Production of Potato (Solanum tuberosum L.) Seed Tuber under Artificial LED Light Irradiation in Plant Factory
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plantlet Production and Growth Conditions
2.2. Plant Factory and Light-Emitting Diode (LED) Settings
2.3. Measurement of Plant Growth Characteristics and Seed Tuber Yield
2.4. Analysis of Photosynthetic Pigment of Potato Plants
2.5. Determination of Total Soluble Carbohydrate (TSC) and Total Soluble Sugar (TSS) Content
2.6. Statistical Analysis
3. Results
3.1. Potato Plant Growth Characteristics and Seed Tuber Yield
3.2. Analysis of Plant Photosynthetic Pigments and Carbohydrate Content of Potato Plants
4. Discussion
4.1. Potato Plant Growth Characteristics and Seed Tuber Production
4.2. Analysis of Photosynthetic Pigments and Carbohydrate Content
4.3. PCA Analysis Unveiled the Connections between Variables and Treatments
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Islam, J.; Choi, S.P.; Azad, O.K.; Kim, J.W.; Lim, Y.-S. Evaluation of tuber yield and marketable quality of newly developed thirty-two potato varieties grown in three different ecological zones in South Korea. Agriculture 2020, 10, 327. [Google Scholar] [CrossRef]
- Navarrete Ortega, J.I. Evaluación de dos Métodos de Micropropagacion Para la Producción de Semilla Categoría pre Básica de dos Variedades de papa (Solanum Tuberosum) Bajo Condiciones de Invernadero. Bachelor’s Thesis, Central University of Ecuador, Faculty of Agricultural Sciences, School of Agronomic Engineering, Quito, Ecuador, 2004. [Google Scholar]
- Lommen, W.J.M. The canon of potato science: 27. Hydroponics. Potato Res. 2007, 50, 315. [Google Scholar] [CrossRef] [Green Version]
- Wheeler, R.M. Potato and human exploration of space: Some observations from NASA-sponsored controlled environment studies. Potato Res. 2006, 49, 67–90. [Google Scholar] [CrossRef]
- Kozai, T.; Niu, G.; Takagaki, M. Plant Factory, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Mills, H.A.; Jones, J.B., Jr. Plant Analysis Handbook II: A Practical Sampling, Preparation, Analysis, and Interpretation Guide; Micro-Macro Publishing: Athens, Greece, 1996; ISBN 1878148052. [Google Scholar]
- Islam, M.J.; Hassan, M.K.; Sarker, S.R.; Rahman, A.B.; Fakir, M.S.A. Light and temperature effects on sprout yield and its proximate composition and vitamin C content in lignosus and mung beans. J. Bangladesh Agric. Univ. 2017, 15, 248–254. [Google Scholar] [CrossRef] [Green Version]
- Wenke, L. Light environmental management for artificial protected horticulture. Agrotechnology 2012, 1, 101. [Google Scholar]
- Lin, K.-H.; Huang, M.-Y.; Huang, W.-D.; Hsu, M.-H.; Yang, Z.-W.; Yang, C.-M. The effects of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Sci. Hortic. (Amsterdam). 2013, 150, 86–91. [Google Scholar] [CrossRef]
- Shimizu, H.; Saito, Y.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Light environment optimization for lettuce growth in plant factory. IFAC Proc. Vol. 2011, 44, 605–609. [Google Scholar] [CrossRef] [Green Version]
- Yorio, N.C.; Goins, G.D.; Kagie, H.R.; Wheeler, R.M.; Sager, J.C. Improving spinach, radish, and lettuce growth under red light-emitting diodes (LEDs) with blue light supplementation. HortScience 2001, 36, 380–383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terashima, I.; Fujita, T.; Inoue, T.; Chow, W.S.; Oguchi, R. Green light drives leaf photosynthesis more efficiently than red light in strong white light: Revisiting the enigmatic question of why leaves are green. Plant Cell Physiol. 2009, 50, 684–697. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, C.S.; Schuerger, A.C.; Sager, J.C. Growth and photomorphogenesis of pepper plants under red light-emitting diodes with supplemental blue or far-red lighting. J. Am. Soc. Hortic. Sci. 1995, 120, 808–813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuerger, A.C.; Brown, C.S. Spectral quality may be used to alter plant disease development in CELSS. Adv. Sp. Res. 1994, 14, 395–398. [Google Scholar] [CrossRef]
- Hanyu, H.; Shoji, K. Acceleration of growth in spinach by short-term exposure to red and blue light at the beginning and at the end of the daily dark period. In Proceedings of the IV International ISHS Symposium on Artificial Lighting, Quebec City, QC, Canada, 7–9 November 2000; pp. 145–150. [Google Scholar]
- Smith, H. Light quality, photoperception, and plant strategy. Annu. Rev. Plant Physiol. 1982, 33, 481–518. [Google Scholar] [CrossRef]
- Kopsell, D.A.; Lefsrud, M.G.; Kopsell, D.E.; Curran-Celentano, J. Irradiance Levels Affect Growth Parameters and CarotenoidPigments in Kale and Spinach Grown in a Controlled Environment. Physiol. Plantarum 2006, 127, 624–631. [Google Scholar]
- Heo, J.; Lee, C.; Chakrabarty, D.; Paek, K. Growth responses of marigold and salvia bedding plants as affected by monochromic or mixture radiation provided by a light-emitting diode (LED). Plant Growth Regul. 2002, 38, 225–230. [Google Scholar] [CrossRef]
- Kim, S.-J.; Hahn, E.-J.; Heo, J.-W.; Paek, K.-Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in vitro. Sci. Hortic. (Amsterdam). 2004, 101, 143–151. [Google Scholar] [CrossRef]
- Azad, M.O.K.; Kjaer, K.H.; Adnan, M.; Naznin, M.T.; Lim, J.D.; Sung, I.J.; Park, C.H.; Lim, Y.S. The Evaluation of Growth Performance, Photosynthetic Capacity, and Primary and Secondary Metabolite Content of Leaf Lettuce Grown under Limited Irradiation of Blue and Red LED Light in an Urban Plant Factory. Agriculture 2020, 10, 28. [Google Scholar] [CrossRef] [Green Version]
- Yeh, N.; Chung, J.-P. High-brightness LEDs—Energy efficient lighting sources and their potential in indoor plant cultivation. Renew. Sustain. Energy Rev. 2009, 13, 2175–2180. [Google Scholar] [CrossRef]
- Han, T.; Vaganov, V.; Cao, S.; Li, Q.; Ling, L.; Cheng, X.; Peng, L.; Zhang, C.; Yakovlev, A.N.; Zhong, Y. Improving “color rendering” of LED lighting for the growth of lettuce. Sci. Rep. 2017, 7, 45944. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. [34] Chlorophylls and carotenoids: Pigments of photosynthetic biomembranes. Methods Enzymol. 1987, 148, 350–382. [Google Scholar]
- Islam, M.J.; Kim, J.W.; Begum, M.K.; Sohel, M.A.T.; Lim, Y.-S. Physiological and Biochemical Changes in Sugar Beet Seedlings to Confer Stress Adaptability under Drought Condition. Plants 2020, 9, 1511. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Tang, C. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tissue Organ Cult. 2010, 103, 155–163. [Google Scholar] [CrossRef]
- Nhut, D.T.; Don, N.T.; Tanaka, M. Light-emitting diodes as an effective lighting source for in vitro banana culture. In Protocols for Micropropagation of Woody Trees and Fruits; Springer: Berlin/Heidelberg, Germany, 2007; pp. 527–541. [Google Scholar]
- Wongnok, A.; Piluek, C.; Techasilpitak, T.; Tantivivat, S. Effects of light emitting diodes on micropropagation of Phalaenopsis orchids. In Proceedings of the International Workshop on Ornamental Plants 788, Chiang Mai, Thailand, 8–11 January 2007; pp. 149–156. [Google Scholar]
- Chen, L.; Zhang, K.; Gong, X.; Wang, H.; Gao, Y.; Wang, X.; Zeng, Z.; Hu, Y. Effects of different LEDs light spectrum on the growth, leaf anatomy, and chloroplast ultrastructure of potato plantlets in vitro and minituber production after transplanting in the greenhouse. J. Integr. Agric. 2020, 19, 108–119. [Google Scholar] [CrossRef]
- Aksenova, N.P.; Konstantinova, T.N.; Sergeeva, L.I.; Macháčková, I.; Golyanovskaya, S.A. Morphogenesis of potato plants in vitro. I. Effect of light quality and hormones. J. Plant Growth Regul. 1994, 13, 143. [Google Scholar] [CrossRef]
- Fan, X.; Zang, J.; Xu, Z.; Guo, S.; Jiao, X.; Liu, X.; Gao, Y. Effects of different light quality on growth, chlorophyll concentration and chlorophyll biosynthesis precursors of non-heading Chinese cabbage (Brassica campestris L.). Acta Physiol. Plant. 2013, 35, 2721–2726. [Google Scholar] [CrossRef]
- Folta, K.M.; Childers, K.S. Light as a growth regulator: Controlling plant biology with narrow-bandwidth solid-state lighting systems. HortScience 2008, 43, 1957–1964. [Google Scholar] [CrossRef] [Green Version]
- Monostori, I.; Heilmann, M.; Kocsy, G.; Rakszegi, M.; Ahres, M.; Altenbach, S.B.; Szalai, G.; Pál, M.; Toldi, D.; Simon-Sarkadi, L. LED lighting–modification of growth, metabolism, yield and flour composition in wheat by spectral quality and intensity. Front. Plant Sci. 2018, 9, 605. [Google Scholar] [CrossRef]
- Assmann, S.M. Signal transduction in guard cells. Annu. Rev. Cell Biol. 1993, 9, 345–375. [Google Scholar] [CrossRef]
- Kim, H.-H.; Goins, G.D.; Wheeler, R.M.; Sager, J.C. Stomatal conductance of lettuce grown under or exposed to different light qualities. Ann. Bot. 2004, 94, 691–697. [Google Scholar] [CrossRef] [Green Version]
- Seabrook, J.E.A. Light effects on the growth and morphogenesis of potato (Solanum tuberosum) in vitro: A review. Am. J. Potato Res. 2005, 82, 353–367. [Google Scholar] [CrossRef]
- Eviatar-Ribak, T.; Shalit-Kaneh, A.; Chappell-Maor, L.; Amsellem, Z.; Eshed, Y.; Lifschitz, E. A cytokinin-activating enzyme promotes tuber formation in tomato. Curr. Biol. 2013, 23, 1057–1064. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aksenova, N.P.; Konstantinova, T.N.; Chailakhian, M.K. Morphogenetic effect of blue and red-light under illumination of the overground and underground potato plant organs invitro. Dokl. Akad. Nauk SSSR 1989, 305, 508–512. [Google Scholar]
- Kaufman, L.S. Transduction of blue-light signals. Plant Physiol. 1993, 102, 333. [Google Scholar] [CrossRef] [PubMed]
- Fixen, K.R.; Thomas, S.C.; Tong, C.B.S. Blue light inhibition of tuberization in a day-neutral potato. J. Plant Growth Regul. 2012, 31, 342–350. [Google Scholar] [CrossRef]
- Lovell, P.H.; Booth, A. Effects of gibberellic acid on growth, tuber formation and carbohydrate distribution in Solanum tuberosum. New Phytol. 1967, 66, 525–537. [Google Scholar] [CrossRef]
- Roumeliotis, E.; Visser, R.G.F.; Bachem, C.W.B. A crosstalk of auxin and GA during tuber development. Plant Signal. Behav. 2012, 7, 1360–1363. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.B.; Wang, S.; Wang, X.D.; Shi, X.B.; Wang, B.L.; Zheng, X.C.; Wang, Z.Q.; Liu, F.Z. Effects of light quality on leaf senescence and endogenous hormones content in grapevine under protected cultivation. Ying Yong Sheng Tai Xue Bao = J. Appl. Ecol. 2017, 28, 3535. [Google Scholar]
- Su, N.; Wu, Q.; Cui, J. Effects of monochromatic LED light quality on endogenous hormone content in leaves and hypocotyl of Cucumis sativus L. Chin. J. Appl. Environ. Biol. 2014, 20, 45–49. [Google Scholar]
- Poudel, P.R.; Kataoka, I.; Mochioka, R. Effect of red-and blue-light-emitting diodes on growth and morphogenesis of grapes. Plant Cell Tissue Organ Cult. 2008, 92, 147–153. [Google Scholar] [CrossRef]
- Nhut, D.T.; Takamura, T.; Watanabe, H.; Tanaka, M. Efficiency of a novel culture system by using light-emitting diode (LED) on in vitro and subsequent growth of micropropagated banana plantlets. In Proceedings of the I International Symposium on Acclimatization and Establishment of Micropropagated Plants 616, Sani-Halkidiki, Greece, 19–22 September 2001; pp. 121–127. [Google Scholar]
- Nhut, D.T.; Takamura, T.; Watanabe, H.; Okamoto, K.; Tanaka, M. Responses of strawberry plantlets cultured in vitro under superbright red and blue light-emitting diodes (LEDs). Plant Cell Tissue Organ Cult. 2003, 73, 43–52. [Google Scholar] [CrossRef]
- Olsen, J.E.; Junttila, O. Far red end-of-day treatment restores wild type-like plant length in hybrid aspen overexpressing phytochrome A. Physiol. Plant. 2002, 115, 448–457. [Google Scholar] [CrossRef]
- Kara, A.N.; Kotov, A.A.; Bukhov, N.G. Specific distribution of gibberellins, cytokinins, indole-3-acetic acid, and abscisic acid in radish plants closely correlates with photomorphogenetic responses to blue or red light. J. Plant Physiol. 1997, 151, 51–59. [Google Scholar] [CrossRef]
- Hu, Y. Effects of red and blue LEDs on in vitro growth and microtuberization of potato single-node cuttings. Front. Agric. Sci. Eng. 2018, 5, 197–205. [Google Scholar]
- Asghari-Zakaria, R.; Maleki-Zanjani, B.; Sedghi, E. Effect of in vitro chitosan application on growth and minituber yield of Solanum tuberosum L. Plant Soil Environ. 2009, 55, 252–256. [Google Scholar] [CrossRef] [Green Version]
- Upadhyaya, C.P.; Pundir, R.K.; Pathak, A.; Joshi, N.; Bagri, D.S. Irradiation Studies of LED Light Spectra on the Growth and Development of Potato (Solanum tuberosum L.). Plant Sci. Today 2020, 7, 406–416. [Google Scholar] [CrossRef]
- Martínez-García, J.F.; Huq, E.; Quail, P.H. Direct targeting of light signals to a promoter element-bound transcription factor. Science 2000, 288, 859–863. [Google Scholar] [PubMed] [Green Version]
- Hogewoning, S.W.; Trouwborst, G.; Maljaars, H.; Poorter, H.; van Ieperen, W.; Harbinson, J. Blue light dose–responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 2010, 61, 3107–3117. [Google Scholar] [CrossRef]
- Li, H.; Tang, C.; Xu, Z. The effects of different light qualities on rapeseed (Brassica napus L.) plantlet growth and morphogenesis in vitro. Sci. Hortic. (Amsterdam). 2013, 150, 117–124. [Google Scholar] [CrossRef]
- Li, H.; Tang, C.; Xu, Z.; Liu, X.; Han, X. Effects of different light sources on the growth of non-heading Chinese cabbage (Brassica campestris L.). J. Agric. Sci. 2012, 4, 262. [Google Scholar] [CrossRef] [Green Version]
- Son, K.-H.; Oh, M.-M. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 2013, 48, 988–995. [Google Scholar] [CrossRef]
- Ma, G.; Zhang, L.; Kato, M.; Yamawaki, K.; Kiriiwa, Y.; Yahata, M.; Ikoma, Y.; Matsumoto, H. Effect of blue and red LED light irradiation on β-cryptoxanthin accumulation in the flavedo of citrus fruits. J. Agric. Food Chem. 2012, 60, 197–201. [Google Scholar] [CrossRef]
- Bukhov, N.G.; Drozdova, I.S.; Bondar, V.V.; Mokronosov, A.T. Blue, red and blue plus red light control of chlorophyll content and CO2 gas exchange in barley leaves: Quantitative description of the effects of light quality and fluence rate. Physiol. Plant. 1992, 85, 632–638. [Google Scholar] [CrossRef]
- Takagi, D.; Ihara, H.; Takumi, S.; Miyake, C. Growth light environment changes the sensitivity of photosystem I photoinhibition depending on common wheat cultivars. Front. Plant Sci. 2019, 10, 686. [Google Scholar] [CrossRef] [PubMed]
- Xu, F.; Cao, S.; Shi, L.; Chen, W.; Su, X.; Yang, Z. Blue light irradiation affects anthocyanin content and enzyme activities involved in postharvest strawberry fruit. J. Agric. Food Chem. 2014, 62, 4778–4783. [Google Scholar] [CrossRef] [PubMed]
- do Nascimento, J.R.O.; Cordenunsi, B.R.; Lajolo, F.M.; Alcocer, M.J.C. Banana sucrose-phosphate synthase gene expression during fruit ripening. Planta 1997, 203, 283–288. [Google Scholar] [CrossRef]
Spectrum Combinations | Intensity Ratio (%) | Intensity (µmol m−2 s−1) | Code Name |
---|---|---|---|
R:B:FR | 70:20:10 | 100 | L1 |
R:B:W | 70:20:10 | 100 | L2 |
B:FR | 70:30 | 100 | L3 |
B:W | 70:30 | 100 | L4 |
R:FR | 70:30 | 100 | L5 |
R:W | 70:30 | 100 | L6 |
Chemical Name | Vegetative Growth Period (Transplantation to 40th Day) | Tuber Bulking Period (41th Days to Harvesting Day) | ||
---|---|---|---|---|
A Tank (50 L) | B Tank (50 L) | A Tank (50 L) | B Tank (50 L) | |
Ca(NO3) | 1.5 kg | 7.66 kg | ||
KNO3 | 3.79 kg | 3.79 kg | 3.54 kg | 3.54 kg |
(NH4)2HPO4 | 1.6 kg | 1.52 kg | ||
MgSO4 | 4.3 kg | 3.68 kg | ||
K2SO4 | 1.3 kg | |||
Fe-EDTA | 460 g | 460 g | 30.8 g | |
MnSO4 | 30.8 g | |||
H3BO3 | 57.2 g | 57.2 g | ||
ZnSO4 | 3.6 g | 3.6 g | ||
CuSO4 | 1.3 g | 1.3 g | ||
(NH4)6Mo7O24·4H2O | 0.4 g | 0.4 g |
Treatments | Plant Height (cm) | Node Number | Leaf Number | Leaf Length (cm) | Leaf Width (cm) | Fresh Weight/Plant (g) | Dry Weight/Plant (g) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V48 | V41 | V48 | V41 | V48 | V41 | V48 | V41 | V48 | V41 | V48 | V41 | V48 | V41 | |
L1 | 17.33 ± 3.3 bc | 17.01 ± 3.2 c | 15.33 ± 2.8 a | 13.66 ± 1.4 b | 9.61 ± 1.6 ab | 9 ± 0.8 ab | 5.5 ± 0.4 a | 3 ± 0.4 b | 2.5 ± 0.4 a | 1.5 ± 0.2 b | 2.16 ± 0.3 cd | 3.35 ± 0.2 d | 0.21 ± 0.0 c | 0.24 ± 0.0 bc |
L2 | 13 ± 0.8 c | 15 ± 0.8 c | 12 ± 0.8 ab | 14.22 ± 2 a | 7.31 ± 1.2 b | 9.66 ± 1.2 a | 3.03 ± 0.2 b | 3.1 ± 0.7 b | 1.9 ± 0.2 ab | 1.6 ± 0.3 abc | 7.18 ± 1.0 ab | 4.54 ± 0.3 c | 0.4 ± 0.0 b | 0.25 ± 0.0 bc |
L3 | 21.6 ± 1.2 b | 26 ± 1.6 ab | 15.67 ± 1.2 a | 14.34 ± 2.9 a | 9 ± 0.8 ab | 9 ± 0.8 ab | 5.4 ± 0.53 a | 4.43 ± 0.4 a | 2.5 ± 0.1 a | 1.86 ± 0.1 a | 1.714 ± 0.2 d | 0.42 ± 0.0 e | 0.17 ± 0.0 c | 0.08 ± 0.0 d |
L4 | 14 ± 0.8 c | 15 ± 1.6 c | 15.31 ± 1.6 a | 14.24 ± 2.4 a | 7.32 ± 1.6 ab | 8 ± 0.8 ab | 2.73 ± 0.2 b | 1.96 ± 0.1 c | 1.55 ± 0.1 b | 1.43 ± 0.2 bc | 6.25 ± 0.9 b | 5.45 ± 0.7 b | 0.15 ± 0.0 c | 0.19 ± 0.0 c |
L5 | 30.3 ± 1.1 a | 27 ± 1.4 a | 16.33 ± 1.2 a | 14.16 ± 1.2 a | 10.63 ± 1.1 a | 9 ± 0.8 ab | 5.9 ± 0.2 a | 4.23 ± 0.5 a | 2.5 ± 0.4 a | 1.73 ± 0.5 a | 9.98 ± 1.7 a | 6.91 ± 0.2 a | 1.23 ± 0.0 c | 0.35 ± 0.0 a |
L6 | 16.31 ± 2.0 bc | 19 ± 2.9 bc | 11.36 ± 0.8 ab | 14.74 ± 0.8 a | 6 ± 0.82 b | 7.33 ± 1.2 b | 2.66 ± 0.4 b | 1.13 ± 0.1 c | 1.4 ± 0.2 c | 0.6 ± 0.1 c | 4.44 ± 0.2 c | 3.55 ± 0.3 d | 0.12 ± 0.0 c | 0.27 ± 0.0 b |
df | mss | mss | mss | mss | mss | mss | mss | |||||||
Variety | 1 | 11.1 *** | 38.02 *** | 1.00 *** | 13.56 *** | 3.67 *** | 14.07 *** | 0.35 *** | ||||||
Treatment | 5 | 199.13 *** | 19.36 ns | 8.13 *** | 10.85 *** | 1.06 *** | 41.05 *** | 0.33 *** | ||||||
Variety X Treatment | 5 | 10.37 *** | 12.29 *** | 3.06 *** | 1.15 *** | 0.2 *** | 3.46 *** | 0.21 ** | ||||||
LSD (0.05) | 7.39 | 7.85 | 5.61 | 4.44 | 3.89 | 2.19 | 1.64 | 0.86 | 1.25 | 0.62 | 3.53 | 0.75 | 0.19 | 0.07 |
Treatments | Chlorophyll a (mg/g) | Chlorophyll b (mg/g) | Total Chlorophyll (mg/g) | Carotenoid (mg/g) | ||||
---|---|---|---|---|---|---|---|---|
V48 | V41 | V48 | V41 | V48 | V41 | V48 | V41 | |
L1 | 1.12 ± 0.05 a | 0.61 ± 0.05 e | 0.74 ± 0.05 b | 0.44 ± 0.03 d | 2.07 ± 0.11 a | 1.06 ± 0.08 d | 2.01 ± 0.07 a | 1.12 ± 0.05 b |
L2 | 1.76 ± 0.06 a | 1.82 ± 0.05 a | 1.01 ± 0.06 a | 0.95 ± 0.04 a | 2.25 ± 0.12 a | 1.97 ± 0.02 a | 2.19 ± 0.05 a | 1.74 ± 0.07 a |
L3 | 0.75 ± 0.05 d | 0.99 ± 0.07 a | 0.55 ± 0.07c | 0.76 ± 0.03 a | 1.3 ± 0.12 d | 1.46 ± 0.11 b | 1.21 ± 0.05 c | 0.73 ± 0.04 cd |
L4 | 0.66 ± 0.02 de | 0.7 ± 0.04 de | 0.45 ± 0.04 d | 0.51 ± 0.06 c | 1.12 ± 0.05 de | 1.22 ± 0.02 cd | 1.12 ± 0.06 d | 0.69 ± 0.06 d |
L5 | 1.06 ± 0.06 b | 0.77 ± 0.03 bc | 1.03 ± 0.05 a | 0.51 ± 0.05 c | 2.04 ± 0.02 a | 1.29 ± 0.07 c | 1.99 ± 0.07 a | 1.04 ± 0.1 b |
L6 | 0.87 ± 0.04 c | 0.87 ± 0.03 b | 0.69 ± 0.02 b | 0.57 ± 0.03 b | 1.56 ± 0.02 b | 1.44 ± 0.07 b | 1.51 ± 0.07 b | 0.86 ± 0.06 c |
LSD (0.05) | 0.1 | 0.1 | 0.12 | 0.03 | 0.13 | 0.09 | 0.13 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.H.; Azad, M.O.K.; Islam, M.J.; Rana, M.S.; Li, K.-h.; Lim, Y.S. Production of Potato (Solanum tuberosum L.) Seed Tuber under Artificial LED Light Irradiation in Plant Factory. Plants 2021, 10, 297. https://doi.org/10.3390/plants10020297
Rahman MH, Azad MOK, Islam MJ, Rana MS, Li K-h, Lim YS. Production of Potato (Solanum tuberosum L.) Seed Tuber under Artificial LED Light Irradiation in Plant Factory. Plants. 2021; 10(2):297. https://doi.org/10.3390/plants10020297
Chicago/Turabian StyleRahman, Md Hafizur, Md Obyedul Kalam Azad, Md Jahirul Islam, Md Soyel Rana, Kui-hua Li, and Young Seok Lim. 2021. "Production of Potato (Solanum tuberosum L.) Seed Tuber under Artificial LED Light Irradiation in Plant Factory" Plants 10, no. 2: 297. https://doi.org/10.3390/plants10020297