Increase of Productivity and Neutralization of Pathological Processes in Plants of Grain and Fruit Crops with the Help of Aqueous Solutions Activated by Plasma of High-Frequency Glow Discharge
Abstract
:1. Introduction
2. Results
2.1. Physicochemical Properties of Aqueous Solutions Activated by Glow Discharge Plasma
2.2. Fungicidal Properties of Aqueous Solutions Activated by Glow Discharge Plasma
2.3. Study of the Effectiveness of the Action of Activated Water on the Yield of Sorghum Crops (Laboratory Tests)
2.4. Study of the Effectiveness of the Action of Activated Water on the Yield of Sorghum Crops (Field Trials)
3. Discussion
4. Materials and Methods
4.1. Activated Water Generation Method
4.2. Plants Samples
4.3. DNA Extraction
4.4. Real-Time PCR
4.5. Physicochemical Properties of Aqueous Solutions
4.6. Field Experiment
4.7. Statistics
5. Conclusions
- Activated water can be attributed to the category of plant growth regulators of grain and fruit crops, simultaneously contributing to an increase in plant resistance to negative biotic and abiotic environmental factors.
- High concentrations of activated water can partially or completely block the growth and development of plants. The positive effect of the drug is usually manifested when the stock solution is diluted 250–500 times.
- Pre-sowing treatment of seeds with activated water affects the growth and development of sorghum during the entire growing season.
- The effectiveness of the drug is manifested even when grown on poor saline soils and in drought conditions, in which the effect of fertilizers and most growth stimulants is weak due to lack of moisture.
- Activated water in optimal concentration is an inexpensive, promising, environmentally friendly preparation for production. In extreme growing conditions, the device developed by us is of particular value and promising for use.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Judée, F.; Simon, S.; Bailly, C.; Dufour, T. Plasma-activation of tap water using DBD for agronomy applications: Identification and quantification of long lifetime chemical species and production/consumption mechanisms. Water Res. 2018, 133, 47–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thirumdas, R.; Kothakota, A.; Annapure, U.; Siliveru, K.; Blundell, R.; Gatt, R.; Valdramidis, V.P. Plasma activated water (PAW): Chemistry, physico-chemical properties, applications in food and agriculture. Trends Food Sci. Technol. 2018, 77, 21–31. [Google Scholar] [CrossRef]
- Belov, S.V.; Lobachevsky, Y.P.; Danilejko, Y.K.; Egorov, A.B.; Simakin, A.V.; Maleki, A.; Temnov, A.A.; Dubinin, M.V.; Gudkov, S.V. The Role of Mitochondria in the Dual Effect of Low-Temperature Plasma on Human Bone Marrow Stem Cells: From Apoptosis to Activation of Cell Proliferation. Appl. Sci. 2020, 10, 8971. [Google Scholar] [CrossRef]
- Belov, S.V.; Danyleiko, Y.K.; Glinushkin, A.P.; Kalinitchenko, V.P.; Egorov, A.V.; Sidorov, V.A.; Konchekov, E.M.; Gudkov, S.V.; Dorokhov, A.S.; Lobachevsky, Y.P.; et al. An Activated Potassium Phosphate Fertilizer Solution for Stimulating the Growth of Agricultural Plants. Front. Phys. 2021, 8, 618320. [Google Scholar] [CrossRef]
- Sysolyatina, E.V.; Lavrikova, A.Y.; Loleyt, R.A.; Vasilieva, E.V.; Abdulkadieva, M.A.; Ermolaeva, S.A.; Sofronov, A.V. Bidirectional mass transfer-based generation of plasma-activated water mist with antibacterial properties. Plasma Process Polym. 2020, 17, e2000058. [Google Scholar] [CrossRef]
- Kučerová, K.; Henselová, M.; Slováková, Ľ.; Bačovčinová, M.; Hensel, K. Effect of Plasma Activated Water, Hydrogen Peroxide, and Nitrates on Lettuce Growth and Its Physiological Parameters. Appl. Sci. 2021, 11, 1985. [Google Scholar] [CrossRef]
- Maniruzzaman, M.; Sinclair, A.J.; Cahill, D.M.; Wang, X.; Dai, X.J. Nitrate and Hydrogen Peroxide Generated in Water by Electrical Discharges Stimulate Wheat Seedling Growth. Plasma Chem. Plasma Process. 2017, 37, 1393–1404. [Google Scholar] [CrossRef]
- Aider, M.; Gnatko, E.; Benali, M.; Plutakhin, G.; Kastyuchik, A. Electro-activated aqueous solutions: Theory and application in the food industry and biotechnology. Innov. Food Sci. Emerg. Technol. 2012, 15, 38–49. [Google Scholar] [CrossRef]
- Machala, Z.; Tarabova, B.; Hensel, K.; Spetlikova, E.; Sikurova, L.; Lukes, P. Formation of ROS and RNS in Water Electro-Sprayed through Transient Spark Discharge in Air and their Bactericidal Effects. Plasma Process. Polym. 2013, 10, 649–659. [Google Scholar] [CrossRef]
- Locke, B.R. Environmental Applications of Electrical Discharge Plasma with Liquid Water: A Mini Review. Inter. J. Plasma Env. Sci. Technol. 2012, 6, 194–203. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.H.; Hong, Y.C.; Kim, H.S.; Uhm, H.S. Simple Microwave Plasma Source at Atmospheric Pressure. J. Korean Phys. Soc. 2003, 42, S876–S879. [Google Scholar]
- Sergeichev, K.F.; Lukina, N.A.; Sarimov, R.M.; Smirnov, I.G.; Simakin, A.V.; Dorokhov, A.S.; Gudkov, S.V. Physicochemical Properties of Pure Water Treated by Pure Argon Plasma Jet Generated by Microwave Discharge in Opened Atmosphere. Front. Phys. 2021, 8, 614684. [Google Scholar] [CrossRef]
- Dai, X.J.; Corr, C.S.; Ponraj, S.B.; Maniruzzaman, M.; Ambujakshan, A.T.; Chen, Z.; Kviz, L.; Lovett, R.; Rajmohan, G.D.; de Celis, D.R.; et al. Efficient and Selectable Production of Reactive Species Using a Nanosecond Pulsed Discharge in Gas Bubbles in Liquid. Plasma Process. Polym. 2016, 13, 306–310. [Google Scholar] [CrossRef]
- Hamdan, A.; Cha, M.S. The effects of gaseous bubble composition and gap distance on the characteristics of nanosecond discharges in distilled water. J. Phys. D Appl. Phys. 2016, 49, 245203. [Google Scholar] [CrossRef]
- Cejas, E.; Mancinelli, B.; Prevosto, L. Modelling of an Atmospheric–Pressure Air Glow Discharge Operating in High–Gas Temperature Regimes: The Role of the Associative Ionization Reactions Involving Excited Atoms. Plasma 2020, 3, 3. [Google Scholar] [CrossRef] [Green Version]
- Sainct, F.P.; Durocher-Jean, A.; Gangwar, R.K.; Gonzalez, N.Y.M.; Coulombe, S.; Stafford, L. Spatially-Resolved Spectroscopic Diagnostics of a Miniature RF Atmospheric Pressure Plasma Jet in Argon Open to Ambient Air. Plasma 2020, 3, 5. [Google Scholar] [CrossRef] [Green Version]
- Shutov, D.A.; Ivanov, A.N.; Rakovskaya, A.V.; Smirnova, K.V.; Manukyan, A.S.; Rybkin, V.V. Synthesis of oxygen-containing iron powders and water purification from iron ions by glow discharge of atmospheric pressure in contact with the solution. J. Phys. D Appl. Phys. 2020, 53, 445202. [Google Scholar] [CrossRef]
- Ozen, E.; Singh, R. Atmospheric cold plasma treatment of fruit juices: A review. Trends Food Sci. Technol. 2020, 103, 144–151. [Google Scholar] [CrossRef]
- Baburin, N.V.; Belov, S.V.; Danileĭko, Y.K.; Egorov, A.B.; Lebedeva, T.P.; Nefedov, S.M.; Osiko, V.V.; Salyuk, V.A.; Danileiko, Y.K. Heterogeneous recombination in steam plasma as a mechanism of affecting biological tissues. Dokl. Phys. 2009, 54, 259–261. [Google Scholar] [CrossRef]
- Rusanov, V.D.; Fridman, A.A.; Sholin, G.V. The physics of a chemically active plasma with nonequilibrium vibrational excitation of molecules. Sov. Phys. Uspekhi 1981, 24, 447–474. [Google Scholar] [CrossRef]
- Attri, P.; Ishikawa, K.; Okumura, T.; Koga, K.; Shiratani, M. Plasma Agriculture from Laboratory to Farm: A Review. Processes 2020, 8, 1002. [Google Scholar] [CrossRef]
- Le Caër, S. Water Radiolysis: Influence of Oxide Surfaces on H2 Production under Ionizing Radiation. Water 2011, 3, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Bruskov, V.I.; Chernikov, A.V.; Gudkov, S.V.; Masalimov, Z.K. Thermal Activation of the Reducing Properties of Seawater Anions. Biofizika 2003, 48, 1022–1029. [Google Scholar]
- Konchekov, E.M.; Glinushkin, A.P.; Kalinitchenko, V.P.; Artem’Ev, K.V.; Burmistrov, D.E.; Kozlov, V.A.; Kolik, L.V. Properties and Use of Water Activated by Plasma of Piezoelectric Direct Discharge. Front. Phys. 2021, 8, 616385. [Google Scholar] [CrossRef]
- Chen, H.; Yuan, D.; Wu, A.; Lin, X.; Li, X. Review of low-temperature plasma nitrogen fixation technology. Waste Dispos. Sustain. Energy 2021, 3, 201–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Salvi, D. Evaluation of plasma-activated water (PAW) as a novel disinfectant: Effectiveness on Escherichia coli and Listeria innocua, physicochemical properties, and storage stability. LWT 2021, 149, 111847. [Google Scholar] [CrossRef]
- Quan, L.-J.; Zhang, B.; Shi, W.-W.; Li, H.-Y. Hydrogen Peroxide in Plants: A Versatile Molecule of the Reactive Oxygen Species Network. J. Integr. Plant Biol. 2008, 50, 2–18. [Google Scholar] [CrossRef] [PubMed]
- Dunand, C.; Crèvecoeur, M.; Penel, C. Distribution of superoxide and hydrogen peroxide in Arabidopsis root and their influence on root development: Possible interaction with peroxidases. New Phytol. 2007, 174, 332–341. [Google Scholar] [CrossRef] [PubMed]
- Barba-Espín, G.; Hernández, J.A.; Diaz-Vivancos, P. Role of H2O2 in pea seed germination. Plant Signal. Behav. 2012, 7, 193–195. [Google Scholar] [CrossRef] [Green Version]
- Gorbanev, Y.; O’Connell, D.; Chechik, V. Non-Thermal Plasma in Contact with Water: The Origin of Species. Chem. A Eur. J. 2016, 22, 3496–3505. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, S.Z.; Khandaker, M.M.; Mat, N.; Boyce, A.N. Effects of Hydrogen Peroxide on Growth, Development and Quality of Fruits: A Review. J. Agron. 2015, 14, 331–336. [Google Scholar] [CrossRef] [Green Version]
- Fedina, I.S.; Nedeva, D.; Cicek, N. Pre-treatment with H2O2 induces salt tolerance in Barley seedlings. Biol. Plant. 2009, 53, 321–324. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Wang, J.; Li, Z. Exogenous H2O2 improves the chilling tolerance of manilagrass and mascarenegrass by activating the antioxidative system. Plant Growth Regul. 2010, 61, 195–204. [Google Scholar] [CrossRef]
- Li, J.T.; Zhao, P.P.; Qiu, Z.B.; Zhang, Y.H.; Wang, M.M.; Bi, Z.Z. Effects of Exogenous Hydrogen Peroxide on the Physiological Index of Wheat Seedlings under Salt Stress. Acta Bot. Booreali-Occident. Sin. 2012, 32, 1796–1801. [Google Scholar] [CrossRef]
- Das, K.; Roychoudhury, A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front. Environ. Sci. 2014, 2, 53. [Google Scholar] [CrossRef] [Green Version]
- Ka, D.H.; Priatama, R.A.; Park, J.Y.; Park, S.J.; Kim, S.B.; Lee, I.A.; Lee, Y.K. Plasma-Activated Water Modulates Root Hair Cell Density via Root Developmental Genes in Arabidopsis thaliana L. Appl. Sci. 2021, 11, 2240. [Google Scholar] [CrossRef]
- Hossain, M.A.; Fujita, M. Hydrogen peroxide priming stimulates drought tolerance in mustard (Brassica juncea L.). Plant Gene Trait. 2013, 4, 109–123. [Google Scholar] [CrossRef]
- Zhao, F.-Y.; Han, M.-M.; Zhang, S.-Y.; Wang, K.; Zhang, C.-R.; Liu, T.; Liu, W. Hydrogen Peroxide-Mediated Growth of the Root System Occurs via Auxin Signaling Modification and Variations in the Expression of Cell-Cycle Genes in Rice Seedlings Exposed to Cadmium Stress. J. Integr. Plant Biol. 2012, 54, 991–1006. [Google Scholar] [CrossRef]
- Baral, B.R.; Pande, K.R.; Gaihre, Y.K.; Baral, K.R.; Sah, S.K.; Thapa, Y.B.; Singh, U. Increasing nitrogen use efficiency in rice through fertilizer application method under rainfed drought conditions in Nepal. Nutr. Cycl. Agroecosyst. 2020, 118, 103–114. [Google Scholar] [CrossRef]
- Sajib, S.A.; Billah, M.; Mahmud, S.; Miah, M.; Hossain, F.; Omar, F.B.; Roy, N.C.; Hoque, K.M.F.; Talukder, M.R.; Kabir, A.H.; et al. Plasma activated water: The next generation eco-friendly stimulant for enhancing plant seed germination, vigor and increased enzyme activity, a study on black gram (Vigna mungo L.). Plasma Chem. Plasma Process. 2020, 40, 119–143. [Google Scholar] [CrossRef]
- Andreev, S.N.; Apasheva, L.M.; Ashurov, M.K.; Lukina, N.A.; Sapaev, I.B.; Sapaev, I.; Sergeichev, K.F.; Shcherbakov, I.A. Production of Pure Hydrogen Peroxide Solutions in Water Activated by the Plasma of Electrodeless Microwave Discharge and Their Application to Control Plant Growth. Phys. Wave Phenom. 2019, 27, 145–148. [Google Scholar] [CrossRef]
- Andreev, S.N.; Apasheva, L.M.; Ashurov, M.K.; Lukina, N.A.; Shcherbakov, I.A. Production of pure hydrogen peroxide solu-tions in water activated by plasma of an electrodeless microwave discharge and their application for controlling plant growth. Dokl. Phys. 2019, 64, 222–224. [Google Scholar] [CrossRef]
- Guo, D.; Liu, H.; Zhou, L.; Xie, J.; He, C. Plasma-activated water production and its application in agriculture. J. Sci. Food Agric. 2021, 101, 4891–4899. [Google Scholar] [CrossRef] [PubMed]
- Aboul-Maaty, N.A.-F.; Oraby, H.A.-S. Extraction of high-quality genomic DNA from different plant orders applying a modified CTAB-based method. Bull. Natl. Res. Cent. 2019, 43, 25. [Google Scholar] [CrossRef] [Green Version]
- Sharapov, M.G.; Novoselov, V.I.; Penkov, N.V.; Fesenko, E.E.; Vedunova, M.V.; Bruskov, V.I.; Gudkov, S.V. Protective and adaptogenic role of peroxiredoxin 2 (Prx2) in neutralization of oxidative stress induced by ionizing radiation. Free. Radic. Biol. Med. 2019, 134, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Jurado, M.; Vázquez, C.; Patiño, B.; González-Jaén, M.T. PCR detection assays for the trichothecene-producing species Fusarium graminearum, Fusarium culmorum, Fusarium poae, Fusarium equiseti and Fusarium sporotrichioides. Syst. Appl. Microbiol. 2005, 28, 562–568. [Google Scholar] [CrossRef] [PubMed]
- Pastrana, A.M.; Basallote-Ureba, M.J.; Aguado, A.; Capote, N. Potential Inoculum Sources and Incidence of Strawberry Soilborne Pathogens in Spain. Plant Dis. 2017, 101, 751–760. [Google Scholar] [CrossRef]
- Shcherbakov, I.A.; Baimler, I.V.; Gudkov, S.V.; Lyakhov, G.A.; Mikhailova, G.N.; Pustovoy, V.I.; Sarimov, R.M.; Simakin, A.V.; Troitsky, A.V. Influence of a Constant Magnetic Field on Some Properties of Water Solutions. Dokl. Phys. 2020, 65, 273–275. [Google Scholar] [CrossRef]
- Baymler, I.V.; Gudkov, S.V.; Sarimov, R.M.; Simakin, A.V.; Shcherbakov, I.A. Concentration Dependences of Molecular Oxygen and Hydrogen in Aqueous Solutions. Dokl. Phys. 2020, 65, 5–7. [Google Scholar] [CrossRef]
- Baimler, I.V.; Lisitsyn, A.B.; Serov, D.A.; Astashev, M.E.; Gudkov, S.V. Analysis of Acoustic Signals During the Optical Breakdown of Aqueous Solutions of Fe Nanoparticles. Front. Phys. 2020, 8, 622551. [Google Scholar] [CrossRef]
- Gudkov, S.V.; Lyakhov, G.A.; Pustovoy, V.; Shcherbakov, I.A. Influence of Mechanical Effects on the Hydrogen Peroxide Concentration in Aqueous Solutions. Phys. Wave Phenom. 2019, 27, 141–144. [Google Scholar] [CrossRef]
- Baimler, I.V.; Lisitsyn, A.B.; Gudkov, S.V. Water Decomposition Occurring During Laser Breakdown of Aqueous Solutions Containing Individual Gold, Zirconium, Molybdenum, Iron or Nickel Nanoparticles. Front. Phys. 2020, 8, 620938. [Google Scholar] [CrossRef]
Exposure Time | Measured Parameters | |||||
---|---|---|---|---|---|---|
EC **, mS/cm | [O2], μM | pH | Redox, mV | NO3−, mM | H2O2, mM | |
0 min | 7.3 ± 0.5 | 273 ± 5 | 6.7 ± 0.1 | 303 ± 7 | <0.01 | <0.01 |
20 min | 16.4 ± 1.0 * | 264 ± 7 | 7.8 ± 0.1 * | 510 ± 32 * | 10.98 ± 0.61 * | 3.48 ± 0.43 * |
40 min | 24.9 ± 1.2 * | 261 ± 8 | 8.3 ± 0.2 * | 598 ± 26 * | 22.05 ± 0.98 * | 7.12 ± 0.68 * |
Microscopy, Seed Contamination Level, % | ||||||
---|---|---|---|---|---|---|
Sorghum | Wheat | Strawberry | ||||
+ | − | + | − | + | − | |
Control | 98 | 0 | 92 | 0 | 76 | 0 |
Deionized water | 97 | 0 | 90 | 0 | 76 | 0 |
Activated solution | 35 | 0 | 61 | 0 | 52 | 0 |
RT-PCR, Seed Infection Rate, Ct | ||||||
Control | 10 | >40 | 17 | >40 | 29 | >40 |
Deionized water | 16 | >40 | 18 | >40 | 28 | >40 |
Activated solution | >40 | >40 | 27 | >40 | 35 | >40 |
Soaking Time, h | |||||||
---|---|---|---|---|---|---|---|
1 | 3 | 5 | 7 | 9 | 11 | 24 | |
Germination, % | 80 | 85 | 93 | 91 | 81 | 69 | 0 |
Germination, % | Root Length, mm | Sprout Weight, g | |
---|---|---|---|
Control | 80 ± 3 | 8.2 ± 1.2 | 6.1 ± 0.5 |
Activated solution | 91 ± 2 * | 9.7 ± 0.7 | 7.6 ± 0.2 * |
Dilution Rate | Soaking Time, h | Germination, % | Root Length, mm |
Control | 24 | 78 ± 3 | 8 ± 2 |
48 | 81 ± 3 | 13 ± 4 | |
Without dilution | 24 | 0 | 0 |
48 | 0 | 0 | |
1:250 | 24 | 54 ± 5 * | 6 ± 2 |
48 | 67 ± 4 * | 14 ± 3 | |
1:500 | 24 | 84 ± 2 * | 12 ± 2 * |
48 | 87 ± 2 * | 22 ± 5 * |
Species and Target | Primers (F and R) | Ref |
---|---|---|
F. graminearu | 5′-GTTGATGGGTAAAAGTGTG-3′ | [46] |
Intergenic Spacer of rDNA (IGS region) | 5′-CTCTCATATACCCTCCG-3′ | |
F. avenaceum | 5′-ATGGGTAAGGARGACAAGAC-3′ | [46] |
гeн translation elongation factor 1-alpha (TEF1) | 5′-GGARGTACCAGTSATCATG-3′ | |
F. oxysporum | 5′-CAGACTGGGGTGCTTAAAGTT-3′ | [47] |
specific fragment between the transcription factors Han and Skippy | 5′-AACGCTAGGGTCGTAACAAA-3′ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Danilejko, Y.K.; Belov, S.V.; Egorov, A.B.; Lukanin, V.I.; Sidorov, V.A.; Apasheva, L.M.; Dushkov, V.Y.; Budnik, M.I.; Belyakov, A.M.; Kulik, K.N.; et al. Increase of Productivity and Neutralization of Pathological Processes in Plants of Grain and Fruit Crops with the Help of Aqueous Solutions Activated by Plasma of High-Frequency Glow Discharge. Plants 2021, 10, 2161. https://doi.org/10.3390/plants10102161
Danilejko YK, Belov SV, Egorov AB, Lukanin VI, Sidorov VA, Apasheva LM, Dushkov VY, Budnik MI, Belyakov AM, Kulik KN, et al. Increase of Productivity and Neutralization of Pathological Processes in Plants of Grain and Fruit Crops with the Help of Aqueous Solutions Activated by Plasma of High-Frequency Glow Discharge. Plants. 2021; 10(10):2161. https://doi.org/10.3390/plants10102161
Chicago/Turabian StyleDanilejko, Yuri K., Sergey V. Belov, Alexey B. Egorov, Vladimir I. Lukanin, Vladimir A. Sidorov, Lyubov M. Apasheva, Vladimir Y. Dushkov, Mikhail I. Budnik, Alexander M. Belyakov, Konstantin N. Kulik, and et al. 2021. "Increase of Productivity and Neutralization of Pathological Processes in Plants of Grain and Fruit Crops with the Help of Aqueous Solutions Activated by Plasma of High-Frequency Glow Discharge" Plants 10, no. 10: 2161. https://doi.org/10.3390/plants10102161
APA StyleDanilejko, Y. K., Belov, S. V., Egorov, A. B., Lukanin, V. I., Sidorov, V. A., Apasheva, L. M., Dushkov, V. Y., Budnik, M. I., Belyakov, A. M., Kulik, K. N., Validov, S., Yanykin, D. V., Astashev, M. E., Sarimov, R. M., Kalinichenko, V. P., Glinushkin, A. P., & Gudkov, S. V. (2021). Increase of Productivity and Neutralization of Pathological Processes in Plants of Grain and Fruit Crops with the Help of Aqueous Solutions Activated by Plasma of High-Frequency Glow Discharge. Plants, 10(10), 2161. https://doi.org/10.3390/plants10102161