Phytochemicals and Immunomodulatory Effect of Nelumbo nucifera Flower Extracts on Human Macrophages
Abstract
:1. Introduction
2. Results
2.1. Lotus Petal Extracts
2.2. HPTLC Analysis of Phytochemical Composition of Lotus Petal Extracts
2.3. HPLC Analysis of Phytochemical Composition of Lotus Petal Extracts
2.4. Total Phenolic Content of Lotus Petal Extracts
2.5. Antioxidant Activity of Lotus Petal Extracts
2.6. Cellular Cytotoxicity of Lotus Petal Extracts
2.7. Anti-Inflammatory Activity of Lotus Petal Extracts
3. Discussion
4. Materials and Methods
4.1. Preparation of Plant Materials
4.2. Extraction of Plant Materials
4.3. Phytochemical Analysis by High-Performance Thin-Layer Chromatography (HPTLC)
4.4. Phytochemical Analysis by High-Performance Liquid Chromatography with Diode Array Detector (HPLC-DAD)
4.5. Determination of Total Phenolic Content
4.6. Determination of Antioxidant Activity
4.7. Isolation of Human Peripheral Blood Monocytes
4.8. Evaluation of Cellular Cytotoxicity by Neutral Red Uptake Assay
4.9. Investigation of Anti-Inflammatory Activity of Lotus Petal Extracts
4.10. Evaluation of Proinflammatory Cytokines Production by Enzyme-Linked Immuno-Sorbent Assay (ELISA)
4.11. Experimental Design and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ming, R.; VanBuren, R.; Liu, Y.; Yang, M.; Han, Y.; Li, L.T.; Zhang, Q.; Kim, M.J.; Schatz, M.C.; Campbell, M.; et al. Genome of the long-living sacred lotus (Nelumbo nucifera Gaertn.). Genome Biol. 2013, 14, R41. [Google Scholar] [CrossRef] [Green Version]
- Paudel, K.R.; Panth, N. Phytochemical profile and biological activity of Nelumbo nucifera. Evid. Based Complement. Altern. Med. 2015, 2015, 789124. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.; Sun, J.; Xie, J.; Min, T.; Wang, L.M.; Wang, H.X. Phenolic profiles and antioxidant activity of lotus root varieties. Molecules 2016, 21, 863. [Google Scholar] [CrossRef] [Green Version]
- Zhu, M.Z.; Wu, W.; Jiao, L.L.; Yang, P.F.; Guo, M.Q. Analysis of flavonoids in lotus (Nelumbo nucifera) leaves and their antioxidant activity using macroporous resin chromatography coupled with LC-MS/MS and antioxidant biochemical assays. Molecules 2015, 20, 10553–10565. [Google Scholar] [CrossRef] [Green Version]
- Hu, W.; Wang, G.; Shen, T.; Wang, Y.; Hu, B.; Wang, X.; Wu, L.; Li, P.; Ji, L. Chemical composition, antioxidant and cytoprotective activities of lotus receptacle. Hortic. Environ. Biotechnol. 2015, 56, 712–720. [Google Scholar] [CrossRef]
- Kashiwada, Y.; Aoshima, A.; Ikeshiro, Y.; Chen, Y.P.; Furukawa, H.; Itoigawa, M.; Fujioka, T.; Mihashi, K.; Cosentino, L.M.; Morris-Natschke, S.L.; et al. Anti-HIV benzylisoquinoline alkaloids and flavonoids from the leaves of Nelumbo nucifera, and structure-activity correlations with related alkaloids. Bioorg. Med. Chem. 2005, 13, 443–448. [Google Scholar] [CrossRef]
- Zhou, M.; Jiang, M.; Ying, X.; Cui, Q.; Han, Y.; Hou, Y.; Gao, J.; Bai, G.; Luo, G. Identification and comparison of anti-inflammatory ingredients from different organs of Lotus nelumbo by UPLC/Q-TOF and PCA coupled with a NF-kappaB reporter gene assay. PLoS ONE 2013, 8, e81971. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Tang, P.; Liu, L. Molecular structure–affinity eelationship of flavonoids in lotus leaf (Nelumbo nucifera Gaertn.) on binding to human serum albumin and bovine serum albumin by spectroscopic method. Molecules 2017, 22, 1036. [Google Scholar] [CrossRef]
- Liu, Y.; Hui, X.; Ibrahim, S.A.; Huang, W. Increasing antiradical activity of polyphenols from lotus seed epicarp by probiotic bacteria bioconversion. Molecules 2018, 23, 2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, J.S.; Shukla, S.; Kim, J.A.; Kim, M. Anti-angiogenic effect of Nelumbo nucifera leaf extracts in human umbilical vein endothelial cells with antioxidant potential. PLoS ONE 2015, 10, e0118552. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.H.; Lu, T.H.; Su, C.C.; Lay, I.S.; Lin, H.Y.; Fang, K.M.; Ho, T.J.; Chen, K.L.; Su, Y.C.; Chiang, W.C.; et al. Lotus leaf (Nelumbo nucifera) and its active constituents prevent inflammatory responses in macrophages via JNK/NF-kappaB signaling pathway. Am. J. Chin. Med. 2014, 42, 869–889. [Google Scholar] [CrossRef]
- Park, E.; Kim, G.D.; Go, M.S.; Kwon, D.; Jung, I.K.; Auh, J.H.; Kim, J.H. Anti-inflammatory effects of Nelumbo leaf extracts and identification of their metabolites. Nutr. Res. Pract. 2017, 11, 265–274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, A.R.; Jeong, S.M.; Kang, M.J.; Jang, Y.H.; Choi, H.N.; Kim, J.I. Lotus leaf alleviates hyperglycemia and dyslipidemia in ani-mal model of diabetes mellitus. Nutr. Res. Pract. 2013, 7, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Yan, K.; Zhu, H.; Xu, J.; Pan, H.; Li, N.; Wang, L.; Yang, H.; Liu, M.; Gong, F. Lotus leaf aqueous extract reduces visceral fat mass and ameliorates insulin resistance in HFD-induced obese rats by regulating PPARgamma2 Expression. Front. Pharmacol. 2017, 8, 409. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Y.; Wang, Q.; Lu, X.; Zheng, B.; Xiao, J. Antitumor and immunomodulatory activities of the hot water-soluble polysac-charides from lotus (Nelumbo nucifera Gaertn.) seeds. Free Radic. Biol. Med. 2016, 100, S133. [Google Scholar] [CrossRef]
- Ventura, M.T.; Casciaro, M.; Gangemi, S.; Buquicchio, R. Immunosenescence in aging: Between immune cells depletion and cytokines up-regulation. Clin. Mol. Allergy 2017, 15, 21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pawelec, G. Age and immunity: What is “immunosenescence”? Exp. Gerontol. 2018, 105, 4–9. [Google Scholar] [CrossRef] [PubMed]
- Casqueiro, J.; Casqueiro, J.; Alves, C. Infections in patients with diabetes mellitus: A review of pathogenesis. Indian J. Endocrinol. Metab. 2012, 16 (Suppl. 1), S27–S36. [Google Scholar] [CrossRef] [PubMed]
- Lecube, A.; Pachon, G.; Petriz, J.; Hernandez, C.; Simo, R. Phagocytic activity is impaired in type 2 diabetes mellitus and in-creases after metabolic improvement. PLoS ONE 2011, 6, e23366. [Google Scholar] [CrossRef]
- Ahmed, M.; Fatima, H.; Qasim, M.; Gul, B.; Ihsan Ul, H. Polarity directed optimization of phytochemical and in vitro biological potential of an indigenous folklore: Quercus dilatata Lindl. ex Royle. BMC Complement. Altern. Med. 2017, 17, 386. [Google Scholar] [CrossRef]
- Zavala-Lopez, M.; Garcia-Lara, S. An improved microscale method for extraction of phenolic acids from maize. Plant Methods 2017, 13, 81. [Google Scholar] [CrossRef] [Green Version]
- Singh, M.; Kaur, M.; Silakari, O. Flavones: An important scaffold for medicinal chemistry. Eur. J. Med. Chem. 2014, 84, 206–239. [Google Scholar] [CrossRef]
- Lambert, J.D.; Sang, S.; Yang, C.S. Possible controversy over dietary polyphenols: Benefits vs risks. Chem. Res. Toxicol. 2007, 20, 583–585. [Google Scholar] [CrossRef] [PubMed]
- Bode, A.M.; Dong, Z. Toxic phytochemicals and their potential risks for human cancer. Cancer Prev. Res. 2015, 8, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.M.; McFadden, G. Modulation of NF-kappaB signalling by microbial pathogens. Nat. Rev. Microbiol. 2011, 9, 291–306. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-kappaB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Fu, J.; Zhao, Z.; Kong, X.; Huang, H.; Luo, L.; Yin, Z. Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxy-genase-2 expression in RAW264.7 cells through suppressing NF-kappaB and JNK/AP-1 activation. Int. Immunopharmacol. 2009, 9, 1042–1048. [Google Scholar] [CrossRef]
- Su, S.; Li, X.; Li, S.; Ming, P.; Huang, Y.; Dong, Y.; Ding, H.; Feng, S.; Li, J.; Wang, X.; et al. Rutin protects against lipopolysac-charide-induced mastitis by inhibiting the activation of the NF-kappaB signaling pathway and attenuating endoplasmic retic-ulum stress. Inflammopharmacology 2018, 27, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Koshiguchi, M.; Komazaki, H.; Hirai, S.; Egashira, Y. Ferulic acid suppresses expression of tryptophan metabolic key enzyme indoleamine 2, 3-dioxygenase via NFkappaB and p38 MAPK in lipopolysaccharide-stimulated microglial cells. Biosci. Biotechnol. Biochem. 2017, 81, 966–971. [Google Scholar] [CrossRef] [Green Version]
- Khan, S.; Shehzad, O.; Cheng, M.S.; Li, R.J.; Kim, Y.S. Pharmacological mechanism underlying anti-inflammatory properties of two structurally divergent coumarins through the inhibition of pro-inflammatory enzymes and cytokines. J. Inflamm. 2015, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Gholami, M.; Khayat, Z.K.; Anbari, K.; Obidavi, Z.; Varzi, A.; Boroujeni, M.B.; Alipour, M.; Niapoor, A.; Gharravi, A.M. Querce-tin ameliorates peripheral nerve ischemia-reperfusion injury through the NF-kappa B pathway. Anat. Sci. Int. 2017, 92, 330–337. [Google Scholar] [CrossRef]
- Kadioglu, O.; Nass, J.; Saeed, M.E.; Schuler, B.; Efferth, T. Kaempferol is an anti-inflammatory compound with activity towards NF-kappaB pathway proteins. Anticancer Res. 2015, 35, 2645–2650. [Google Scholar]
- Bello, F.H.; Maiha, B.B.; Anuka, J.A. The effect of methanol rhizome extract of Nymphaea lotus Linn. (Nymphaeaceae) in animal models of diarrhoea. J. Ethnopharmacol. 2016, 190, 13–21. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.L.; Lin, C.S.; Lai, G.H. Phytochemical characteristics, free radical scavenging activities, and neuroprotection of five medicinal plant extracts. Evid. Based Complement. Alternat. Med. 2012, 2012, 984295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, J.; Wang, G.; Zhang, Q.; Liu, X.; Gu, Z.; Zhang, H.; Chen, Y.Q.; Chen, W. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: A comparison with traditional methods. PLoS ONE 2015, 10, e0119058. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- National Blood Centre. Standards for Blood Banks and Transfusion Services; National Blood Centre, Thai Red Cross Society: Bangkok, Thailand, 2015. [Google Scholar]
- Repetto, G.; del Peso, A.; Zurita, J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008, 3, 1125–1131. [Google Scholar] [CrossRef]
- Hackenberg, U.; Bartling, H. Messen und rechnen im pharmakologischen laboratorium mit einem speziellen zahlensystem (WL24-system). Arch. Exp. Pathol. Pharmakol. 1959, 235, 437–463. [Google Scholar] [CrossRef]
- Kooltheat, N.; Sranujit, R.P.; Chumark, P.; Potup, P.; Laytragoon-Lewin, N.; Usuwanthim, K. An ethyl acetate fraction of Moringa oleifera Lam. inhibits human macrophage cytokine production induced by cigarette smoke. Nutrients 2014, 6, 697–710. [Google Scholar] [CrossRef] [Green Version]
- U.S. Food and Drug Administration. Approved Drug Products with Therapeutic Equivalence Evaluations; U.S. Food and Drug Administration: Silver Spring, MD, USA, 2017.
- World Health Organization. WHO Drug Information; World Health Organization: Geneva, Switzerland, 2007; Volume 21. [Google Scholar]
- World Health Organization. WHO Model Lists of Essential Medicines; World Health Organization: Geneva, Switzerland, 2015; Volume 19. [Google Scholar]
- Wimmer, A.; Khaldoyanidi, S.K.; Judex, M.; Serobyan, N.; Discipio, R.G.; Schraufstatter, I.U. CCL18/PARC stimulates hemato-poiesis in long-term bone marrow cultures indirectly through its effect on monocytes. Blood 2006, 108, 3722–3729. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.M.; Hagan, K.A.; Matthews, L.A.; Bajwa, G.; Gill, M.A.; Gale, M., Jr.; Farrar, J.D. Blockade of virus infection by human CD4+ T cells via a cytokine relay network. J. Immunol. 2008, 180, 6923–6932. [Google Scholar] [CrossRef] [Green Version]
Phytochemical | Lotus Petal Extract | |
---|---|---|
Ethyl Acetate | Ethyl Alcohol | |
Alkaloids | ||
Neferine | − | − |
Other | + | + |
Steroids | ||
Β-sitosterol | +/− | +/− |
Others | + | + |
Phenolics | ||
Quercetin | + | + |
Kaempferol | + | + |
Chlorogenic Acid | − | − |
Rutin | − | − |
Caffeic Acid | +/− | − |
Gallic Acid | − | − |
Catechin | − | − |
Ferulic Acid | − | − |
Others | + | + |
Phytochemical (µg/mL) | Lotus Petal Extract | |
---|---|---|
Ethyl Acetate | Ethyl Alcohol | |
Chlorogenic Acid | 1.45 ± 0.120 | 3.10 ± 1.070 |
Rutin | 2.42 ± 0.020 | 5.61 ± 3.150 |
Ferulic Acid | 20.62 ± 1.560 | 51.27 ± 1.190 |
Coumarin | 1.72 ± 0.330 | 4.61 ± 0.590 |
Quercetin | 43.34 ± 0.280 | 25.95 ± 0.730 |
Kaempferol | 92.17 ± 0.850 | 31.84 ± 1.810 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sranujit, R.P.; Noysang, C.; Tippayawat, P.; Kooltheat, N.; Luetragoon, T.; Usuwanthim, K. Phytochemicals and Immunomodulatory Effect of Nelumbo nucifera Flower Extracts on Human Macrophages. Plants 2021, 10, 2007. https://doi.org/10.3390/plants10102007
Sranujit RP, Noysang C, Tippayawat P, Kooltheat N, Luetragoon T, Usuwanthim K. Phytochemicals and Immunomodulatory Effect of Nelumbo nucifera Flower Extracts on Human Macrophages. Plants. 2021; 10(10):2007. https://doi.org/10.3390/plants10102007
Chicago/Turabian StyleSranujit, Rungnapa Pankla, Chanai Noysang, Patcharaporn Tippayawat, Nateelak Kooltheat, Thitiya Luetragoon, and Kanchana Usuwanthim. 2021. "Phytochemicals and Immunomodulatory Effect of Nelumbo nucifera Flower Extracts on Human Macrophages" Plants 10, no. 10: 2007. https://doi.org/10.3390/plants10102007
APA StyleSranujit, R. P., Noysang, C., Tippayawat, P., Kooltheat, N., Luetragoon, T., & Usuwanthim, K. (2021). Phytochemicals and Immunomodulatory Effect of Nelumbo nucifera Flower Extracts on Human Macrophages. Plants, 10(10), 2007. https://doi.org/10.3390/plants10102007