Effects of the Combinations of Rhizobacteria, Mycorrhizae, and Seaweed, and Supplementary Irrigation on Growth and Yield in Wheat Cultivars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Cultures and Wheat Varieties
2.2. Analysis of Physicochemical Properties of Soil
2.3. Treatments
- Control—dryland farming;
- Irrigation at the shoot stage;
- Irrigation at the spike stage.
- Control (no biofertilizers);
- Mycorrhiza;
- Seaweed extract;
- Nitrozist and phosphozist;
- Mycorrhiza + nitrozist and phosphozist;
- Seaweed extract + nitrozist and phosphozist;
- Mycorrhiza + seaweed extract;
- Mycorrhiza + phosphozist + nitrozist + Seaweed extract.
2.4. Plots
2.5. Application of PGPR, AM and Seaweeds
2.6. Irrigation of Experimental Plots
- V is the volume of irrigation in cubic meters;
- Fc is the percentage of soil moisture in the field capacity;
- M is the percentage of soil moisture before irrigation, a is the specific gravity of the soil;
- A is the area of the main plot;
- ds is the depth of root development in centimeters at the desired stage; and
- Ea is the irrigation efficiency, which in this experiment is considered 45%.
2.7. Measurement of Morphological Traits
2.8. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Soil
3.2. Plant Growth and Yield Parameters
3.2.1. Plant Height
3.2.2. Number of Tillers
3.2.3. Awn Length
3.2.4. Length of Peduncle
3.2.5. Length of Spike
3.2.6. Weight of the Spike
3.2.7. Number of Seeds per Spike
3.2.8. Number of Spikes per Square Meter
3.2.9. 1000-Grain Weight
3.2.10. Grain Yield
4. Correlation Coefficient
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ilyas, N.; Mumtaz, K.; Akhtar, N.; Yasmin, H.; Sayyed, R.Z.; Khan, W.; Hesham, A.; Enshasy, E.L.; Dailin, D.J.; Elsayed, A.; et al. Exopolysaccharides Producing Bacteria for the Amelioration of Drought Stress in Wheat. Sustainability 2020, 12, 8876. [Google Scholar] [CrossRef]
- Halim, Q.; Imam, Y.; Shakeri, A. Evaluation of yield, yield components, and stress tolerance indices in bread wheat cultivars in conditions of cessation of irrigation after flowering. J. Prod. Proc. Crops Hort. 2017, 7, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Guzmán, C.; Autrique, J.E.; Mondal, S.; Singh, R.P.; Govindan, V.; Morales-Dorantes, A.; Peña, R.J. Response to drought and heat stress on wheat quality, with special emphasis on bread-making quality, in durum wheat. Field Crops Res. 2016, 186, 157–165. [Google Scholar] [CrossRef]
- Saadati, Z.; Delbari, M.; Amiri, E.; Panahi, M.; Rahimian, M.H.; Ghodsi, M. Assessment of CERES-Wheat Model in the simulation of varieties of wheat yield under different irrigation treatments. J. Soil Water Res. Cons. 2016, 5, 73–85. [Google Scholar]
- Sharma, S.; Sahu, R.; Navathe, S.; Mishra, V.K.; Chand, R.; Singh, P.K.; Joshi, A.K.; Pandey, S.P. Natural variation in elicitation of defense-signaling associates to field resistance against the spot blotch disease in bread wheat (Triticum aestivum L.). Front. Plant Sci. 2018, 9, 636. [Google Scholar] [CrossRef]
- Pouri, K.; Mardeh, A.S.; Sohrabi, Y.; Soltani, A. Crop phenotyping for wheat yield and yield components against drought stress. Cereal Res. Comm. 2019, 47, 383–393. [Google Scholar] [CrossRef]
- Sardouei-Nasab, S.; Mohammadi-Nejad, G.H.; Nakhoda, B. Yield stability in bread wheat germplasm across drought stress and non-stress conditions. Agron. J. 2019, 111, 175–181. [Google Scholar] [CrossRef]
- Wu, H.H.; Zou, Y.N.; Rahman, M.M.; Ni, Q.D.; Wu, Q.S. Mycorrhizas alter sucrose and proline metabolism in trifoliate orange exposed to drought stress. Sci. Rep. 2017, 7, 42389. [Google Scholar] [CrossRef] [Green Version]
- Abd-Alla, M.H.; Gabra, F.A.; Danial, A.W.; Abdel-Wahab, A.M. Enhancement of biohydrogen production from sustainable orange peel wastes using Enterobacter species isolated from domestic wastewater. Int. J. Energy Res. 2019, 43, 391–404. [Google Scholar] [CrossRef] [Green Version]
- Narimani, H.; Sayed, S.R.; Khalilzadeh, R.; Aminzadeh, G.L. The effect of supplementary irrigation and iron nano oxide on chlorophyll content and grain filling components of wheat (Triticum aestivum L.) under rainfed conditions. Environ. Stresses Crop Sci. 2018, 12, 735–746. [Google Scholar] [CrossRef]
- Haghverdi, A.; Leib, B.; Washington-Allen, R.C.; Wright, W.; Ghodsi, S.; Grant, T.; Zheng, M.; Vanchiasong, P. Studying crop yield response to Supplemental irrigation and the spatial Heterogeneity of soil Physical Attributes in a Humid Region. Agriculture 2019, 9, 43. [Google Scholar] [CrossRef] [Green Version]
- Khan, A.; Sayyed, R.Z.; Seifi, S. Rhizobacteria: Legendary Soil Guards in Abiotic Stress Management. Plant Growth Promoting Rhizobacteria for Sustainable Stress Management Vol 1 Abiotic Stress Management; Springer: Singapore, 2019; pp. 27–342. [Google Scholar]
- Asadi, S.; Rezaei-chiyaneh, E.R.; Amirnia, R. Effect of planting pattern and fertilizer source on agronomic characteristics of linseed (Linum usitatissimum L.) and chickpea (Cicer arietinum L.) in intercropping under rainfed conditions. Iran. J. Crop Sci. 2019, 21, 16–30. [Google Scholar]
- Khan, I.; Awan, S.A.; Ikram, R.; Rizwan, M.; Akhtar, N.; Yasmin, H.; Sayyed, R.Z.; Shafaqat, A.; Ilyas, N. 24-Epibrassinolide regulated antioxidants and osmolyte defense and endogenous hormones in two wheat varieties under drought stress. Physiologia Planta. 2020, 1–11. [Google Scholar] [CrossRef]
- Azarmi, A.F.; Hammami, H.; Yaghoubzadeh, M. Effect of application of plant growth-promoting microorganisms and phosphate fertilizer on yield and yield components of wheat and water use efficiency in irrigation water levels. J. Crop Prod. 2019, 12, 1–24. [Google Scholar] [CrossRef]
- Patil, A.S.; Patil, S.R.; Sayyed, R.Z. Interaction of Rhizobacteria With Soil Microorganisms: An Agro-Beneficiary Aspect. In Plant Growth Promoting Rhizobacteria for Sustainable Stress Management Vol II Biotic Stress Management; Sayyed, R.Z., Ed.; Springer: Singapore, 2019; pp. 241–260. [Google Scholar]
- Shaikh, S.S.; Wani, S.J.; Sayyed, R.Z. Impact of Interactions between Rhizosphere and Rhizobacteria: A Review. J. Bacteriol. Mycol. 2018, 5, 1058. [Google Scholar]
- Shaikh, S.S.; Wani, S.J.; Sayyed, R.Z.; Thakur, R.; Gulati, A. Production, purification and kinetics of chitinase of Stenotrophomonas maltophilia isolated from rhizospheric soil. Indian J. Exp. Biol. 2018, 56, 274–278. [Google Scholar]
- Sayyed, R.Z.; Seifi., S.; Patel, P.R.; Shaikh, S.S.; Jadhav, H.P.; El Enshasy, H. Siderophore production in groundnut rhizosphere isolate, Achromobacter sp. RZS2 influenced by physicochemical factors and metal ions. Environ. Sustain. 2019, 2, 117–124. [Google Scholar] [CrossRef]
- Reshma, P.; Naik, M.K.; Aiyaz, M.; Niranjana, S.R.; Chennappa, G.; Shaikh, S.S.; Sayyed, R.Z. Induced systemic resistance by 2, 4-diacetylphloroglucinol positive fluorescent Pseudomonas strains against rice sheath blight. Indian J. Exp. Biol. 2018, 56, 207–212. [Google Scholar]
- Sagar, A.; Riyazuddin, R.; Shukla, P.K.; Ramteke, P.W.; Sayyed, R.Z. Heavy metal stress tolerance in Enterobacter sp. PR14 is mediated by plasmid. Indian J. Exp. Biol. 2020, 58, 115–121. [Google Scholar]
- Sagar, A.; Sayyed, R.Z.; Ramteke, P.W.; Sharma, S.; Marraiki, N.; Elgorban, A.M.; Syed, A. ACC deaminase and antioxidant enzymes producing halophilic Enterobacter sp. PR14 promotes the growth of rice and millets under salinity stress. Physiol. Mol. Biol. Plants 2020, 26, 1847–1854. [Google Scholar] [CrossRef]
- Luh, S.N.; Ngurah, S.D.; Nazir, N.; Made, S.; Parwanayoni, N.; Agung, K.; Darmadi, A.; Andya, D.D.; Elgorban, A.M. A Mixture of Piper Leaves Extracts and Rhizobacteria for Sustainable Plant Growth Promotion and Bio-Control of Blast Pathogen of Organic Bali Rice. Sustainability 2020, 12, 8490. [Google Scholar] [CrossRef]
- Chitarra, W.; Pagliarani, C.; Maserti, B.; Lumini, E.; Siciliano, I.; Cascone, P. Insights on the impact of arbuscular mycorrhizal symbiosis on tomato tolerance to water stress. Plant Physiol. 2016, 171, 1009–1023. [Google Scholar] [CrossRef] [Green Version]
- Quiroga, G.; Erice, G.; Aroca, R.; Chaumont, F.; Ruiz-Lozano, J.M. Enhanced. Drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar. Front Plant Sci. 2017, 8, 1056. [Google Scholar] [CrossRef] [PubMed]
- Yuanyuan, Y.; Wang, X.; Chen, B.; Zhang, M.; Ma, J. Seaweed extract improved yields, leaf photosynthesis, Ripening Time, and net returns of romato (Solanum lycopersicum Mill.). ACS Omega 2020, 5, 4242–4249. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Franken, P.; Schneider, C.; Schwarz, D.; Giovannetti, M.; Agnolucci, M.; De Pascale, S.; Bonini, P.; Colla, G. Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci. Hortic. 2015, 196, 91–108. [Google Scholar] [CrossRef]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Method of Soil Analysis: Part 1. Physical and Mineralogical Methods; Wiley: Hoboken, NJ, USA, 1986. [Google Scholar]
- Rhoades, J.D. Soluble Salts. Methods of soil analysis. Part 2. Agronomy 1982, 9, 167–l78. [Google Scholar]
- Bhatti, A.S.; Loneragan, J.F. Phosphorus Concentrations in Wheat Leaves in Relation to Phosphorus Toxicity 1. Agron. J. 1970, 62, 288–290. [Google Scholar] [CrossRef]
- Knudsen, D.; Peterson, G.A.; Pratt, P.F. Lithium, Sodium, and Potassium. Methods of Soil Analysis, Part 2. Agronomy 1982, 9, 403–429. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. Methods of Soil Analysis, Part 2. Agronomy 1982, 9, 539–579. [Google Scholar] [CrossRef]
- Shakori, S.; Sharifi, P. Effect of phosphate biofertilizer and chemical phosphorus on growth and yield of Vicia faba L. Electron. J. Biol. 2016, 12, 47–52. [Google Scholar]
- Hashem, A.; Alqarawi, A.A.; Radhakrishnan, R.; Al-Arjani, A.B.F.; Aldehaish, H.A.; Egamberdieva, D.; Abd_Allah, E.F. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones, and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi. J. Biol. Sci. 2018, 25, 1102–1114. [Google Scholar] [CrossRef]
- Singh, S.; Singh, M.K.; Pal, S.K.; Perween, S.; Kumari, J.; Zodape, S.T.; Ghosh, A. Seaweed sap as productivity booster of maize. Bioscan 2015, 10, 1303–1305. [Google Scholar]
- Alizadeh, A.; Kamali, G.H. Plant Water Requirement in Iran; Astan Ghods Razavi Publication: Khorasan Razavi, Iran, 2008. [Google Scholar]
- Mahdavi, F.; Esmaili, M.A.; Fallah, A.; Pirdashti, H. Study of morphological characteristics of physiological yield indices and grain yield components in modified native rice cultivars. Iran. J. Crop Sci. 2005, 7, 280–298. [Google Scholar]
- Fallah, A. Effect of drought stress and zinc sulfate spraying on growth, yield and photosynthetic pigments in wheat cultivar Alvand. J. Plant Ecophysiol. 2020, 217–228. [Google Scholar]
- Jafari, H.; Heidari, G.H.; Khalesro, S.H. Effects of Supplemental Irrigation and biofertilizers on Yield and Yield Components of Dryland wheat (Triticum aestivum L.). Agric. Knowl. Sustain. Prod. 2019, 29, 173–187. [Google Scholar]
- AlipanahA, S.A.; Asgharipour, M.; Shahverdy, M. The effect of biofertilizers and fertilizer and mycorrhizae parameters on yield and yield components of wheat under drought stress. J. Plant Ecophysiol. 2020, 12, 12–25. (In Farsi) [Google Scholar]
- Amrayi, B.; Ardakani, M.R.; Rafiei, M.; Paknejad, F.; Rajali, F. Investigation of the effect of mycorrhiza and Azotobacter biofertilizers on grain yield of different dryland wheat cultivars in Khorramabad region. Agric. Plant Bree. 2016, 12, 15–30. [Google Scholar]
- Rostami, A.; Mohammadi, K.H. The effect of nitrogen and nitrogen fertilizers on yield and efficiency of nitrogen application in Moroccan single cross corn. J. Plant Ecophysiol. 2020, 12, 200–210. [Google Scholar]
- Fathi, A.; Tahmasebi, A.; Teymouri, N. The effect of cultivation time and weed interference on qualitative and quantitative grain characteristics of some chickpea cultivars in rainfed conditions. Iranian Rainfed Agric. 2016, 5, 135–158. [Google Scholar]
- Ghanbarzadeh, M.; Aminpanah, H.; Akhgari, H. The effect of phosphorus, rhizobia, and nitrogen fertilizer on the growth and yield of beans (Phaseolus vulgaris L). J. Plant Ecophysiol. 2019, 36, 103–114. [Google Scholar]
- Sibi, M.; Khazaie, H.R.; Nezamii, A. Safflower (Carthamus tinctorius L.) root response to seaweed extract concentrations, time, and method of application. Sci. J. Plant Ecophysiol. 2017, 9, 140–157. Available online: http://cpj.iauahvaz.ac.ir/article-1-632-en.html (accessed on 21 March 2021).
- Elansary, H.O.; Skalicka-Wozniak, K.; King, I.W. Enhancing stress growth traits as well as phytochemical and antioxidant contents of Spiraea and Pittosporum under seaweed extract treatments. Plant Physiol. Biochem. 2016, 105, 310–320. [Google Scholar] [CrossRef]
- Behboudi, F.; Tahmasebi Sarvestani, Z.; Mohamad Zaman, K.; Modares Sanavi, M.; Sorooshzadeh, A. The effect of foliar and soil application of chitosan nanoparticles on chlorophyll, photosynthesis, yield and yield components of wheat (Triticum aestivum L.) under drought stress after pollination. Iran. Soc. Plant Physiol. 2019, 8, 271–285. [Google Scholar]
- Tahir, M.; Khalid, U.; Ijaz, M.; Shah, G.M.; Naeem, M.A.; Shahid, M.; Kareem, F. Combined application of bio-organic phosphate and phosphorus solubilizing bacteria (Bacillus strainMWT 14) improve the performance of bread wheat with low fertilizer input under an arid climate. Braz. J. Microbiol. 2018, 49, 15–24. [Google Scholar] [CrossRef] [PubMed]
- Golestani Zadeh, J.; Jami Moeini, M.; Marvi, H. The Effect of Foliar Application of Seaweed Extract on Yield and Yield Components of Barley under Salinity Stress. Master’s Thesis, Agriculture, Faculty of Agriculture, Islamic Azad University Sabzeva, Sabzevar, Iran, 2018. [Google Scholar]
- Bharath, B.; Nirmalraj, S.; Mahendrakumar, M.; Perinbam, K. Biofertilizing efficiency of Sargassum polycystum extract on growth biochemical composition of Vigna radiata and Vigna mungo. Asian Pac. J. Reprod. 2018, 7, 27. [Google Scholar] [CrossRef]
- Layek, J.; Das, A.; Idapuganti, R.G.; Sarkar, D.; Ghosh, A.; Zodape, S.T.; Meena, R.S. Seaweed extract as organic bio-stimulant improves productivity and quality of rice in the eastern Himalayas. J. Appl. Phycol. 2018, 30, 547–558. [Google Scholar] [CrossRef]
- Prakash, P.; Mitra, A.; Nag, R.; Sunkar, S. Effect of seaweed liquid fertilizer and humic acid formulation on the growth and nutritional quality of Abelmoschus esculentus. Asian J. Crop Sci. 2018, 10, 48–52. [Google Scholar] [CrossRef]
- Gopalakrishnan, V.; Spencer, C.N.; Nezi, L.; Reuben, A.; Andrews, M.C.; Karpinets, T.V.; Prieto, P.A.; Vicente, D.; Hoffman, K.; Wei, S.C.; et al. Gut microbiome modulates response to anti–PD-1 immunotherapy in melanoma patients. Science 2018, 359, 97–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Latef, A.A.H.A.; Srivastava, A.K.; Saber, H.; Alwaleed, E.A.; Tran, L.S.P. Sargassummuticum and Jania rubens regulate amino acid metabolism to improve growth and alleviate salinity in chickpea. Sci. Rep. 2017, 7, 10537. [Google Scholar] [CrossRef] [Green Version]
- Basavaraja, P.K.; Yogendra, N.D.; Zodape, S.T.; Prakash, R.; Ghosh, A. Effect of seaweed sap as foliar spray on growth and yield of hybrid maize. J. Plant Nutr. 2018, 41, 1851–1861. [Google Scholar] [CrossRef]
- Shukla, P.S.; Shotton, K.; Norman, E.; Neily, W.; Critchley, A.T.; Prithiviraj, B. Seaweed extract improve drought tolerance of soybean by regulating stress-response genes. AoB Plants 2017, 10. [Google Scholar] [CrossRef] [PubMed]
- Elansary, H.O.; Salem, M.Z.; Ashmawy, N.A.; Yessoufou, K.; El-Settawy, A.A. In vitro antibacterial, antifungal and antioxidant activities of Eucalyptus spp. leaf extracts related to phenolic composition. Nat. Prod. Res. 2017, 31, 2927–2930. [Google Scholar] [CrossRef]
- Kocira, A.; Swieca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abd El-Samad, E.H.; Glala Abd El Baset, A.A.; Nadia, A.; Omar, M. Improving the establishment, growth, and yield of tomato seedlings transplanted during the summer season by using natural plant growth bio-stimulants. Middle East J. Agric. Res. 2019, 8, 311–329. [Google Scholar]
- Karthikeyan, K.; Shanmugam, M. Investigation on potassium-rich biostimulant from seaweed on yield and quality of some tropical and sub-tropical varieties banana grown under field condition in semi-arid zone. J. Nat. Prod. Plant Res. 2016, 6, 6–12. [Google Scholar]
- Kasim, W.A.; Hamada, E.A.; El-Din, N.G.S.; Eskander, S. Influence of seaweed extracts on the growth, some metabolic activities, and yield of wheat grown under drought stress. Int. J. Agron. Agric. Res. 2015, 7, 173–189. [Google Scholar]
- Fathi, A.; Farnia, A.; Maleki, A. The effect of biological fertilizers of nitrogen and phosphorus on vegetative characteristics, dry matter, and yield of corn. J. Agric. 2016, 29, 1–7. [Google Scholar]
- Jokar, F.; Masoumi Asl, A.; Karimizadeh, A. Evaluation of morphophysiological traits and drought tolerance indices in a number of advanced durum wheat lines under supplementary and non-irrigated irrigation. Ecophysiol. J. 2020, 12, 162–173. [Google Scholar]
- Mahato, S.; Kafle, A. Comparative study of Azotobacter with or without other fertilizers on growth and yield of wheat in Western hills of Nepal. Ann. Agric. Sci. 2018, 16, 250–256. [Google Scholar] [CrossRef]
- Jiriaei, M.; Fateh, A.; Aynehband, A. Evaluation of morphophysiological changes of wheat cultivars under mycorrhiza and Azospirillum application conditions. Iran. J. Crop Res. 2014, 12, 841–851. [Google Scholar]
- Safari, D. Effects of plant growth-promoting rhizobacteria (PGPRs) applying on yield and yield components of Almute wheat under drought stress condition. J. Wheat Res. 2018, 1, 13–22. [Google Scholar] [CrossRef]
- Miraz Karami, N.; Mirzaei Heidari, M.; Rostaminia, M. The effect of different fertilization systems (chemical, biological, and integrated) on different characteristics of autumn barley. J. Plant Ecophysiol. 2019, 11, 103–117. [Google Scholar]
- Ghaffarizadeh, A.; Seyed, N.S.M.; Gilani, A. Effect of leaf spray of aqueous extract of brown algae (Nizamuddinia zanardinii) at different levels of nitrogen on some physiological, biochemical and wheat yield traits. J. Plant Environ. Physiol. 2016, 13, 13–25. [Google Scholar]
- Naseri, R.; Barary, M.; Zare, M.J.; Khavazi, K.; Tahmasebi, Z. Effect of phosphate solubilizing bacteria and mycorrhizal fungi on shoot accumulation of micronutrient elements in Keras Sabalan and Saji wheat cultivars under dryland conditions. Appl. Res. Field Crops 2018, 32, 50–80. [Google Scholar] [CrossRef]
- Alipour, H.; Bihamta, M.R.; Mohammadi, M.; Peyghmbari, S.A. Evaluation of genetic variability of agronomic traits in Iranian wheat landraces and cultivars. J. Crop Breed 2017, 9, 168–177. [Google Scholar] [CrossRef] [Green Version]
- Rahimi, Y.; Bi Hemta, M.R.; Talei, A.R.; Alipour, H. Genetic variability assessment of Iranian wheat landraces in term of some agronomic attributes under normal irrigation and rain-fed conditions. Iranian J. Field Crop Sci. 2019, 50, 1–16. [Google Scholar] [CrossRef]
- Hagh Bahari, M.; Seyed Sharifi, R. The effect of seed inoculation with growth-enhancing bacteria (PGPR) growth on yield, speed, and duration of wheat grain filling at different levels of soil salinity. J. Environ. Stress Sci. Agric. 2013, 6, 65–75. [Google Scholar]
- Sayyahfar, M.; Mirshekari, B.; Yarnia, M.; Farahvash, F.; Esmaeilzadeh Moghaddam, M. Effect of mycorrhiza inoculation and methanol spraying on some photosynthetic characteristics and yield in wheat cultivars under end-season drought stress. Appl. Ecol. Environ. Res. 2018, 16, 3783–3803. [Google Scholar] [CrossRef]
- Cabral, C.; Ravnskov, S.; Tringovska, I.; Wollenweber, B. Arbuscular mycorrhizal fungi modify nutrient allocation and composition in wheat (Triticum aestivum L.) subjected to heat-stress. Plant Soil 2016, 408, 385–399. [Google Scholar] [CrossRef]
- Tavakoli, M.; Jalali, A.H. Effect of Different Biofertilizers and Nitrogen Fertilizer Levels on Yield and Yield Components of Wheat. J. Crop Prod. Proc. 2016, 6, 33–45. [Google Scholar] [CrossRef] [Green Version]
- Salim, B.B.M.; Abdel-Rassoul, M. Effect of foliar applications of seaweed extract, potassium nitrate, and potassium silicate on growth, yield, and some biochemical constituents of wheat plants under salt stress. J. Biol. Chem. Environ. Sci. 2016, 11, 371–391. [Google Scholar]
- Vahamidis, P.; Karamanos, A.J.; Garyfalia, E. Grain number determination in durum wheat as affected by drought stress: An analysis at spike and spikelet level. Ann. App. Bot. 2019, 174, 190–208. [Google Scholar] [CrossRef]
- Rezaei, C.A.; Rasouli, Y.; Jalilian, J.; Ghodsi, M. Evaluation of quantitative and qualitative yield of chickpea (Cicer arietinum L.) and barley (Hordeum vulgare L.) in intercropping affected by biological and chemical fertilizers in supplemental irrigation condition. Agric. Ecol. 2019, 11, 69–85. [Google Scholar] [CrossRef]
- Hou, J.; Huang, X.; Sun, W.; Du, C.; Wang, C.; Xie, Y.; Ma, D. Accumulation of water-soluble carbohydrates and gene expression in wheat stems correlates with drought resistance. J. Plant Physiol. 2018, 231, 182–191. [Google Scholar] [CrossRef]
- Azarmehr, A.R.; Baghi, M. Zyani, N.M. Application of seaweed extract and sulfated sulfur fertilizer on yield and some yield components of autumn rapeseed (Brassica Napus L.) cultivar Natali. Desert Res. 2017, 14, 155–165. [Google Scholar]
- Ahmadi, M.; Zare, M.J.; Emam, Y. Study of quantitative and qualitative traits of bread wheat by using of Cycocel, Zinc sulfate, and bio-fertilizer application under dryland farming. Sci. J. Plant Ecophysiol. 2019, 11, 148–161. (In Farsi) [Google Scholar]
- Yaghini, F.; Seyed, S.R.; Narimani, H. Effects of Supplemental Irrigation and Biofertilizers on Yield, Chlorophyll Content, Rate and Period of Grain Filling of Rainfed Wheat. J. Field Crops Res. 2020, 18, 101–109. [Google Scholar] [CrossRef]
- Zhang, S.; Lehmann, A.; Zheng, W.; You, Z.; Rillig, M.C. Arbuscular mycorrhizal fungi increase grain yields: A meta-analysis. New Phytol. 2019, 222, 543–555. [Google Scholar] [CrossRef]
- Ma, Y.; Rajkumar, M.; Oliveira, R.S.; Zhang, C.; Freitas, H. Potential of plant beneficial bacteria and arbuscular mycorrhizal fungi in phytoremediation of metal-contaminated saline soils. J. Hazard. Mater. 2019, 379, 120813. [Google Scholar] [CrossRef]
- Pathan, S.I.; Větrovský, T.; Giagnoni, L.; Datta, R.; Baldrian, P.; Nannipieri, P.; Renella, G. Microbial expression profiles in the rhizosphere of two maize lines differing in N use efficiency. Plant Soil 2018, 433, 401–413. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Khan, M.J.; Fahad, S.; Datta, R.; Brtnicky, M.; Kintl, A.; Hussain, G.S.; El-Esawi, M.A. Effect of Cadmium-Tolerant Rhizobacteria on Growth Attributes and Chlorophyll Contents of Bitter Gourd under Cadmium Toxicity. Plants 2020, 9, 1386. [Google Scholar] [CrossRef]
- Zafar-ul-Hye, M.; Tahzeeb-ul-Hassan, M.; Abid, M.; Fahad, S.; Brtnicky, M.; Dokulilova, T.; Datta, R.; Danish, S. Potential role of compost mixed biochar with rhizobacteria in mitigating lead toxicity in spinach. Sci. Rep. 2020, 10, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zafar-ul-Hye, M.; Naeem, M.; Danish, S.; Fahad, S.; Datta, R.; Abbas, M.; Rahi, A.A.; Brtnicky, M.; Holátko, J.; Tarar, Z.H.; et al. Alleviation of Cadmium Adverse Effects by Improving Nutrients Uptake in Bitter Gourd through Cadmium Tolerant Rhizobacteria. Environments 2020, 7, 54. [Google Scholar]
- Adnan, M.; Fahad, S.; Zamin, M.; Shah, S.; Mian, I.A.; Danish, S.; Zafar-ul-Hye, M.; Battaglia, M.L.; Naz, R.M.M.; Saeed, B. Coupling phosphate-solubilizing bacteria with phosphorus supplements improve maize phosphorus acquisition and growth under lime induced salinity stress. Plants 2020, 9, 900. [Google Scholar] [CrossRef] [PubMed]
- Danish, S.; Zafar-ul-Hye, M.; Fahad, S.; Saud, S.; Brtnicky, M.; Hammerschmiedt, T.; Datta, R. Drought Stress Alleviation by ACC Deaminase Producing Achromobacter xylosoxidans and Enterobacter cloacae, with and without Timber Waste Biochar in Maize. Sustainability 2020, 12, 6286. [Google Scholar]
- Hamidi, H.; Marashi, S.K. Effect of Mycorrhizal Fungus and Phosphorus Fertilizers on Growth Traits and Wheat Seed (Triticum aestivum L.). Plant Sci. 2018, 8, 13–22. [Google Scholar]
S.O.V. | Df | Plant Height (cm) | Tiller Number | Awn Length (cm) | Peduncle Length (cm) | Spike Length (cm) | Spike Weight (g) | Seed/Spike | No. of Spike Per m2 | 1000 Seed Weight | Grain Yield |
---|---|---|---|---|---|---|---|---|---|---|---|
Years | 1 | 78.10 ns | 42.83 ** | 3.50 ** | 20.23 ns | 9.65 ns | 0.06 ns | 71.91 * | 19,543.12 ns | 81.64 ** | 2,676,365.6 ns |
(Rep × Y) | 6 | 150.20 | 1.43 | 5.70 | 44.11 | 175.39 | 0.08 | 289.90 | 155,331.04 | 30.33 | 3,459,259.0 |
Irrigation | 2 | 1948.06 ** | 50.10 ** | 2.44 ** | 148.00 ** | 504.88 ** | 1.16 ** | 2808.48 ** | 596,113.58 ** | 408.36 ** | 53,654,858.4 ** |
(Y × I) | 2 | 125.85 ns | 2.17 ns | 0.05 ns | 164.79 ** | 0.10 ns | 0.01 ns | 24.57 ns | 7041.89 ns | 2.85 ns | 5,372,535.7 ** |
(Ea) | 12 | 227.15 | 16.67 | 2.63 | 103.20 | 75.56 ns | 0.17 ns | 528.86 | 524,607.66 | 163.30 | 19,089,250.7 |
Cultivars | 1 | 91.64 ns | 0.83 ns | 25.34 ** | 5.31 ns | 0.03 ns | 0.05 ns | 3.32 ns | 87,912.94 ** | 65.81 ** | 1,986,721.5 ns |
(I × V) | 2 | 8050.84 ** | 0.11 ns | 3.24 ** | 1097.59 ** | 111.78 ** | 0.01 ns | 286.47 ** | 78,015.99 ** | 33.53 ** | 4,955,329.0 ** |
(Y ×C) | 1 | 160.24 * | 2.45 ns | 1.40 * | 13.99 ns | 3.56 ns | 0.00 ns | 91.86 ** | 236.86 ns | 3.28 ns | 1,219,019.9 ns |
(Y × I × C) | 2 | 65.45 ns | 0.72 ns | 0.78 ns | 89.16 ns | 0.74 ns | 0.00 ns | 3.15 ns | 26,999.93 ns | 2.02 ns | 12,621.5 ns |
(Eb) | 18 | 1734.36 | 1.46 | 4.42 | 176.03 | 28.52 | 0.14 | 88.50 | 237,633.88 | 77.44 | 4,268,545.1 |
Biofertilizers | 7 | 42.23 ns | 6.15 ** | 0.49 ns | 41.27 ns | 6.70 * | 0.04 ns | 41.06 ** | 71,092.60 ns | 7.55 ns | 2,129,087.8 ** |
(I × B) | 14 | 67.44 ** | 2.43 ns | 0.31 ns | 27.27 ns | 6.23 * | 0.03 ns | 20.30 ** | 235,828.83 ** | 9.51 ** | 1,763,713.7 ** |
(V × B) | 7 | 21.71 ns | 2.35 ns | 0.19 ns | 15.11 ns | 7.67 * | 0.05 * | 16.92 ns | 86,023.26 ns | 6.31 ns | 1,218,132.4 ns |
(I × C × B) | 14 | 17.94 ns | 2.77 ns | 0.40 ns | 22.50 ns | 3.50 ns | 0.04 ** | 23.19 * | 123,748.20 ns | 7.39 * | 1,196,413.4 ns |
(Y × B) | 7 | 0.46 ns | 0.53 ns | 0.21 ns | 25.59 ns | 0.55 ns | 0.01 ns | 6.80 ns | 19,362.16 ns | 0.60 ns | 261,391.0 ns |
(Y × I × B) | 14 | 2.61 ns | 0.28 ns | 0.16 ns | 29.10 ns | 0.92 ns | 0.00 ns | 5.40 ns | 51,946.39 ns | 0.72 ns | 456,271.3 ns |
(Y × V × B) | 7 | 1.46 ns | 0.43 ns | 0.49 ns | 40.14 ns | 0.28 ns | 0.01 ns | 8.10 ns | 31,561.39 ns | 0.78 ns | 167,019.2 ns |
(Y × I × C × B) | 14 | 4.04 ns | 0.31 ns | 0.17 ns | 30.67 ns | 0.64 ns | 0.01 ns | 8.90 ns | 73,792.74 ns | 0.26 ns | 371,956.2 ns |
(Ec) | 252 | 24.46 | 1.70 | 0.29 | 31.03 | 3.02 | 0.02 | 11.55 | 6509.04 | 3.73 | 708,173.2 |
(%) C.v. | - | 4.65 | 21.73 | 11.18 | 14.31 | 11.30 | 12.06 | 12.46 | 13.44 | 4.68 | 19.33 |
Treatment (Year × Irrigation) | Peduncle Length (cm) | Grain Yield (kg/ha) |
---|---|---|
Dry farming × first year | 39.14a | 3687.66a |
Irrigation once × first year | 39.78b | 4625.16a |
Irrigation twice × first year | 40.36ab | 5003.75b |
Dry farming × second year | 37.04ab | 3508.59b |
Irrigation once × the second year | 37.28b | 4436.41a |
Irrigation twice × second year | 39.98ab | 4856.88a |
Treatment (Year × Cultivars) | Plant Height (cm) | Awn Length (cm) | Seed/Spike |
---|---|---|---|
first year × Sardari cultivar | 107.94a | 4.96ab | 27.28a |
first year × Sirvan cultivar | 105.94a | 4.55b | 28.12a |
second year × Sardari cultivar | 106.26a | 5.24a | 26.34a |
second year × Sirvan cultivar | 105.75a | 4.62b | 27.38a |
Treatment (Cultivars × Irrigation) | Plant Height (cm) | Awn Length (cm) | Peduncle Length (cm) | Spike Length (cm) | Seed/Spike | No. of Spike Per m2 | 1000-Seed Weight (g) | Grain Yield (kg/ha) |
---|---|---|---|---|---|---|---|---|
Sardari cultivar × Dry land farming | 108.23ab | 4.95ab | 36.91b | 13.13c | 20.97e | 527.38b | 39.80c | 3598.3b |
Sirvan cultivar×Dryland farming | 96.71b | 4.80ab | 36.78ab | 14.00c | 24.02de | 518.66b | 39.56c | 3598.0b |
Sardari cultivar × 1 Irrigation | 114.05a | 5.07ab | 40.05ab | 13.95c | 25.89cd | 631.09a | 41.94abc | 4425.2a |
Sirvan cultivars × 1 Irrigation | 98.81b | 4.35b | 36.78b | 16.13b | 28.97bc | 659.09a | 39.92bc | 4643.1a |
Sardari cultivar × 2 Irrigations | 116.02a | 5.32a | 43.44a | 16.85ab | 31.55ab | 637.25a | 43.34a | 4838.9a |
Sirvan cultivar × 3 Irrigations | 105.00ab | 4.54b | 40.20ab | 18.20a | 32.30a | 641.33a | 42.98ab | 5015.0a |
Treatment (Cultivars × Irrigation × Biofertilizers) | Spike Weight (g) | Seed/Spike | 1000-Seed Weight (g) |
---|---|---|---|
Sardari × dry land farming × control | 0.96 o | 19.13 s | 38.38 stu |
Sardari× dryland farming × mycorrhiza | 1.02 lmno | 19.75 rs | 39.50 opqrstu |
Sardari × dryland farming × seaweed extract | 1.06 ijklmno | 21.00 qrs | 39.50 opqrstu |
Sardari × dry land farming × nitrozist and phosphozist | 1.02 lmno | 21.00 qrs | 39.75 mnopqrst |
Sardari × dryland farming × mycorrhiza + seaweed extract | 1.04 klmno | 21.13 qrs | 40.00 lmnopqrst |
Sardari × dryland farming × mycorrhiza + nitrozist and phosphozist | 1.08 ghijklmno | 21.75 opqrs | 40.38 jklmnopqr |
Sardari × dryland farming × nitrozist and phosphozist + seaweed extract | 1.10 fghijklmn | 21.38 pqrs | 40.63 lmnopqr |
Sardari × dryland farming × mycorrhiza + seaweed extract + nitrozist and phosphozist | 1.12 efghijklmn | 22.63 nopqr | 40.88 hijklmnop |
Sirvan × dryland farming × control | 1.01 no | 21.38 pqrs | 37.75 u |
Sirvan × dryland farming × mycorrhiza | 1.02 lmno | 21.63 opqrs | 38.88 rstu |
Sirvan × dryland farming × seaweed extract | 1.02 lmno | 23.38 mnopq | 39.13 qrstu |
Sirvan × dryland farming × nitrous and phosphate | 1.02 mno | 23.63 lmnopq | 39.13 qrstu |
Sirvan × dryland farming × mycorrhiza + seaweed extract | 1.03 lmno | 23.75 lmnopq | 39.63 nopqrst |
Sirvan × dryland farming × mycorrhiza + nitrozist and phosphozist | 1.06 jklmno | 24.13 klmnopq | 39.75 mnopqrst |
Sirvan × dryland farming × seaweed extract + nitrozist and phosphozist | 1.11 fghijklmn | 26.38 ijklm | 39.63 nopqrstu |
Sirvan × dryland farming × mycorrhiza + seaweed extract + nitrozist and phosphozist | 1.13 defghijklmn | 27.88 fghij | 40.25 jklmnopqrs |
Sardari × irrigation once × control | 1.01 mno | 24.63 jklmnop | 40.88 hijklmnopq |
Sardari × irrigation once × mycorrhiza | 1.06 jklmno | 24.75 jklmno | 41.38 fghijklmno |
Sardari × irrigation once × seaweed extract | 1.09 ghijklmno | 25.75 jklmn | 41.63 efghijklm |
Sardari × irrigation once × nitrozist and phosphozist | 1.14 defghijklmn | 25.88 jklmn | 41.25 fghijklmno |
Sardari × irrigation once × mycorrhiza + seaweed extract | 1.14 defghijklmn | 26.00 jklm | 42.00 cdefghijk |
Sardari × irrigation once × mycorrhiza + nitrozist and phosphozist | 1.14 defghijklm | 26.25 jklm | 42.38 bcdefghi |
Sardari × irrigation once × nitrozist and phosphozist + seaweed extract | 1.15 cdefghijkl | 26.50 ijklm | 43.00 abcdefg |
Sardari × irrigation once × mycorrhiza + seaweed extract + nitrozist and phosphozist | 1.15 cdefghijkl | 27.38 ghijk | 43.00 abcdefg |
Sirvan × irrigation once × control | 1.07 hijklmno | 25.38 jklmn | 38.25 tu |
Sirvan × irrigation once × mycorrhiza | 1.09 ghijklmno | 26.50 ijklm | 38.75 rstu |
Sirvan × irrigation once × seaweed extract | 1.11 efghijklmn | 26.75 hijkl | 39.13 qrstu |
Sirvan × irrigation once × nitrous and phosphate | 1.17 cdefghijk | 29.88 defgh | 39.25 pqrstu |
Sirvan × irrigation once × mycorrhiza + seaweed extract | 1.18 cdefghij | 30.00 defgh | 40.13 lmnopqrst |
Sirvan × irrigation once × mycorrhiza + nitrozist and phosphozist | 1.19 cdefghij | 30.50 bcdefg | 40.88 ijklmnopq |
Sirvan × irrigation once × seaweed extract + nitrozist and phosphozist | 1.20 cdefghi | 30.88 bcdef | 41.50 fghijklmn |
Sirvan × irrigation once × mycorrhiza + seaweed extract + nitrozist and phosphozist | 1.20 cdefgh | 30.75 bcdef | 41.50 fghijklmn |
Sardari × irrigation twice × control | 1.07 hijklmno | 29.63 efgh | 41.13 ghijklmnop |
Sardari × irrigation twice × mycorrhiza | 1.19 defghij | 30.88 bcdef | 41.88 efghijkl |
Sardari × irrigation twice × seaweed extract | 1.120 fghijklmn | 31.00 bcdef | 42.13 cdefghij |
Sardari× irrigation twice × nitrozist and phosphozist | 1.25 cde | 32.50 abcde | 42.75 abcdefgh |
Sardari × irrigation twice × mycorrhiza + seaweed extract | 1.24 cdef | 32.75 abcde | 43.50 abcde |
Sardari × irrigation twice × mycorrhiza + nitrozist and phosphozist | 1.27 cd | 33.50 abc | 43.75 abcd |
Sardari × irrigation twice × nitrozist and phosphozist + seaweed extract | 1.28 bc | 33.75 a | 44.13 ab |
Sardari × irrigation twice × mycorrhiza + seaweed extract + nitrozist and phosphozist | 1.44 a | 34.75 a | 44.63 a |
Sirvan × irrigation twice × control | 1.13 defghijklmn | 29.88 defgh | 41.88 defghijkl |
Sirvan × irrigation twice × mycorrhiza | 1.19 cdefghij | 30.13 defg | 43.13 abcdef |
Sirvan × irrigation twice × seaweed extract | 1.22 cdefg | 30.25 cdefg | 43.13 abcdef |
Sirvan × irrigation twice × nitrous and phosphate | 1.24 cdef | 30.88 bcdef | 43.13 abcdef |
Sirvan × irrigation twice × mycorrhiza + seaweed extract | 1.25 cde | 32.25 abcde | 43.63 abcd |
Sirvan × irrigation twice × mycorrhiza + nitrozist and phosphozist | 1.28 bc | 31.13 bcdef | 43.75 abcd |
Sirvan × irrigation twice × seaweed extract + nitrozist and phosphozist | 1.29 bc | 33.00 abcd | 43.88 abc |
Sirvan × irrigation twice × mycorrhiza + seaweed extract + nitrozist and phosphozist | 1.42 ab | 34.88 a | 44.25 ab |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vafa, Z.N.; Sohrabi, Y.; Sayyed, R.Z.; Luh Suriani, N.; Datta, R. Effects of the Combinations of Rhizobacteria, Mycorrhizae, and Seaweed, and Supplementary Irrigation on Growth and Yield in Wheat Cultivars. Plants 2021, 10, 811. https://doi.org/10.3390/plants10040811
Vafa ZN, Sohrabi Y, Sayyed RZ, Luh Suriani N, Datta R. Effects of the Combinations of Rhizobacteria, Mycorrhizae, and Seaweed, and Supplementary Irrigation on Growth and Yield in Wheat Cultivars. Plants. 2021; 10(4):811. https://doi.org/10.3390/plants10040811
Chicago/Turabian StyleVafa, Z. Najafi, Y. Sohrabi, R. Z. Sayyed, Ni Luh Suriani, and Rahul Datta. 2021. "Effects of the Combinations of Rhizobacteria, Mycorrhizae, and Seaweed, and Supplementary Irrigation on Growth and Yield in Wheat Cultivars" Plants 10, no. 4: 811. https://doi.org/10.3390/plants10040811
APA StyleVafa, Z. N., Sohrabi, Y., Sayyed, R. Z., Luh Suriani, N., & Datta, R. (2021). Effects of the Combinations of Rhizobacteria, Mycorrhizae, and Seaweed, and Supplementary Irrigation on Growth and Yield in Wheat Cultivars. Plants, 10(4), 811. https://doi.org/10.3390/plants10040811