The Influence of Rootstock and High-Density Planting on Apple cv. Auksis Fruit Quality
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Plant Material and Growing Conditions
4.2. Determination of Soluble Sugars by Ultra-Fast Liquid Chromatography (UFLC)
4.3. Determination of Total Starch by Spectrophotometric Method
4.4. Determination of Total Phenolic Compounds by Spectrophotometric Method
4.5. Determination of DPPH Free Radical Scavenging Activity by Spectrophotometric Method
4.6. Determination of the ABTS Radical Scavenging Activity by Spectrophotometric Method
4.7. Determination of Organic Acid by High-Performance Liquid Chromatography (HPLC)
4.8. Determination of micro- and macro- elements by Inductively Coupled Plasma-Optical Emission Spectrometry (ICP-OES)
4.9. Statistical Analysis
4.10. Meteorological Conditions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Gupta, G.S. Land degradation and challenges of food security. Rev. Eur. Stud. 2019, 11, 63. [Google Scholar] [CrossRef]
- Duguma, L.A.; Minang, P.A.; Aynekulu, B.E.; Carsan, S.; Nzyoka, J.; Bah, A.; Jamnadass, R. From Tree Planting to Tree Growing: Rethinking Ecosystem Restoration through Trees; ICRAF Working Paper; ICRAF: Nairobi, Kenya, 2020; p. 304. [Google Scholar]
- FAOSTAT. 2020. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 March 2021).
- Platon, I.V. Preliminary results on planting system and density trials in apple. In VIII International Symposium on Canopy, Rootstocks and Environmental Physiology in Orchard Systems; ISHS: Brussels, Belgium, 2004; Volume 732, pp. 471–474. [Google Scholar]
- Robinson, T. The evolution towards more competitive apple orchard systems in the USA. In XXVII International Horticultural Congress-IHC2006: International Symposium on Enhancing Economic and Environmental; ISHS: Brussels, Belgium, 2006; Volume 772, pp. 491–500. [Google Scholar]
- Pramanick, K.K.; Kishore, D.K.; Singh, R.; Kumar, J. Performance of apple (Malus x domestica Borkh) cv. Red Spur on a new apple rootstock in high density planting. Sci. Hortic. 2012, 133, 37–39. [Google Scholar] [CrossRef]
- Laužikė, K.; Samuolienė, G. Leaf optical properties reflect changes of photosynthetic indices in apple trees. Res. Rural Dev. 2018, 2, 90–94. [Google Scholar]
- Laužikė, K.; Uselis, N.; Kviklys, D.; Samuolienė, G. Orchard Planting Density and Tree Development Stage Affects Physiological Processes of Apple (Malus domestica Borkh.). Tree. Agronomy 2020, 10, 1912. [Google Scholar] [CrossRef]
- Uselis, N.; Viškelis, J.; Lanauskas, J.; Liaudanskas, M.; Janulis, V.; Kviklys, D. Planting distance affects apple tree growth, fruit yield and quality. Zemdirb. Agric. 2020, 107, 367–372. [Google Scholar] [CrossRef]
- Kviklys, D.; Kviklienė, N.; Bite, A.; Lepsis, J.; Univer, T.; Univer, N.; Uselis, N.; Lanauskas, J.; Buskienė, L. Baltic fruit rootstock studies: Evaluation of 12 apple rootstocks in North-East Europe. Hortic. Sci. 2012, 39, 1–7. [Google Scholar] [CrossRef]
- Harrison, N.; Barber-Perez, N.; Pennington, B.; Cascant-Lopez, E.; Gregory, P.J. Root system architecture in reciprocal grafts of apple rootstock-scion combinations. Acta Hortic. 2016, 1130, 409–414. [Google Scholar] [CrossRef]
- Lordan, J.; Fazio, G.; Francescatto, P.; Robinson, T. Effects of apple (Malus x domestica) rootstocks on scion performance and hormone concentration. Sci. Hortic. 2017, 225, 96–105. [Google Scholar] [CrossRef]
- Aprea, E.; Charles, M.; Endrizzi, I.; Corollaro, M.L.; Betta, E.; Biasioli, F.; Gasperi, F. Sweet taste in apple: The role of sorbitol, individual sugars, organic acids and volatile compounds. Sci. Rep. 2017, 7, 44950. [Google Scholar] [CrossRef]
- Wei, K.; Ma, C.; Sun, K.; Liu, Q.; Zhao, N.; Sun, Y.; Tu, K.; Pan, L. Relationship between optical properties and soluble sugar contents of apple flesh during storage. Postharvest Biol. Technol. 2020, 159, 111021. [Google Scholar] [CrossRef]
- Butkevičiūtė, A.; Liaudanskas, M.; Kviklys, D.; Gelvonauskienė, D.; Janulis, V. The Qualitative and Quantitative Compositions of Phenolic Compounds in Fruits of Lithuanian Heirloom Apple Cultivars. Molecules 2020, 25, 5263. [Google Scholar] [CrossRef]
- Liddle, D.M.; Kavanagh, M.E.; Wright, A.J.; Robinson, L.E. Apple Flavonols Mitigate Adipocyte Inflammation and Promote Angiogenic Factors in LPS- and Cobalt Chloride-Stimulated Adipocytes, in Part by a Peroxisome Proliferator-Activated Receptor-γ-Dependent Mechanism. Nutrients 2020, 12, 1386. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Li, A.; Shen, T.; Meng, J.; Lei, Y.; Zhang, X.; Liu, P.; Gan, L.; Ao, L.; Li, H. Phenolic compounds present in fruit extracts of Malus spp. show antioxidative and pro-apoptotic effects on human gastric cancer cell lines. J. Food Biochem. 2019, 43, e13028. [Google Scholar] [CrossRef] [PubMed]
- Palermo, V.; Mattivi, F.; Silvestri, R.; La Regina, G.; Falcone, C.; Mazzoni, C. Apple can act as anti-aging on yeast cells. Oxidative Med. Cell. Longev. 2012, 2012, 479159. [Google Scholar] [CrossRef][Green Version]
- Campeanu, G.; Neata, G.; Darjanschi, G. Chemical composition of the fruits of several apple cultivars growth as biological crop. Not. Bot. Horti Agrobot. Cluj-Napoca 2009, 37, 161–164. [Google Scholar]
- Kumar, P.; Sethi, S.; Sharma, R.R.; Singh, S.; Saha, S.; Sharma, V.K.; Verma, M.K.; Sharma, S.K. Nutritional characterization of apple as a function of genotype. J. Food Sci. Technol. 2018, 55, 2729–2738. [Google Scholar] [CrossRef] [PubMed]
- Kalinowska, M.; Bielawska, A.; Lewandowska-Siwkiewicz, H.; Priebe, W.; Lewandowski, W. Apples: Content of phenolic compounds vs. variety, part of apple and cultivation model, extraction of phenolic compounds, biological properties. Plant Physiol. Biochem. 2014, 84, 169–188. [Google Scholar] [CrossRef]
- Liaudanskas, M.; Viškelis, P.; Jakštas, V.; Raudonis, R.; Kviklys, D.; Milašius, A.; Janulis, V. Application of an optimized HPLC method for the detection of various phenolic compounds in apples from Lithuanian cultivars. J. Chem. 2014, 2014, 542121. [Google Scholar] [CrossRef]
- Kviklys, D.; Liaudanskas, M.; Viškelis, J.; Buskienė, L.; Lanauskas, J.; Uselis, N.; Janulis, V. Composition and concentration of phenolic compounds of ‘Auksis’ apple grown on various rootstocks. In Proceedings of the Latvian Academy of Sciences. Sect. B Nat. Exact Appl. Sci. 2017, 71, 144–149. [Google Scholar]
- Fazio, G.; Chang, L.; Grusak, M.A.; Robinson, T.L. Apple rootstocks influence mineral nutrient concentration of leaves and fruit. N. Y. Fruit Q. 2015, 23, 11–15. [Google Scholar]
- Zhang, Q.; Wei, Q.; Liu, S.; Wang, X.; Shang, Z.; Lu, J. Formation of canopy structure, yield and fruit quality of ‘Fuji’apple with SH6 dwarf interstock from juvenility to fruiting early stage. Sci. Agric. Sin. 2013, 46, 1874–1880. [Google Scholar]
- Li, M.; Li, P.; Ma, F.; Dandekar, A.M.; Cheng, L. Sugar metabolism and accumulation in the fruit of transgenic apple trees with decreased sorbitol synthesis. Hortic. Res. 2018, 5, 1–11. [Google Scholar] [CrossRef][Green Version]
- Zhong, Y.; Fei, L.; Li, Y.; Zeng, J.; Dai, Z. Response of fruit yield, fruit quality, and water use efficiency to water deficits for apple trees under surge-root irrigation in the Loess Plateau of China. Agric. Water Manag. 2019, 222, 221–230. [Google Scholar] [CrossRef]
- Li, K.T.; Lakso, A.N. Photosynthetic characteristics of apple spur leaves after summer pruning to improve exposure to light. HortScience 2004, 39, 969–972. [Google Scholar] [CrossRef]
- Willaume, M.; Lauri, P.É.; Sinoquet, H. Light interception in apple trees influenced by canopy architecture manipulation. Trees 2004, 18, 705–713. [Google Scholar] [CrossRef]
- Rather, J.A.; Misgar, F.A.; Kumar, A.; Baba, J.A. Rootstock cultivar effect on nutrient variation and the correlation among leaf nutrients with apple fruit quality parameters. J. Pharmacogn. Phytochem. 2018, 7, 3407–3410. [Google Scholar]
- Samuolienė, G.; Viškelienė, A.; Sirtautas, R.; Kviklys, D. Relationships between apple tree rootstock, crop-load, plant nutritional status and yield. Sci. Hortic. 2016, 211, 167–173. [Google Scholar] [CrossRef]
- Laužikė, K.; Uselis, N.; Samuolienė, G. The Influence of Agrotechnological Tools on cv. Rubin Apples Quality. Agronomy 2021, 11, 463. [Google Scholar] [CrossRef]
- Kviklys, D.; Liaudanskas, M.; Janulis, V.; Viškelis, P.; Rubinskienė, M.; Lanauskas, J.; Uselis, N. Rootstock genotype determines phenol content in apple fruits. Plant Soil Environ. 2015, 60, 234–240. [Google Scholar] [CrossRef][Green Version]
- Sethi, S.; Joshi, A.; Arora, B.; Bhowmik, A.; Sharma, R.R.; Kumar, P. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts. Eur. Food Res. Technol. 2020, 246, 591–598. [Google Scholar] [CrossRef]
- Radenkovs, V.; Juhnevica-Radenkova, K. Effect of storage technology on the chemical composition of apples of the cultivar ‘Auksis’. Zemdirb. Agric. 2017, 104, 359–368. [Google Scholar] [CrossRef][Green Version]
- Wojdyło, A.; Oszmiański, J. Antioxidant activity modulated by polyphenol contents in apple and leaves during fruit development and ripening. Antioxidants 2020, 9, 567. [Google Scholar] [CrossRef]
- Wu, J.; Gao, H.; Zhao, L.; Liao, X.; Chen, F.; Wang, Z.; Hu, X. Chemical compositional characterization of some apple cultivars. Food Chem. 2007, 103, 88–93. [Google Scholar] [CrossRef]
- Tomala, K.; Andziak, J.; Jeziorek, K.; Dziuban, R. Influence of rootstock on the quality of ‘Jonagold’apples at harvest and after storage. J. Fruit Ornam. Plant Res. 2008, 16, 31–38. [Google Scholar]
- Anderson, J.; Young, L.; Long, E. Potassium and Health. Ph.D. Thesis, Colorado State University, Libraries, CO, USA, 2002. [Google Scholar]
- Zavalloni, C.; Marangoni, B.; Tagliavini, M.; Scudellari, D. Dynamics of uptake of calcium, potassium and magnesium into apple fruit in a high density planting. In IV International Symposium on Mineral Nutrition of Deciduous Fruit Crops 564; ISHS: Brussels, Belgium, 2000; pp. 113–121. [Google Scholar]
- Kucukyumuk, Z.; Erdal, I. Rootstock and cultivar effect on mineral nutrition, seasonal nutrient variation and correlations among leaf, flower and fruit nutrient concentrations in apple trees. Bulg. J. Agric. Sci. 2011, 17, 633–641. [Google Scholar]
- Reig, G.; Lordan, J.; Fazio, G.; Grusak, M.A.; Hoying, S.; Cheng, L.; Francescatto, P.; Robinson, T. Horticultural performance and elemental nutrient concentrations on ‘Fuji’grafted on apple rootstocks under New York State climatic conditions. Sci. Hortic. 2018, 227, 22–37. [Google Scholar] [CrossRef]
- Ma, C.; Sun, Z.; Chen, C.; Zhang, L.; Zhu, S. Simultaneous separation and determination of fructose, sorbitol, glucose and sucrose in fruits by HPLC-ELSD. Food Chem. 2014, 145, 784–788. [Google Scholar] [CrossRef]
- Ainsworth, E.A.; Gillespie, K.M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2007, 2, 875–877. [Google Scholar] [CrossRef]
- Mishra, K.; Ojha, H.; Chaudhury, N.K. Estimation of antiradical properties of antioxidants using DPPH assay: A critical review and results. Food Chem. 2012, 130, 1036–1043. [Google Scholar] [CrossRef]
- Ragaee, S.; Abdel-Aal, E.S.M.; Noaman, M. Antioxidant activity and nutrient composition of selected cereals for food use. Food Chem. 2006, 98, 32–38. [Google Scholar] [CrossRef]
- Wang, H.; Yuan, X.; Zeng, G.; Leng, L.; Peng, X.; Liao, K.; Peng, L.; Xiao, Z. Removal of malachite green dye from wastewater by different organic acid-modified natural adsorbent: Kinetics, equilibriums, mechanisms, practical application, and disposal of dye-loaded adsorbent. Environ. Sci. Pollut. Res. 2014, 21, 11552–11564. [Google Scholar] [CrossRef] [PubMed]
- Araújo, G.C.; Gonzalez, M.H.; Ferreira, A.G.; Nogueira, A.R.A.; Nóbrega, J.A. Effect of acid concentration on closed-vessel microwave-assisted digestion of plant materials. Spectrochim. Acta Part B At. Spectrosc. 2002, 57, 2121–2132. [Google Scholar] [CrossRef]
- Barbosa, J.T.P.; Santos, C.M.; Peralva, V.N.; Flores, E.M.; Korn, M.; Nóbrega, J.A.; Korn, M.G.A. Microwave-assisted diluted acid digestion for trace elements analysis of edible soybean products. Food Chem. 2015, 175, 212–217. [Google Scholar] [CrossRef] [PubMed]
Rootstock | Planting Density | Total Phenols | ABTS | DPPH |
---|---|---|---|---|
mg g−1 | mM TE g−1 | mM TE g−1 | ||
P22 | 3 × 1.00 | 2.47 ± 0.40 a | 6.15 ± 0.95 a | 2.15 ± 0.15 a |
P22 | 3 × 0.75 | 3.11 ± 0.15 b | 8.43 ± 0.97 a | 2.87 ± 0.69 a |
P22 | 3 × 0.5 | 2.66 ± 0.05 ab | 6.72 ± 0.19 a | 2.32 ± 0.32 a |
P60 | 3 × 1.00 | 2.99 ± 0.13 b | 7.37 ± 1.08 a | 3.78 ± 0.36 b |
P60 | 3 × 0.75 | 2.71 ± 0.05 ab | 6.86 ± 0.64 a | 3.19 ± 0.22 b |
P60 | 3 × 0.5 | 2.74 ± 0.06 ab | 8.17 ± 1.91 a | 3.45 ± 0.26 b |
Effect of planting density | ||||
3 × 1.00 | 2.73 ± 0.39 a | 6.76 ± 1.13 a | 2.96 ± 1.46 a | |
3 × 0.75 | 2.91 ± 0.24 a | 7.64 ± 1.13 a | 3.03 ± 0.86 a | |
3 × 0.5 | 2.70 ± 0.07 a | 7.44 ± 1.45 a | 2.88 ± 1.20 a | |
Effect of rootstock | ||||
P22 | 2.74 ± 0.36 a | 7.10 ± 1.23 a | 2.45 ± 0.51 a | |
P60 | 2.81 ± 0.15 a | 7.47 ± 1.28 a | 3.47 ± 0.35 b |
K | Ca | Mg | Na | ||
---|---|---|---|---|---|
mg g−1 | mg g−1 | mg g−1 | mg g−1 | ||
P22 | 3 × 1.00 | 0.669 ± 0.03 ab | 0.094 ± 0.001 a | 0.064 ± 0.001 a | 0.017 ± 0.001 a |
P22 | 3 × 0.75 | 0.730 ± 0.03 b | 0.102 ± 0.002 a | 0.071 ± 0.002 b | 0.019 ± 0.002 ab |
P22 | 3 × 0.50 | 0.666 ± 0.02 ab | 0.097 ± 0.001 a | 0.063 ± 0.001 a | 0.017 ± 0.003 a |
P60 | 3 × 1.00 | 0.659 ± 0.06 ab | 0.153 ± 0.002 b | 0.068 ± 0.002 ab | 0.021 ± 0.008 bc |
P60 | 3 × 0.75 | 0.624 ± 0.03 a | 0.155 ± 0.002 b | 0.063 ± 0.002 a | 0.020 ± 0.009 bc |
P60 | 3 × 0.50 | 0.675 ± 0.02 ab | 0.153 ± 0.002 b | 0.064 ± 0.003 a | 0.022 ± 0.003 c |
Effect of planting density | |||||
3 × 1.00 | 0.664 ± 0.042 a | 0.124 ± 0.035 a | 0.066 ±0.003 a | 0.020 ± 0.002 a | |
3 × 0.75 | 0.677 ± 0.063 a | 0.129 ± 0.031 a | 0.067 ± 0.004 a | 0.020 ± 0.002 a | |
3 × 0.50 | 0.671 ± 0.018 a | 0.126 ± 0.031 a | 0.064 ± 0.002 a | 0.020 ± 0.003 a | |
Effect of rootstock | |||||
P22 | 0.688 ± 0.039 b | 0.097 ± 0.004 a | 0.066 ± 0.038 a | 0.018 ± 0.014 a | |
P60 | 0.652 ± 0.041 a | 0.154 ± 0.014 b | 0.065 ± 0.031 a | 0.022 ± 0.010 b |
Fe | Mn | Cu | Zn | ||
---|---|---|---|---|---|
µg g−1 | µg g−1 | µg g−1 | µg g−1 | ||
P22 | 3 × 1.00 | 0.99 ± 0.04 a | 1.04 ± 0.02 a | 0.609 ± 0.039 a | 0.283 ± 0.015 a |
P22 | 3 × 0.75 | 1.11 ± 0.02 a | 1.04 ± 0.07 a | 0.757 ± 0.047 b | 0.292 ± 0.009 ab |
P22 | 3 × 0.5 | 1.05 ± 0.07 a | 1.02 ± 0.05 a | 0.731 ± 0.013 b | 0.275 ± 0.027 a |
P60 | 3 × 1.00 | 2.39 ± 0.50 b | 1.04 ± 0.05 a | 0.881 ± 0.012 c | 0.317 ± 0.027 abc |
P60 | 3 × 0.75 | 2.60 ± 0.04 b | 1.02 ± 0.06 a | 0.846 ± 0.027 c | 0.358 ± 0.034 c |
P60 | 3 × 0.5 | 2.57 ± 0.12 b | 1.07 ± 0.02 a | 0.890 ± 0.017 c | 0.347 ± 0.013 bc |
Effect of planting density | |||||
3 × 1.00 | 1.69 ± 0.832 a | 1.04 ± 0.03 a | 0.745 ± 0.152 a | 0.300 ± 0.027 a | |
3 × 0.75 | 1.85 ± 0.815 a | 1.03 ± 0.06 a | 0.802 ± 0.059 b | 0.325 ± 0.043 a | |
3 × 0.5 | 1.81 ± 0.837 a | 1.04 ± 0.04 a | 0.810 ± 0.088 b | 0.311 ± 0.044 a | |
Effect of rootstock | |||||
P22 | 1.05 ± 0.07 a | 1.04 ± 0.05 a | 0.699 ± 0.075 a | 0.283 ± 0.018 a | |
P60 | 2.52 ± 0.27 b | 1.04 ± 0.05 a | 0.872 ± 0.027 a | 0.341 ± 0.029 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laužikė, K.; Uselis, N.; Samuolienė, G. The Influence of Rootstock and High-Density Planting on Apple cv. Auksis Fruit Quality. Plants 2021, 10, 1253. https://doi.org/10.3390/plants10061253
Laužikė K, Uselis N, Samuolienė G. The Influence of Rootstock and High-Density Planting on Apple cv. Auksis Fruit Quality. Plants. 2021; 10(6):1253. https://doi.org/10.3390/plants10061253
Chicago/Turabian StyleLaužikė, Kristina, Nobertas Uselis, and Giedrė Samuolienė. 2021. "The Influence of Rootstock and High-Density Planting on Apple cv. Auksis Fruit Quality" Plants 10, no. 6: 1253. https://doi.org/10.3390/plants10061253