Geographic Area of Collection Determines the Chemical Composition and Antimicrobial Potential of Three Extracts of Chilean Propolis
Abstract
:1. Introduction
2. Results
2.1. Botanical Origin of Chilean Samples
2.2. Total Polyphenols Content in Chilean Propolis and Compounds Quantification
2.3. Balsam Content in the PCP1,PCP2 and PCP3 Samples of Chilean Propolis
2.4. Test for Determining the Antimicrobial Activity of Chilean Propolis
3. Discussion
4. Materials and Methods
4.1. Preparation of Extract of Chilean Propolis (PCP1; PCP2; PCP3)
4.2. Botanical Origin of Propolis
4.3. Determination of Total Phenolic Content in Extracts of Chilean Propolis
4.4. Flavones and Flavonols (Total Flavonoids) Content
4.5. Total Flavanones and Dihydroflavonols
4.6. Quantification of Total Anthocyanins in Chilean Propolis
4.7. Quantification of Total Tannins in PCP1, PCP2 and PCP3 Samples
4.8. Balsam Content in PCP1, PCP2 and PCP3 Samples
4.9. Identification and Quantification of Some Compounds Present in Chilean Propolis
4.10. Antimicrobial Activity of Chilean Propolis (PCP1, PCP2, PCP3)
4.11. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Popova, M.P.; Bankova, V.S.; Bogdanov, S.; Tsvetkova, I.; Naydenski, C.; Marcazzan, G.L.; Sabatini, A.-G. Chemical Characteristics of Poplar Type Propolis of Different Geographic Origin. Apidologie 2007, 38, 306. [Google Scholar] [CrossRef] [Green Version]
- Libério, S.; Pereira, A.; Araujo, M.J. The Potential Use of Propolis as a Cariostatic Agent and Its Actions on Mutans Group Streptococci. J. Ethnopharmacol. 2009, 125, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Zhang, C.-P.; Wang, K.; Li, G.Q.; Hu, F.-L. Recent Advances in the Chemical Composition of Propolis. Molecules 2014, 19, 19610–19632. [Google Scholar] [CrossRef] [Green Version]
- Da Silva Barboza, A.; Aitken-Saavedra, J.P.; Lamas, M. Are Propolis Extract Potential Pharmacological Agents in Human Oral Health? A Scping Review and Technology Prospecting. J. Ethnoparm. 2021, 271, 1–8. [Google Scholar] [CrossRef]
- Daleprane, J.; Freitas, V.D.S.; Pacheco, A.; Rudnicki, M.; Faine, L.A.; Dörr, F.A.; Ikegaki, M.; Salazar, L.A.; Ong, T.; Abdalla, D.S.P. Anti-Atherogenic and Anti-Angiogenic Activities of Polyphenols from Propolis. J. Nutr. Biochem. 2012, 23, 557–566. [Google Scholar] [CrossRef]
- Cuevas, A.; Saavedra, N.; Cavalcante, M.F.; Salazar, L.A.; Abdalla, D.S. Identification of microRNAs Involved in the Modulation of Pro-Angiogenic Factors in Atherosclerosis by a Polyphenol-Rich Extract from Propolis. Arch. Biochem. Biophys. 2014, 557, 28–35. [Google Scholar] [CrossRef]
- Silva, F.; Matias, T.; Souza, T. Phytochemical Screening and In Vitro Antibacterial, Antifungal, Antioxidant and Antitumor Activities of the Red Propolis Alagoas. Braz. J. Biol. 2017, 79, 452–459. [Google Scholar] [CrossRef]
- Corbellino, L.; Luchtenberg, P.; García, C.H. Brazilian Red Propolis: Chemical Composition and Antibacterial Activity Determined Using Bio-Guided Fractionation. Microbiol. Res. 2018, 214, 74–82. [Google Scholar]
- López-Romero, D.; Izquierdo-Vega, J.; Morales-González, J. Evidence of Some Natural Products with Antigenotoxic Effects. Part 2: Plants, Vegetables, and Natural Resin. Nutrients 2018, 10, 1954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Veloz, J.; Alvear, M.; Salazar, L.A. Antimicrobial and Antibiofilm Activity against Streptococcus Mutans of Individual and Mixtures of the Main Polyphenolic Compounds Found in Chilean Propolis. BioMed. Res. Intl. 2019, 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Bankova, V.S.; De Castro, S.L.; Marcucci, M.C. Propolis: Recent Advances in Chemistry and Plant Origin. Apidologie 2000, 31, 3–15. [Google Scholar] [CrossRef]
- Righi, A.A.; Negri, G.; Salatino, A. Comparative Chemistry of Propolis from Eight Brazilian Localities. Evid. Based Complement. Altern. Med. 2013, 2013, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardana, C.M.; Scaglianti, P.; Simonetti, P. Analysis of the Polyphenolic Fraction of Propolis from Different Sources by Liquid Chromatography-Tandem Mass Spectrometry. J. Pharm. Biomed. Anal. 2007, 45, 390–399. [Google Scholar] [CrossRef] [PubMed]
- Tran, D.T.; Ogbourne, S.; Brooks, P.R. Lessons from Exploring Chemical Space and Chemical Diversity of Propolis Components. Int. J. Mol. 2020, 4988, 2–35. [Google Scholar] [CrossRef]
- Stanciuskaite, M.; Markasa, M.; Liaudanskas, M. Extracts of Poplar Buds (Populus Balsamifera L., Populus Nigra L.) and Lithuanian Propolis: Comparison of Their Composition and Biological Activities. Plants 2021, 10, 828. [Google Scholar] [CrossRef]
- Isla, M.I.; Zampini, I.C.; Ordóñez, R.M.; Cuello, S.; Juárez, B.C.; Sayago, J.E.; Moreno, M.I.N.; Alberto, M.R.; Vera, N.R.; Bedascarrasbure, E.; et al. Effect of Seasonal Variations and Collection Form on Antioxidant Activity of Propolis from San Juan, Argentina. J. Med. Food 2009, 12, 1334–1342. [Google Scholar] [CrossRef]
- Barrientos, L.; Herrera, C.; Montenegro, G. Chemical and Botanical Characterization of Chilean Propolis and Biological Activity on Cariogenic Bacteria Streptococcus Mutans and Streptococcus Sobrinus. Braz. J. Microbiol. 2013, 44, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Kumazawa, S.; Hamasaka, T.; Nakayama, T. Antioxidant Activity of Propolis of Various Geographic Origins. Food Chem. 2004, 84, 329–339. [Google Scholar] [CrossRef]
- Falcấo, S.; Freire, C. Figuereido, A.C. The Volatile Composition of Portuguese Propolis Towars Its Origin Discrimination. Rec. Nat. Prod. 2016, 10, 176–188. [Google Scholar]
- Montenegro, G.; Timmermann, B.; Peña, R. Pollen Grains and Vegetative Structures in Propolis as Indicators of Potential Reactions in Chilean Plants. Phyton 2000, 66, 15–23. [Google Scholar]
- Montenego, G.; Peña, R.; Mujica, A. Botanical Resources for Propolis in an Apiary Network in Central Chile. Phyton 2001, 191–201. Available online: https://repositorio.uc.cl/xmlui/handle/11534/50123 (accessed on 24 June 2021).
- Xu, Y.; Luo, L.; Chen, B. Recent Development of Chemical Components in Propolis. Front Biol. China 2009, 4, 385–391. [Google Scholar] [CrossRef]
- Mayworm, M.; Lima, C.; Tomba, A. Does Propolis Contain Tannins? eCAM 2014, 2014. [Google Scholar] [CrossRef]
- Dezmirean, D.S.; Pașca, C.; Moise, A.R. Plant Sources Responsible for the Chemical Composition and Main Bioactive Properties of Poplar-Type Propolis. Plants 2021, 10, 2–20. [Google Scholar]
- Moise, A.R.; Bobiș, O. Baccharis Dracunclifolia and Dalbergia Ecastophyllum, Main Plant Sources for Bioactive Properties in Green and Red Brazilian Popolis. Plants 2020, 9, 1619. [Google Scholar] [CrossRef]
- Makarewicz, M.; Drożdż, I.; Tarko, T.; Duda-Chodak, A. The Interactions between Polyphenols and Microorganisms, Especially Gut Microbiota. Antioxidants 2021, 10, 188. [Google Scholar] [CrossRef]
- Bankova, V.; Popova, M.; Trusheva, B. Propolis Volatile Compounds: Chemical Diversity and Biological Activity: A Review. Chem. Cent. J. 2005, 28, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Veloz, J.J.; Saavedra, N.; Lillo, A.; Alvear, M.; Barrientos, L.; Salazar, L.A. Antibiofilm Activity of Chilean Propolis on Streptococcus mutans is Influenced by the Year of Collection. BioMed. Res. Int. 2015, 2015, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Koo, H.; Rosalen, P.; Cury, J. Effect of a New Cariety of Apis Mellifera Propolis on Mutans Streptococci. Curr. Microbiol. 2000, 41, 192–196. [Google Scholar] [CrossRef]
- Przybyłek, I.; Karpiński, T.M. Antibacterial Properties of Propolis. Molecules 2019, 24, 2047. [Google Scholar] [CrossRef] [Green Version]
- Saavedra, N.; Cuevas, A.; Cavalcante, M. Gene Expression and Activity in Activated Macrophages. Biomed. Res. Intl. 2016, 2016, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Arias, C.; Saavedra, N.; Leal, K.; Vásquez, B.; Abdalla, D.S.P.; Salazar, L.A. Histological Evaluation and Gene Expression Profiling of Autophagy-Related Genes for Cartilage of Young and Senescent Rats. Int. J. Mol. Sci. 2020, 21, 8607. [Google Scholar] [CrossRef]
- Al-Hariri, M.; Abualait, T.S. Effects of Green Brazilian Popolis Alcohol Extract on Nociceptive Painmodels in Rats. Plants 2020, 9, 1102. [Google Scholar] [CrossRef]
- Boesch-Saadatmandi, C.; Loboda, A.; Wagner, A.E. Effect of Quercetin and Its Metabolites Isohamnetin and Quercetin-3-Glucuronide on Inflammatory Gene Expression: Role of miR-155. J. Nutr. Biochem. 2011, 22, 293–299. [Google Scholar] [CrossRef]
- Kabala-Dzik, A.; Rzepecka-Stojko, A.; Kubina, R. Comparison of Two Components of Propolis: Caffeic Acid (CA) and Caffeic Acido Phenethyl Ester (CAPE) Induce Apoptosis and Cell Cycle Arrest of Breast Cancer Cells MDA-MB-23. Molecules 2017, 2, 1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, H.; Schobel, B.; Scott-Anne, K. Apigenin and tt-Farnesol with Fluoride on S. Mutans Biofilm and Dental. J. Dent. Res. 2005, 84, 1016–1020. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Oyarzo, D.; Plaza, T.; Recio-Sánchez, G. Use of nPSi-β CD Composite Microparticles for the Controlled Release of Caffeic Acid and Pinocembrin, Two Main Poliphenolic Compounds Found in Chilean Propolis. Pharmaceutics 2019, 11, 289. [Google Scholar] [CrossRef] [Green Version]
- Louveaux, J.; Maurizio, A.; Vorwohl, G. Methods of Melissopalynology. International Commission for Bee Botany of IUBS. Bee World 1978, 59, 139–157. [Google Scholar] [CrossRef]
- Popova, M.; Bankova, V.; Butovska, D. Validated Methods for the Quantification of Biologically Active Constituents of Poplar-Type Propolis. Phytoch. Anal. 2004, 15, 235–240. [Google Scholar] [CrossRef]
- Chan, C.; Yang, M.; Wen, H. Estimation of Total Flavonoid Content in Propolis by Two Complementary Colorimetric Methods. J. Food Drug Anal. 2009, 10, 178–182. [Google Scholar]
- Wijekoon, M.J.O.; Rajeev, B.; Karim, A. Effect of Extraction Solvents on the Phenolic Compounds and Antioxidant Activities of Bunga kantan (Etlingera Elatior Jack) Inflorescence. J. Food Drug Anal. 2002, 10, 178–182. [Google Scholar] [CrossRef]
- Ricco, R.; Agudelo, I.; Wagner, M. Métodos Empleados en el Análisis de los Polifenoles en un Laboratorio de Baja Complejidad. Lilloa 2015, 52829, 161–174. [Google Scholar]
- Clinical and Laboratory Standards Institute. Methods for Antimicrobial Susceptibility Testing of Anaerobic Bacteria; Approved Standard. Clinical and Laboratory Standards Institute (CLSI). Available online: https://clsi.org/media/2577/m11-ed9_sample.pdf (accessed on 24 June 2021).
PCP1 | PCP2 | PCP3 | |||
---|---|---|---|---|---|
Predominant Species | % | Predominant Species | % | Predominant Species | % |
Lotus spp. | 27.9 | T. Scutia buxifolia | 12.3 | Raphanus raphanistrum | 19.5 |
Fabaceae | 19.1 | Quillaja saponaria | 8.2 | Eucalyptus spp. | 13.8 |
Eucalyptus spp. | 11.8 | Melilotus sp. | 7.6 | Lotus spp. | 12.6 |
T. Mentha x piperita | 9.6 | Senecio sp. | 7.2 | T. Trifolium repens | 5.7 |
Melilotus sp. | 7.4 | Pinus sp. | 7.2 | T. Scutia buxifolia | 5.3 |
Apiaceae | 5.1 | Eucalyptus spp. | 6.8 | Salix spp. | 4.5 |
Echium plantagineum | 4.4 | Poaceae | 6.8 | Melilotus sp. | 3.3 |
Poaceae | 4.4 | Genista monspessulana | 5.5 | Senecio sp. | 3.3 |
Raphanus raphanistrum | 2.9 | T. Trifolium repens | 4.7 | Ligustrum lucidum | 3.3 |
T. Cichorium intybus | 2.4 | Lotus spp. | 3.9 | Scrophulariaceae | 2.8 |
Pinus radiata | 2.2 | Raphanus raphanistrum | 3.1 | Polygonaceae | 2.4 |
Salix babylonica | 1.5 | Salix babylonica | 2.9 | Poaceae | 2.0 |
Senecio sp. | 0.7 | Rosaceae | 2.9 | T. Acacia bonariensis | 1.6 |
Acacia sp. | 0.7 | T. Acacia bonariensis | 2.6 | Apiaceae | 1.6 |
Sorghum spp. | 2.5 | Zea mays | 0.8 | ||
Atriplex imbricata | 2.1 | T. Baccharis trimera | 0.8 | ||
T. Peltophorum dubium | 1.9 | T. Peltophorum dubium | 0.4 | ||
T. Baccharis trimera | 1.3 | Salvia officinalis | 0.4 | ||
Apiaceae | 1.1 | T. Cynara cardunculus | 0.4 | ||
T. Cynara cardunculus | 0.8 | Casuarina cunninghamiana | 0.4 | ||
Not identified (n = 1) | 0.1 | Not identified (n = 2) | 8.6 | Not identified (n = 5) | 15.1 |
Total | 100 | Total | 100 | Total | 100 |
Compounds | Tr. (Minutes) | Concentrations ± S.D (mg L−1) | ||
---|---|---|---|---|
Propolis Samples | ||||
PCP1 | PCP2 | PCP3 | ||
Apigenin | 44.5–44.6 | 8.5 ± 0.3 | 7.7 ± 0.1 | 6.2 ± 0.2 |
CAPE | 52.3–52.5 | 16.8 a ± 0.5 | 14.2 a ± 0.4 | 4.2 a± 0.7 |
Pinocembrin | 49.4–49.7 | 184.7 b ± 0.5 | 134.2 b ± 0.3 | 107.3 b ± 0.3 |
Quercetin | 30.5–38.0 | 127.9 b ± 0.4 | 120.4 b ± 0.2 | 88.8 b ± 0.1 |
Galangin | 56.5–56.6 | 5.9 ± 0.6 | 6.8 ± 0.4 | 7.0 ± 0.3 |
Microorganisms | PCP1 | PCP2 | PCP3 | |
---|---|---|---|---|
S. aureus | ATCC 35218 | 15 a ± 0.3 | 5 a ± 0.3 | 15 a ± 0.3 |
E. coli | ATCC 29213 | 15 b ± 0.2 | 15 b ± 0.4 | 30 b ± 0.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvear, M.; Santos, E.; Cabezas, F.; Pérez-SanMartín, A.; Lespinasse, M.; Veloz, J. Geographic Area of Collection Determines the Chemical Composition and Antimicrobial Potential of Three Extracts of Chilean Propolis. Plants 2021, 10, 1543. https://doi.org/10.3390/plants10081543
Alvear M, Santos E, Cabezas F, Pérez-SanMartín A, Lespinasse M, Veloz J. Geographic Area of Collection Determines the Chemical Composition and Antimicrobial Potential of Three Extracts of Chilean Propolis. Plants. 2021; 10(8):1543. https://doi.org/10.3390/plants10081543
Chicago/Turabian StyleAlvear, Marysol, Estela Santos, Felipe Cabezas, Andrés Pérez-SanMartín, Mónica Lespinasse, and Jorge Veloz. 2021. "Geographic Area of Collection Determines the Chemical Composition and Antimicrobial Potential of Three Extracts of Chilean Propolis" Plants 10, no. 8: 1543. https://doi.org/10.3390/plants10081543