In Vitro Anti-Trypanosoma cruzi Activity of Halophytes from Southern Portugal Reloaded: A Special Focus on Sea Fennel (Crithmum maritimum L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sample Collection
2.3. Preparation of the Extracts
2.4. Fractionation of the Active Extract
2.5. Evaluation of In Vitro Anti-Trypanosomal Activity
Data Analysis
2.6. Chemical Analysis
2.7. Target Fishing Hypothesis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hotez, P.J.; Molyneux, D.H.; Fenwick, A.; Kumaresan, J.; Sachs, S.E.; Sachs, J.D.; Savioli, L. Control of neglected tropical diseases. N. Engl. J. Med. 2007, 357, 1018–1027. [Google Scholar] [CrossRef] [Green Version]
- WHO (World Health Organization). Working to Overcome the Global Impact of Neglected Tropical Diseases: First WHO Report on Neglected Tropical Diseases; WHO Press: Geneva, Switzerland, 2010; p. 140. ISBN 9789241564090. [Google Scholar]
- WHO (World Health Organization). Integrating Neglected Tropical Diseases in Global Health and Development: Fourth WHO Report on Neglected Tropical Diseases; WHO Press: Geneva, Switzerland, 2017; p. 267. ISBN 9789241565448. [Google Scholar]
- Zingales, B. Trypanosoma cruzi genetic diversity: Something new for something known about Chagas disease manifestations, serodiagnosis and drug sensitivity. Acta Trop. 2018, 184, 38–52. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet 2018, 391, 82–94. [Google Scholar] [CrossRef]
- Echeverria, L.E.; Morillo, C.A. American Trypanosomiasis (Chagas Disease). Infect. Dis. Clin. North. Am. 2019, 33, 119–134. [Google Scholar] [CrossRef] [PubMed]
- Bermudez, J.; Davies, C.; Simonazzi, A.; Real, J.P.; Palma, S. Current drug therapy and pharmaceutical challenges for Chagas disease. Acta Trop. 2016, 156, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Crespillo-Andujar, C.; Venanzi-Rullo, E.; López-Vélez, R.; Monge-Maillo, B.; Norman, F.; López-Polín, A.; Pérez-Molina, J.A. Safety profile of benznidazole in the treatment of chronic Chagas disease: Experience of a referral centre and systematic literature review with meta-analysis. Drug Saf. 2018, 41, 1035–1048. [Google Scholar] [CrossRef] [PubMed]
- Forsyth, C.J.; Hernandez, S.; Olmedo, W.; Abuhamidah, A.; Traina, M.I.; Sanchez, D.R.; Soverow, J.; Meymandi, S.K. Safety profile of nifurtimox for treatment of Chagas disease in the United States. Clin. Inf. Dis. 2016, 63, 1056–1062. [Google Scholar] [CrossRef] [Green Version]
- Ksouri, R.; Ksouri, W.M.; Jallali, I.; Debez, A.; Magné, C.; Hiroko, I.; Abdelly, C. Medicinal halophytes: Potent source of health promoting biomolecules with medical, nutraceutical and food applications. Crit. Rev. Biotechnol. 2012, 32, 289–326. [Google Scholar] [CrossRef]
- López, D.; Cherigo, L.; Spadafora, C.; Loza-Mejía, M.A.; Martínez-Luis, S. Phytochemical composition, antiparasitic and α–glucosidase inhibition activities from Pelliciera rhizophorae. Chem. Cent. J. 2015, 9, 53. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, M.; Junior, P.A.S.; Rodrigues, M.J.; DellaGreca, M.; Barreira, L.; Murta, S.M.F.; Romanha, A.J.; Custódio, L. Unlocking the in vitro anti-Trypanosoma cruzi activity of halophyte plants from the southern Portugal. Asian Pac. J. Trop. Dis. 2016, 9, 735–741. [Google Scholar] [CrossRef] [Green Version]
- Kamte, S.L.N.; Ranjbarian, F.; Cianfaglione, K.; Sut, S.; Dall’Acqua, S.; Bruno, M.; Afshar, F.H.; Iannarelli, R.; Benelli, G.; Cappellacci, L.; et al. Identification of highly effective antitrypanosomal compounds in essential oils from the Apiaceae family. Ecotoxicol. Environ. Saf. 2018, 156, 154–165. [Google Scholar] [CrossRef]
- Atia, A.; Barhoumi, Z.; Mokded, R.; Abdelly, C.; Smaoui, A. Environmental eco-physiology and economical potential of the halophyte Crithmum maritimum L. (Apiaceae). J. Med. Plants Res. 2011, 5, 3564–3571. [Google Scholar] [CrossRef]
- Viegas, D.A.; Palmeira-de-Oliveira, A.; Salgueiro, L.; Martinez-de-Oliveira, J.; Palmeira-de-Oliveira, R. Helichrysum italicum: From traditional use to scientific data. J. Ethnopharmacol. 2014, 151, 54–65. [Google Scholar] [CrossRef]
- Moraes, C.B.; Giardini, M.A.; Kim, H.; Franco, C.H.; Araujo-Junior, A.M.; Schenkman, S.; Chatelain, E.; Freitas-Junior, L.H. Nitroheterocyclic compounds are more efficacious than CYP51 inhibitors against Trypanosoma cruzi: Implications for Chagas disease drug discovery and development. Sci. Rep. 2014, 4, 4703. [Google Scholar] [CrossRef] [Green Version]
- Franco, C.H.; Warhurst, D.C.; Bhattacharyya, T.; Au, H.Y.A.; Le, H.; Giardini, M.A.; Pascoalino, B.S.; Torrecilhas, A.C.; Romera, L.M.D.; Madeira, R.P.; et al. Novel structural CYP51 mutation in Trypanosoma cruzi associated with multidrug resistance to CYP51 inhibitors and reduced infectivity. Int. J. Parasitol. Drugs Drug Resist. 2020, 13, 107–120. [Google Scholar] [CrossRef]
- Hessler, G.; Korb, O.; Monecke, P.; Stützle, T.; Exner, T.E. pParmACOphore: Multiple flexible ligand alignment based on ant colony optimization. J. Cheminform. 2010, 2, P17. [Google Scholar] [CrossRef] [Green Version]
- Vainio, M.J.; Puranen, J.S.; Johnson, M.S. ShaEP: Molecular overlay based on shape and electrostatic potential. Chem. Inf. Model. 2009, 49, 492–502. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A.E.; Berendsen, H.J.C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718. [Google Scholar] [CrossRef]
- Huang, W.; Lin, Z.; van Gunsteren, W.F. Validation of the GROMOS 54A7 force field with respect to β-peptide folding. J. Chem. Theory Comput. 2011, 7, 1237–1243. [Google Scholar] [CrossRef]
- Malde, A.K.; Zuo, L.; Breeze, M.; Stroet, M.; Poger, D.; Nair, P.C.; Oostenbrink, C.; Mark, A.E. An automated force field topology builder (ATB) and repository: Version 1.0. J. Chem. Theory Comput. 2011, 7, 4026–4037. [Google Scholar] [CrossRef]
- Zheng, X.; Zheng, X.; Zhang, C.; Zhang, Q.; Jiang, Y.; Tu, P. Cytotoxic polyacetylenes isolated from the roots and rhizomes of Notopterygium incisum. Chin. Chem. Lett. 2019, 30, 428–1430. [Google Scholar] [CrossRef]
- Meot-Duros, L.; Cerantola, S.; Talarmin, H.; Le Meur, C.; Le Floch, G.; Magne, C. New antibacterial and cytotoxic activities of falcarindiol isolated in Crithmum maritimum L. leaf extract. Food Chem. Toxicol. 2010, 48, 553–557. [Google Scholar] [CrossRef] [PubMed]
- Webb, B.; Sali, A. Comparative protein structure modelling using Modeller. Curr. Protoc. Bioinform. 2016, 54, 5.6.1–5.6.37. [Google Scholar] [CrossRef] [Green Version]
- Moraes, C.B.; Franco, C.H. Novel drug discovery for Chagas disease. Expert Opin. Drug Discov. 2016, 11, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Torrico, F.; Gascon, J.; Ortiz, L.; Alonso-Vega, C.; Pinazo, M.; Schijman, A.; Almeida, I.; Alves, F.; Strub-Wourgaft, N.; Ribeiro, I. Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: A proof-of-concept, randomised, placebo-controlled trial. Lancet Infec. Dis. 2018, 18, 419–430. [Google Scholar] [CrossRef]
- Molina, I.; Prat, J.; Salvador, F.; Trevino, B.; Sulleiro, E.; Serre, N.; Pou, D.; Roure, S.; Cabezos, J.; Valerio, L.; et al. Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N. Engl. J. Med. 2014, 370, 1899–1908. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Peinado, N.; Cortes-Serra, N.; Torras-Claveria, L.; Pinazo, M.-J.; Gascon, J.; Bastida, J.; Alonso-Padilla, J. Amaryllidaceae alkaloids with anti-Trypanosoma cruzi activity. Parasit. Vectors 2020, 13, 299. [Google Scholar] [CrossRef]
- Zingales, B.; Miles, M.A.; Moraes, C.B.; Luquetti, A.; Guhl, F.; Schijman, A.G.; Ribeiro, I. Drug discovery for Chagas disease should consider Trypanosoma cruzi strain diversity. Mem. Inst. Oswaldo Cruz 2014, 109, 828–833. [Google Scholar] [CrossRef] [PubMed]
- McLean, L.M.; Thomas, J.; Lewis, M.D.; Cotillo, I.; Gray, D.W.; De Rycker, M. Development of Trypanosoma cruzi in vitro assays to identify compounds suitable for progression in Chagas’ disease drug discovery. PLoS Negl. Trop. Dis. 2018, 12, e0006612. [Google Scholar] [CrossRef]
- Franco, C.H.; Alcântara, L.M.; Chatelain, E.; Freitas-Junior, L.; Moraes, C.M. Drug discovery for Chagas disease: Impact of different host cell lines on assay performance and hit compound selection. Trop. Med. Infect. Dis. 2019, 4, 82. [Google Scholar] [CrossRef] [Green Version]
- Salm, A.; Krishnan, S.R.; Collu, M.; Danton, O.; Hamburger, M.; Leonti, M.; Almanza, G.; Gertsch, J. Phylobioactive hotspots in plant resources used to treat Chagas disease. iScience 2021, 24, 102310. [Google Scholar] [CrossRef]
- Mennai, I.; Sifaoui, I.; Esseid, C.; López-Arencibia, A.; Reyes-Batlle, M.; Benayache, F.; Benayache, S.; Bazzocchi, I.L.; Lorenzo-Morales, J.; Piñero, J.E.; et al. Bio-guided isolation of leishmanicidal and trypanocidal constituents from Pituranthos battandieri aerial parts. Parasitol. Int. 2021, 82, 102300. [Google Scholar] [CrossRef]
- Palace-Berl, F.; Pasqualoto, K.F.M.; Zingales, B.; Moraes, C.B.; Bury, M.; Franco, C.H.; Neto, A.L.S.; Murayama, J.S.; Nunes, S.L.; Silva, M.N.; et al. Investigating the structure-activity relationships of N’-[(5-nitrofuran-2-yl) methylene] substituted hydrazides against Trypanosoma cruzi to design novel active compounds. Eur. J. Med. Chem. 2018, 144, 29–40. [Google Scholar] [CrossRef]
- Cunsolo, F.; Ruberto, G. Bioactive metabolites from Sicilian marine fennel, Crithmum maritimum. J. Nat. Prod. 1993, 56, 1598–1600. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, F.; Sporer, F.; Tahrani, A.; Wink, M. Antitrypanosomal properties of Panax ginseng C. A. Meyer: New possibilities for a remarkable traditional drug. Phytother. Res. 2013, 27, 86–98. [Google Scholar] [CrossRef] [PubMed]
- Christensen, L.P.; Brandt, K. Bioactive polyacetylenes in food plants of the Apiaceae family: Occurrence, bioactivity and analysis. J. Pharm. Biomed. Anal. 2006, 41, 683–693. [Google Scholar] [CrossRef] [PubMed]
- Heydenreuter, W.; Kunold, E.; Sieber, S.A. Alkynol natural products target ALDH2 in cancer cells by irreversible binding to the active site. Chem. Commun. 2015, 51, 15784–15787. [Google Scholar] [CrossRef] [Green Version]
- Villamizar, L.H.; Cardoso, M.G.; Andrade, J.; Teixeira, M.L.; Soares, M.J. Linalool, a Piper aduncum essential oil component, has selective activity against Trypanosoma cruzi trypomastigote forms at 4 °C. Mem. Inst. Oswaldo Cruz 2017, 112, 131–139. [Google Scholar] [CrossRef] [Green Version]
- Kobaek-Larsen, M.; El-Houri, R.B.; Christensen, L.P.; Al-Najami, I.; Fretté, X.; Baatrup, G. Dietary polyacetylenes, falcarinol and falcarindiol, isolated from carrots prevents the formation of neoplastic lesions in the colon of azoxymethane- induced rats. Food Funct. 2017, 8, 964–974. [Google Scholar] [CrossRef] [Green Version]
- Izumi, E.; Ueda-Nakamura, T.; Filho, B.P.D.; Júnior, V.F.V.; Nakamura, C.V. Natural products and Chagas’ disease: A review of plant compounds studied for activity against Trypanosoma cruzi. Nat. Prod. Rep. 2011, 28, 809–823. [Google Scholar] [CrossRef] [PubMed]
- Wink, M. Evolutionary advantage and molecular modes of action of multi-component mixtures used in phytomedicine. Curr. Drug Metab. 2008, 9, 996–1009. [Google Scholar] [CrossRef] [PubMed]
- Raut, J.S.; Karuppayil, S.M. A status review on the medicinal properties of essential oils. Ind. Crops Prod. 2014, 62, 250–264. [Google Scholar] [CrossRef]
Plant/Compound | Organ | Extract | Yields | T. cruzi Y Strain | T. cruzi Sylvio X10/1 Strain | ||
---|---|---|---|---|---|---|---|
Normalized Activity (%) | Average Cell Ratio | Normalized Activity (%) | Average Cell Ratio | ||||
C. maritimum | Stems | Decoction | 29.2% | −1.42 ± 4.50 | 0.79 ± 0.05 | −1.66 ± 5.74 | 1.36 ± 0.19 |
Tincture | 20.8% | 68.1 ± 10.0 | 0.14 ± 0.06 | 70.2 ± 16.8 | 0.13 ± 0.01 | ||
EOs | 0.23% | 0.00 ± 0.00 | 0.01 ± 0.01 | 55.7 ± 27.0 | 0.13 ± 0.11 | ||
Leaves | Decoction | 45.7% | 13.6 ± 3.47 | 0.47 ± 0.05 | 11.8 ± 3.26 | 0.52 ± 0.23 | |
Tincture | 26.5% | 35.2 ± 4.07 | 0.26 ± 0.11 | 33.2 ± 12.2 | 0.38 ± 0.06 | ||
EOs | 0.30% | 75.1 ± 13.1 | 0.02 ± 0.02 | 22.2 ± 18.9 | 0.02 ± 0.02 | ||
Flowers | Decoction | 37.8% | 65.0 ± 6.04 | 0.73 ± 0.04 | 29.3 ± 0.69 | 2.00 ± 1.47 | |
Tincture | 32.4% | 35.4 ± 31.5 | 0.01 ± 0.00 | 73.3 ± 49.5 | 0.01 ± 0.00 | ||
EOs | 0.53% | 107 ± 0.47 | 0.00 ± 0.00 | 12.0 ± 69.7 | 0.02 ± 0.02 | ||
H. italicum subsp. picardii | Flowers | Decoction | 27.8% | −5.76 ± 1.51 | 0.12 ± 0.03 | −10.6 ± 9.18 | 0.32 ± 0.07 |
Tincture | 32.6% | 13.4 ± 8.36 | 0.09 ± 0.01 | −7.68 ± 3.23 | 0.13 ± 0.01 | ||
EOs | 0.30% | 76.1 ± 15.3 | 0.37 ± 0.14 | 93.4 ± 7.04 | 0.36 ± 0.24 | ||
Benznidazole a | 99.5 ± 0.45 | 1.82 ± 0.16 | 98.6 ± 0.62 | 2.11 ± 0.62 |
Extract/Compound | T. cruzi Y Strain | |||
---|---|---|---|---|
EC50 b | Max. Activity (%) c | CC50 (µg/mL) d | SI e | |
Active extract | 17.7 ± 1.38 µg/mL | 89.4 | ND | >5.65 |
Benznidazole a | 3.97 ± 0.93 µM | 100 | ND | >101 |
Extract/Compound | T. cruzi Y Strain | |||
---|---|---|---|---|
EC50 (µg/mL) b | Max. Activity (%) c | CC50 (µg/mL) d | SI e | |
Fraction 1, Hex | 0.47 ± 0.01 | 113 | 28.0 ± 0.90 | 59.6 |
Fraction 2, Dcm | 12.3 ± 0.35 | 97.0 | 79.3 * | >6.47 |
Fraction 3, Clor | 23.3 * | 56.6 | ND | >4.29 |
Fraction 4, Acet | ND | 39.4 | ND | ND |
Fraction 5, H2O | ND | 42.0 | ND | ND |
Benznidazole a | 0.92 ± 0.02 | 109 | ND | >56 |
Compound | T. cruzi Y Strain | |||
---|---|---|---|---|
EC50 (µM) b | Max. Activity (%) c | CC50 (µM) d | SI e | |
Falcarindiol | 6.8 ± 1.9 | 124 | >100 | >14.5 |
Benznidazole a | 26.8 ± 7.5 | 132 | >400 | >14.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, C.G.; Moraes, C.B.; Franco, C.H.; Feltrin, C.; Grougnet, R.; Barbosa, E.G.; Panciera, M.; Correia, C.R.D.; Rodrigues, M.J.; Custódio, L. In Vitro Anti-Trypanosoma cruzi Activity of Halophytes from Southern Portugal Reloaded: A Special Focus on Sea Fennel (Crithmum maritimum L.). Plants 2021, 10, 2235. https://doi.org/10.3390/plants10112235
Pereira CG, Moraes CB, Franco CH, Feltrin C, Grougnet R, Barbosa EG, Panciera M, Correia CRD, Rodrigues MJ, Custódio L. In Vitro Anti-Trypanosoma cruzi Activity of Halophytes from Southern Portugal Reloaded: A Special Focus on Sea Fennel (Crithmum maritimum L.). Plants. 2021; 10(11):2235. https://doi.org/10.3390/plants10112235
Chicago/Turabian StylePereira, Catarina G., Carolina Borsoi Moraes, Caio H. Franco, Clarissa Feltrin, Raphaël Grougnet, Euzébio Guimarães Barbosa, Michele Panciera, Carlos Roque D. Correia, Maria João Rodrigues, and Luísa Custódio. 2021. "In Vitro Anti-Trypanosoma cruzi Activity of Halophytes from Southern Portugal Reloaded: A Special Focus on Sea Fennel (Crithmum maritimum L.)" Plants 10, no. 11: 2235. https://doi.org/10.3390/plants10112235
APA StylePereira, C. G., Moraes, C. B., Franco, C. H., Feltrin, C., Grougnet, R., Barbosa, E. G., Panciera, M., Correia, C. R. D., Rodrigues, M. J., & Custódio, L. (2021). In Vitro Anti-Trypanosoma cruzi Activity of Halophytes from Southern Portugal Reloaded: A Special Focus on Sea Fennel (Crithmum maritimum L.). Plants, 10(11), 2235. https://doi.org/10.3390/plants10112235