumpenstein: Irdning, Österreich, 2011; pp. 41–44. [Google Scholar]
- Palamarchuk, A. Selection strategies for traits relevant for winter and facultative durum wheat. In Durum Wheat Breeding: Current Approaches and Future Strategies; Royo, C., Nachit, M., Di Fonzo, N., Araus, J.L., Pfeiffer, W.H., Slafer, G.A., Eds.; Food Products Press: New York, NY, USA, 2005; pp. 599–644. [Google Scholar]
- Longin, C.F.H.; Sieber, A.N.; Reif, J.C. Combining frost tolerance, high grain yield and good pasta quality in durum wheat. Plant Breed. 2013, 132, 353–358. [Google Scholar] [CrossRef]
- Romanenko, A.A.; Beszpalova, L.A.; Mudrova, A.A.; Kudrjasov, I.H.; Ablova, I.B.; Terpugova, N.I. Технология возделывания озимой твердой пшеницы в Краснодарском крае. Российская академия сельскохозяйственных наук Краснодарский научно-исследовательский институт сельского хозяйства им. П. П. Лукьяненко, Краснодар (The Technology of Cultivation of Winter durum Wheat in the Krasnodar Territory. Russian Academy of Agricultural Sciences Krasnodar Research Institute of Agriculture Named after P. P. Lukyanenko, Krasnodar); Russian Academy of Agricultural Sciences Krasnodar Research Institute of Agriculture named after P. P. Lukyanenko: Krasnodar, Russia, 2005; p. 62. [Google Scholar]
- Hall, M.D.; Rohrer-Perkins, W.; Griffey, C.A.; Liu, S.Y.; Thomason, W.E.; Abaye, O.A.; Bullard-Schilling, A.; Gundrum, P.G.; Fanelli, J.K.; Chen, J.; et al. Registration of ‘Snowglenn’ winter durum wheat. J. Plant Regist. 2011, 5, 81–86. [Google Scholar] [CrossRef]
- Tamburic-Ilincic, L.; Smid, A.; Griffey, C. OAC Amber winter durum wheat. Can. J. Plant Sci. 2012, 92, 973–975. [Google Scholar] [CrossRef]
- Ruan, Y.; Yu, B.; Knox, R.E.; Singh, A.K.; DePauw, R.; Cuthbert, R.; Zhang, W.; Piche, I.; Gao, P.; Sharpe, A.; et al. High density mapping of quantitative trait loci conferring gluten strength in Canadian durum wheat. Front. Plant Sci. 2020, 11, 170. [Google Scholar] [CrossRef] [Green Version]
- Soriano, J.M.; Colasuonno, P.; Marcotuli, I.; Gadaleta, A. Meta-QTL analysis and identification of candidate genes for quality, abiotic and biotic stress in durum wheat. Sci. Rep. 2021, 11, 11877. [Google Scholar] [CrossRef]
- Mangels, C.E. Effect of climate and other factors on the protein content of North Dakota wheat. Cereal Chem. 1925, 2, 288–297. [Google Scholar]
- Spiertz, J.H.J.; Hamer, R.J.; Xu, H.; Primo-Martin, C.; Don, C.; van der Putten, P.E.L. Heat stress in wheat (Triticum aestivum L.): Effects on grain growth and quality traits. Eur. J. Agron. 2006, 25, 89–95. [Google Scholar] [CrossRef]
- Finney, K.F.; Fryer, H.C. Effect on loaf volume of high temperatures during the fruiting period of wheat. Agron. J. 1958, 50, 28–34. [Google Scholar] [CrossRef]
- Blumenthal, C.S.; Barlow, E.W.R.; Wrigley, C.W. Growth environment and wheat quality: The effect of heat stress on dough properties and gluten proteins. J. Cereal Sci. 1993, 18, 3–21. [Google Scholar] [CrossRef]
- Dupont, F.M.; Altenbach, S.B. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. J. Cereal Sci. 2003, 38, 133–146. [Google Scholar] [CrossRef]
- Ames, N.P.; Clarke, J.M.; Marchylo, B.A.; Dexter, J.E.; Woods, S.M. Effect of environment and genotype on durum wheat gluten strength and pasta viscoelasticity. Cereal Chem. 1999, 76, 582–586. [Google Scholar] [CrossRef]
- Corbellini, M.; Canevar, M.G.; Mazza, L.; Ciaffi, M.; Lafiandra, D.; Borghi, B. Effect of the duration and intensity of heat shock during grain filling on dry matter and protein accumulation, technological quality and protein composition in bread and durum wheat. Aust. J. Plant Physiol. 1997, 24, 245–260. [Google Scholar] [CrossRef]
- Fois, S.; Schlichting, L.; Marchylo, B.; Dexter, J.; Motzo, R.; Giunta, F. Environmental conditions affect semolina quality in durum wheat (Triticum turgidum ssp. durum L.) cultivars with different gluten strength and gluten protein composition. J. Sci. Food Agric. 2011, 91, 2664–2673. [Google Scholar]
- Rharrabti, Y.; Villegas, D.; Royo, C.; Martos-Nuñez, V.; García del Moral, L.F. Durum wheat quality in Mediterranean environments: II. Influence of climatic variables and relationships between quality parameters. Field Crops Res. 2003, 80, 133–140. [Google Scholar] [CrossRef]
- Pinheiro, N.; Costa, R.; Almeida, A.S.; Coutinho, J.; Gomes, C.; Maçãs, B. Durum wheat breeding in Mediterranean environments-influence of climatic variables on quality traits. Emir. J. Food Agric. 2013, 25, 962–973. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.F.; Wu, Y.; Hernandez-Espinosa, N.; Peña, R.J. Heat and drought stress on durum wheat: Responses of genotypes, yield, and quality parameters. J. Cereal Sci. 2013, 57, 398–404. [Google Scholar] [CrossRef]
- Guzmán, C.; Autrique, J.E.; Mondal, S.; Singh, R.P.; Govindan, V.; Morales-Dorantes, A.; Posadas-Romano, G.; Crossa, J.; Ammar, K.; Peña, R.J. Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crops Res. 2016, 186, 157–165. [Google Scholar] [CrossRef]
- Kiliç, H.; Yağbasanlar, T. The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Not. Bot. Horti Agrobot. Cluj-Napoca 2010, 38, 164–170. [Google Scholar]
- Matuz, J.; Beke, B.; Kovács, Z. Az évjárat hatása az őszi durum búzatörzsek (Triticum durum Desf.) minőségére, valamint az F1, F2, és F3 hibridpopulációk minőségének öröklődésére. Növénytermelés 1997, 46, 1–11. [Google Scholar]
- Cseuz, L.; Matuz, J.; Beke, B. Annual effect on grain quality of winter durum wheat (Triticum turgidum L. var. durum) in Szeged, Hungary. In Durum Wheat Improvement in the Mediterranean Region: New Challenges; Royo, C., Nachit, M., Di Fonzo, N., Araus, J.L., Eds.; Options Méditerranéennes: Série A. Séminaires Méditerranéens; CIHEAM-IAMZ: Zaragoza, Spain, 2000; Volume 40, pp. 133–135. [Google Scholar]
- Hadži-Tašković Šukalović, V.; Didig, D.; Zilic, S.; Basic, Z.; Kandic, V.; Delic, N.; Miritescu, M. Genotypic and environmental variation of bread and durum wheat proteins and antioxidant compounds. Rom. Agric. Res. 2013, 30, 125–134. [Google Scholar]
- Veisz, O.; Bencze, S.; Balla, K.; Vida, G. Change in water stress resistance of cereals due to atmospheric CO2 enrichment. Cereal Res. Commun. 2008, 36, 1095–1098. [Google Scholar]
- Balla, K.; Karsai, I.; Veisz, O. Analysis of the quality of wheat varieties at extremely high temperatures. Cereal Research Communications, 37, Supplement. In Proceedings of the VIII. Alps-Adria Scientific Workshop, Neum, Bosnia-Herzegovina, 27 April–2 May 2009; pp. 13–16. [Google Scholar]
- Balla, K.; Rakszegi, M.; Bencze, S.; Karsai, I.; Veisz, O. Effect of high temperature and drought on the composition of gluten proteins in Martonvásár wheat varieties. Acta Agron. Hung. 2010, 58, 343–353. [Google Scholar] [CrossRef]
- Bányai, J.; Kiss, T.; Gizaw, S.A.; Mayer, M.; Spitkó, T.; Tóth, V.; Kuti, C.; Mészáros, K.; Láng, L.; Karsai, I.; et al. Identification of superior spring durum wheat genotypes under irrigated and rain-fed conditions. Cereal. Res. Com. 2020, 48, 355–363. [Google Scholar] [CrossRef] [Green Version]
- Jan, W.; Tinker, N. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar]
Factor | Df | SQ | MQ | F-Value | Significance |
---|---|---|---|---|---|
Gluten index | |||||
Year | 15 | 33,843.251 | 2256.217 | 46.893 | 0.000 |
Error (a) | 16 | 769.834 | 48.115 | ||
Genotype | 4 | 99,461.842 | 24,865.46 | 1144.469 | 0.000 |
Year × Genotype | 60 | 12,062 | 201.033 | 9.253 | 0.000 |
Error (b) | 64 | 1390.504 | 21.727 | ||
Total | 159 | 147,527.431 | |||
Minolta b* | |||||
Year | 15 | 605.44 | 40.363 | 560.278 | 0.000 |
Error (a) | 16 | 1.153 | 0.072 | ||
Genotype | 4 | 364.886 | 91.222 | 767.01 | 0.000 |
Year × Genotype | 60 | 70.622 | 1.177 | 9.897 | 0.000 |
Error (b) | 64 | 7.612 | 0.119 | ||
Total | 149 | 1049.712 |
Year | ‘GKB’ | ‘GKS’ | ‘MVM’ | ‘MVP’ | ‘MVH’ | Cultivar Mean | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
GI | MB | GI | MB | GI | MB | GI | MB | GI | MB | GI | MB | |
2004/2005 | 72.74 | 24.73 | 87.63 | 26.11 | 1.89 | 25.72 | 91.44 | 27.06 | 62.49 | 31.80 | bc63.24 | c27.08 |
2005/2006 | 75.08 | 26.18 | 91.73 | 27.13 | 29.78 | 28.40 | 79.73 | 26.37 | 61.60 | 30.51 | bc67.58 | ab27.72 |
2006/2007 | 67.27 | 26.97 | 83.88 | 27.28 | 22.82 | 27.60 | 85.86 | 29.24 | 48.01 | 29.63 | bcd61.57 | a28.14 |
2007/2008 | 77.72 | 24.96 | 82.02 | 27.85 | 10.79 | 26.43 | 88.13 | 29.03 | 48.04 | 28.99 | bcd61.34 | bc27.45 |
2008/2009 | 98.22 | 22.60 | 93.71 | 22.63 | 68.54 | 22.85 | 98.61 | 22.71 | 89.95 | 26.91 | a89.81 | ef23.54 |
2009/2010 | 64.86 | 20.84 | 76.72 | 23.16 | 15.95 | 24.26 | 77.63 | 24.36 | 42.92 | 26.76 | cde55.62 | e23.88 |
2010/2011 | 83.34 | 20.01 | 80.53 | 22.05 | 21.43 | 22.72 | 94.36 | 23.80 | 72.15 | 25.23 | b70.36 | gh22.76 |
2011/2012 | 37.48 | 20.41 | 48.67 | 24.72 | 1.67 | 23.17 | 59.69 | 23.53 | 22.48 | 25.12 | gh34.00 | f23.39 |
2012/2013 | 31.41 | 22.64 | 78.58 | 25.18 | 7.53 | 24.38 | 74.46 | 25.28 | 9.90 | 27.57 | fg40.38 | d25.01 |
2013/2014 | 66.87 | 22.53 | 87.61 | 24.31 | 1.76 | 25.21 | 93.16 | 24.81 | 58.88 | 27.56 | bcd61.66 | d24.88 |
2014/2015 | 39.42 | 21.47 | 69.82 | 22.50 | 1.64 | 23.80 | 90.21 | 23.15 | 41.20 | 25.14 | ef48.46 | fg23.21 |
2015/2016 | 42.65 | 20.06 | 69.67 | 21.72 | 7.58 | 21.79 | 80.88 | 22.72 | 35.73 | 25.80 | ef47.30 | h22.42 |
2016/2017 | 47.29 | 19.60 | 80.52 | 20.71 | 3.97 | 21.64 | 90.05 | 21.93 | 55.30 | 23.24 | cde55.43 | i21.42 |
2017/2018 | 43.10 | 21.20 | 65.24 | 23.60 | 3.75 | 23.58 | 82.45 | 24.40 | 45.99 | 26.96 | ef48.11 | e23.95 |
2018/2019 | 26.01 | 22.80 | 39.75 | 23.70 | 1.50 | 24.81 | 60.77 | 25.37 | 9.37 | 26.68 | h27.48 | d24.67 |
2019/2020 | 50.81 | 23.27 | 69.60 | 24.23 | 1.77 | 23.87 | 90.61 | 25.49 | 39.28 | 27.18 | def50.41 | d24.81 |
Average | C57.77 | d22.51 | B75.36 | c24.18 | C12.65 | c24.39 | A83.63 | b24.95 | D46.46 | a27.19 | 55.17 | 24.64 |
Minimum | 26.01 | 19.60 | 39.75 | 20.71 | 1.50 | 21.64 | 59.69 | 21.93 | 9.37 | 23.24 | 27.48 | 21.42 |
Maximum | 98.22 | 26.97 | 93.71 | 27.85 | 68.54 | 28.40 | 98.61 | 29.24 | 89.95 | 31.80 | 89.81 | 28.14 |
St. Dev. | 20.80 | 2.25 | 14.76 | 2.10 | 17.39 | 1.92 | 11.22 | 2.13 | 21.24 | 2.19 | 15.02 | 2.01 |
Meteorological Factor | ‘GKB’ | ‘GKS’ | ‘MVM’ | ‘MVP’ | ‘MVH’ | Cultivar Mean |
---|---|---|---|---|---|---|
Gluten Index | ||||||
November rainfall | 0.517 * | |||||
Rainfall, 1st 10 days of April | −0.733 ** | −0.600 ** | −0.589 * | |||
Rainfall, 3rd 10 days of May | −0.517 * | |||||
May rainfall | −0.497 * | |||||
Rainfall, 3rd 10 days of June | 0.566 * | |||||
Mean temp., 1st 10 days of June | −0.502 * | |||||
Mean temp., 2nd 10 days of June | −0.535 * | −0.623 * | −0.586 * | −0.528 * | ||
Mean temperature in June | −0.556 * | −0.660 ** | −0.557 * | −0.546 * | −0.615* | |
Mean temp. 1st 10 days of July | −0.517 * | −0.616 * | −0.592 * | −0.498 * | −0.545 * | |
Heat days, 2nd 10 days of May | 0.533 * | 0.859 *** | 0.511 * | 0.617 * | ||
Heat days, 2nd 10 days of June | −0.544 * | |||||
Minolta b* | ||||||
Rainfall, 3rd 10 days of April | 0.561 * | |||||
Rainfall 1st 10 days of June | 0.583 * | 0.546 * | 0.617 * | 0.623 * | 0.597 * | |
Mean temperature in October | −0.607 * | |||||
Heat days, 3rd 10 days of May | 0.671 ** | 0.626 * | 0.568 * | 0.777 *** | 0.609 * | 0.688 ** |
Heat days in May | 0.617 ** | 0.586 * | 0.663 ** | 0.593 * | 0.622 * | |
Heat days in June | 0.520 * | 0.503 * | 0.583 * | 0.536 * | ||
Total no. of heat days | 0.662 ** | 0.611 * | 0.728 ** | 0.703 ** | 0.670 ** |
Cultivar | Model | No. of Meteorological Factors in the Equation | Code | Multiple Coefficient of Determination (R²) |
---|---|---|---|---|
‘GKB’ | a | 9 | Jun2T, May2H, Jul1T, OctR, FebT, Jun2H, OctT, May2R, Jun3R | 0.999 |
aa | 5 | Jun2T, May2H, Jul1T, OctR, FebT | 0.924 | |
‘GKS’ | b | 2 | Jul1T, May1R | 0.636 |
‘MVM’ | c | 4 | May2H, OctT, DecR, Jul1T | 0.935 |
cc | 3 | May2H, OctT, DecR | 0.905 | |
‘MVP’ | d | 7 | Apr1R, Jun2H, Jul1R, May2H, Jul1T, May1R, Apr3R | 0.988 |
dd | 5 | Apr1R, Jun2H, Jul1R, May2H, Jul1T | 0.942 | |
‘MVH’ | e | 7 | Apr1R, FebT, Jun2T, May2H, Jul1T, MarT, AugR | 0.980 |
ee | 5 | Apr1R, FebT, Jun2T, May2H, Jul1T | 0.912 | |
Cultivar Mean | f | 4 | May2H, Jun2T, Jul1T, OctR | 0.873 |
Cultivar | Model | No. of Meteorological | Code | Multiple Coefficient |
---|---|---|---|---|
factors in the equation | of determination (R²) | |||
‘GKB’ | α | 4 | May3H, May3T, Apr3R, Jun3R | 0.867 |
‘GKS’ | β | 5 | May3H, Apr3T, Jun3H, Jun3R, Jun1T | 0.885 |
‘MVM’ | λ | 1 | May3H | 0.325 |
‘MVP’ | δ | 1 | May3H | 0.602 |
‘MVH’ | ε | 15 | Jun1R, Jun1T, OctT, May1T, JanT, Jul1R, DecT, Jul1T, JanR, SepR, May3H, AugR, Jun2R, Apr2R, MarT | 1.000 |
εε | 4 | Jun1R, Jun1T, OctT, May1T | 0.908 | |
Cultivar Mean | Φ | 11 | May3H, Jun1T, Apr3T, AugR, SepR, May1R, DecR, FebT, May3R, Apr1T, May2T | 1.000 |
ΦΦ | 5 | May3H, Jun1T, Apr3T, AugR, SepR | 0.915 |
Gluten Index | Minolta b* | ||||
---|---|---|---|---|---|
Function 1 | t-Value | Probability 2 | Function 1 | t-Value | Probability 2 |
a | −0.02899 | 0.97726 | α | −0.06414 | 0.94970 |
aa | −0.01010 | 0.99208 | β | −0.00513 | 0.99765 |
b | −0.00299 | 0.99765 | λ | 0.00190 | 0.99851 |
c | 0.01959 | 0.98463 | δ | 0.00074 | 0.99942 |
cc | −0.00155 | 0.99878 | ε | 0.01055 | 0.99173 |
d | −0.03538 | 0.97225 | εε | −0.09425 | 0.92616 |
dd | 0.00102 | 0.99920 | Φ | 0.03005 | 0.97642 |
e | −0.03542 | 0.97221 | ΦΦ | 0.04009 | 0.96855 |
ee | −0.00579 | 0.99546 | |||
f | −0.00687 | 0.99461 |
Vegetation Period | Rainfall | Mean Temperature (°C) | No. of Heat Days 1 | Days from January 1st | Characteristic Meteorological Stress Factor(s) | |||
---|---|---|---|---|---|---|---|---|
(mm) | ||||||||
Σ | GFP | Σ | GFP | Sowing | Harvest | |||
2004/2005 | 458.4 | 49.2 | 6.96 | 18.69 | 10 | 280 | 177 | Rain at harvest |
2005/2006 | 421.6 | 118.4 | 7.30 | 19.01 | 17 | 283 | 191 | Cold January, heat stress before harvest |
2006/2007 | 167.8 | 86.6 | 10.64 | 20.71 | 30 | 285 | 173 | Drought, heat stress before harvest |
2007/2008 | 361.4 | 88.8 | 7.97 | 19.91 | 14 | 285 | 184 | Above-average rainfall |
2008/2009 | 320.0 | 85.5 | 8.32 | 18.06 | 6 | 283 | 183 | Dry April and grain-filling period |
2009/2010 | 629.5 | 186.5 | 8.06 | 19.96 | 14 | 281 | 195 | Rainfall far above average |
2010/2011 | 238.1 | 54.5 | 7.26 | 19.29 | 3 | 287 | 192 | Cold December, heat stress before harvest |
2011/2012 | 210.2 | 78.2 | 7.39 | 18.73 | 9 | 284 | 180 | Drought, heat stress before harvest |
2012/2013 | 381.8 | 68.2 | 7.63 | 17.96 | 7 | 279 | 183 | Sharp cold spell in mid-March |
2013/2014 | 304.9 | 87.7 | 9.22 | 17.78 | 6 | 276 | 183 | Dry January, warmer than average winter |
2014/2015 | 320.9 | 83.4 | 8.44 | 18.39 | 9 | 283 | 183 | Dry, hot June |
2015/2016 | 365.1 | 125.6 | 8.65 | 19.01 | 7 | 302 | 186 | Late sowing, cold January, dry April |
2016/2017 | 236.4 | 50.5 | 7.52 | 20.69 | 11 | 288 | 184 | Cold January, dry grain-filling period |
2017/2018 | 463.6 | 117.3 | 8.67 | 20.10 | 6 | 285 | 176 | Cold January, wet March, dry April |
2018/2019 | 349.4 | 117.0 | 8.92 | 20.27 | 13 | 277 | 183 | Dry March and April, wet May |
2019/2020 | 355.0 | 111.3 | 8.80 | 18.17 | 6 | 288 | 183 | Dry March and April, cool year |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vida, G.; Cséplő, M.; Rakszegi, M.; Bányai, J. Effect of Multi-Year Environmental and Meteorological Factors on the Quality Traits of Winter Durum Wheat. Plants 2022, 11, 113. https://doi.org/10.3390/plants11010113
Vida G, Cséplő M, Rakszegi M, Bányai J. Effect of Multi-Year Environmental and Meteorological Factors on the Quality Traits of Winter Durum Wheat. Plants. 2022; 11(1):113. https://doi.org/10.3390/plants11010113
Chicago/Turabian StyleVida, Gyula, Mónika Cséplő, Marianna Rakszegi, and Judit Bányai. 2022. "Effect of Multi-Year Environmental and Meteorological Factors on the Quality Traits of Winter Durum Wheat" Plants 11, no. 1: 113. https://doi.org/10.3390/plants11010113
APA StyleVida, G., Cséplő, M., Rakszegi, M., & Bányai, J. (2022). Effect of Multi-Year Environmental and Meteorological Factors on the Quality Traits of Winter Durum Wheat. Plants, 11(1), 113. https://doi.org/10.3390/plants11010113