Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress
Abstract
:1. Introduction
2. Commonly Used PGRs in Seed Priming
2.1. Auxin
2.2. Cytokinin
2.3. Gibberellin
2.4. Abscisic Acid
2.5. Salicylic Acid
2.6. Ethylene
2.7. Others
3. Conclusions with Future Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, H.; Irving, L.J.; McGill, C.; Matthew, C.; Zhou, D.; Kemp, P. The effects of salinity and osmotic stress on barley germination rate: Sodium as an osmotic regulator. Ann. Bot. 2010, 106, 1027–1035. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef] [PubMed]
- Dhankher, O.P.; Foyer, C.H. Climate resilient crops for improving global food security and safety. Plant Cell Environ. 2018, 5, 877–884. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman, M.; Bhuyan, M.B.; Nahar, K.; Mohsin, S.M.; Al Mahmud, J.; Parvin, K.; Fujita, M. Exogenous nitric oxide-and hydrogen sulfide-induced abiotic stress tolerance in plants. In Protective Chemical Agents in the Amelioration of Plant Abiotic Stress: Biochemical and Molecular Perspectives; Roychoudary, A., Tripathi, D.K., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020; Volume 30, p. 174. [Google Scholar] [CrossRef]
- Vishal, B.; Kumar, P.P. Regulation of seed germination and abiotic stresses by gibberellins and abscisic acid. Front. Plant Sci. 2018, 9, 838. [Google Scholar] [CrossRef]
- Yadav, S.; Modi, P.; Dave, A.; Vijapura, A.; Patel, D.; Patel, M. Effect of Abiotic Stress on Crops. In Sustainable Crop Production; IntechOpen: London, UK, 2020. [Google Scholar] [CrossRef]
- Eisvand, H.R.; Tavakkol-Afshari, R.; Sharifzadeh, F.; Maddah Arefi, H.; Hesamzadeh Hejazi, S.M. Effects of hormonal priming and drought stress on activity and isozyme profiles of antioxidant enzymes in deteriorated seed of tall wheatgrass (Agropyron elongatum Host). Seed Sci. Technol. 2010, 38, 280–297. [Google Scholar] [CrossRef]
- Muhei, S.H. Seed priming with phytohormones to improve germination under dormant and abiotic stress conditions. Adv. Crop Sci. Technol. 2018, 6, 403–409. [Google Scholar] [CrossRef]
- Rhaman, M.S.; Rauf, F.; Tania, S.S.; Khatun, M. Seed priming methods: Application in field crops and future perspectives. Asian J. Res. Crop Sci. 2020, 5, 8–19. [Google Scholar] [CrossRef]
- Tania, S.S.; Rhaman, M.S.; Hossain, M.M. Hydro-priming and halo-priming improve seed germination, yield and yield contributing characters of okra (Abelmoschus esculentus L.). Trop. Plant Res. 2020, 7, 86–93. [Google Scholar] [CrossRef]
- Jisha, K.C.; Vijayakumari, K.; Puthur, J.T. Seed priming for abiotic stress tolerance: An overview. Acta Physiol. Plant. 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- Sytar, O.; Kumar, P.; Yadav, S.; Brestic, M.; Rastogi, A. Phytohormone priming: Regulator for heavy metal stress in plants. J. Plant Growth Regul. 2018, 38, 739–752. [Google Scholar] [CrossRef] [Green Version]
- Vob, U.; Bishopp, A.; Farcot, E.; Bennett, M.J. Modelling hormonal response and development. Trends Plant Sci. 2014, 19, 311–319. [Google Scholar] [CrossRef] [Green Version]
- Kazan, K. Diverse roles of jasmonates and ethylene in abiotic stress tolerance. Trends Plant Sci. 2015, 20, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Nishiyama, R.; Watanabe, Y.; Fujita, Y.; Le, D.T.; Kojima, M.; Werner, T.; Vankova, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Kakimoto, T.; et al. Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 2011, 23, 2169–2183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colebrook, E.H.; Thomas, S.G.; Phillips, A.L.; Hedden, P. The role of gibberellin signalling in plant responses to abiotic stress. J. Exp. Biol. 2014, 217, 67–75. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.X.; Mao, J.; Chen, W.; Qian, T.T.; Liu, S.C.; Hao, W.J.; Li, C.F.; Chen, L. Identification and expression profiling of the auxin response factors (ARFs) in the tea plant (Camellia sinensis (L.) O. Kuntze) under various abiotic stresses. Plant Physiol. Biochem. 2016, 98, 46–56. [Google Scholar] [CrossRef] [PubMed]
- Bucker-Neto, L.; Paiva, A.L.S.; Machado, R.D.; Arenhart, R.A.; Margis-Pinheiro, M. Interactions between plant hormones and HMs responses. Genet. Mol. Biol. 2017, 40, 373–386. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Fotopoulos, V. Priming and Pretreatment of Seeds and Seedlings: Implication in Plant Stress Tolerance and Enhancing Productivity in Crop Plants; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Masood, A.; Iqbal, N.; Khan, N.A. Role of ethylene in alleviation of cadmium-induced capacity inhibition by sulphur in mustard. Plant Cell Environ. 2012, 35, 524–533. [Google Scholar] [CrossRef]
- Hu, Y.F.; Zhou, G.; Na, X.F.; Yang, L.; Nan, W.B.; Zhang, Y.O.; Li, J.L.; Bi, Y.R. Cadmium interferes with maintenance of auxin homeostasis in Arabidopsis seedlings. J. Plant Physiol. 2013, 170, 965–975. [Google Scholar] [CrossRef]
- Afzal, I.; Basra, S.M.A.; Ahmad, N.; Cheema, M.A.; Warriach, E.A.; Khaliq, A. Effect of priming and growth regulator treatment on emergence. Int. J. Agric. Biol. 2002, 4, 306. [Google Scholar]
- Akbari, G.; Sanavy, S.A.; Yousefzadeh, S. Effect of auxin and salt stress (NaCl) on seed germination of wheat cultivars (Triticum aestivum L.). Pak. J. Biol. Sci. 2007, 10, 2557–2561. [Google Scholar] [CrossRef]
- Iqbal, M.; Ashraf, M. Gibberellic acid mediated induction of salt tolerance in wheat plants: Growth, ionic partitioning, photosynthesis, yield and hormonal homeostasis. Environ. Exp. Bot. 2013, 86, 76–85. [Google Scholar] [CrossRef]
- Yuan, Z.; Wang, C.; Li, S.; Li, X.; Tai, F. Effects of different plant hormones or PEG seed soaking on maize resistance to drought stress. Can. J. Plant Sci. 2014, 94, 1491–1499. [Google Scholar] [CrossRef]
- Sneideris, L.C.; Gavassi, M.A.; Campos, M.L.; Damico-Damiao, V.; Carvalho, R.F. Effects of hormonal priming on seed germination of pigeon pea under cadmium stress. Anais da Academia Brasileira de Ciências 2015, 87, 1847–1852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Mopper, S.; Hasentein, K.H. Effects of salinity on endogenous ABA, IAA, JA, and SA in Iris hexagona. J. Chem. Ecol. 2001, 27, 327–342. [Google Scholar] [CrossRef] [PubMed]
- Lymperopoulos, P.; Msanne, J.; Rabara, R. Phytochrome and phytohormones: Working in tandem for plant growth and development. Front. Plant Sci. 2018, 9, 1037. [Google Scholar] [CrossRef] [Green Version]
- Kazan, K. Auxin and the integration of environmental signals into plant root development. Ann. Bot. 2013, 112, 1655–1665. [Google Scholar] [CrossRef] [Green Version]
- Ludwig-Muller, J. Auxin conjugates: Their role for plant development and in the evolution of land plants. J. Exp. Bot. 2011, 62, 1757–1773. [Google Scholar] [CrossRef] [Green Version]
- Schiefelbein, J. Cell-fate specification in the epidermis: A common patterning mechanism in the root and shoot. Curr. Opin. Plant Biol. 2003, 6, 74–78. [Google Scholar] [CrossRef]
- Iqbal, M.; Ashraf, M. Seed treatment with auxins modulates growth and ion partitioning in salt stressed wheat plants. J. Integr. Plant Biol. 2007, 49, 1045–1057. [Google Scholar] [CrossRef]
- MacDonald, H. Auxin perception and signal transduction. Physiol. Plant. 1997, 100, 423–430. [Google Scholar] [CrossRef]
- Awan, I.U.; Baloch, M.S.; Sadozai, N.S.; Sulemani, M.Z. Stimulatory effect of GA3 and IAA on ripening process, kernel development and quality of rice. Pak. J. Biol. Sci. 1999, 2, 410–412. [Google Scholar] [CrossRef] [Green Version]
- Naeem, M.; Bhatti, I.R.A.M.; Ahmad, R.H.; Ashraf, M.Y. Effect of some growth hormones (GA3, IAA and kinetin) on the morphology and early or delayed initiation of bud of lentil (Lens culinaris Medik). Pak. J. Bot. 2004, 36, 801–809. [Google Scholar]
- Roohi, R.; Jameson, D.A. The effect of hormone, dehulling and seedbed treatments on germination and adventitious root formation in blue grama. J. Range Manag. 1991, 44, 237–241. [Google Scholar] [CrossRef]
- Fahad, S.; Hussain, S.; Bano, A.; Saud, S.; Hassan, S.; Shan, D.; Khan, F.A.; Khan, F.; Chen, Y.T.; Wu, C.; et al. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: Consequences for changing environment. Environ. Sci. Pollut. Res. 2015, 22, 4907–4921. [Google Scholar] [CrossRef] [PubMed]
- Munemasa, S.; Hauser, F.; Park, J.; Waadt, R.; Brandt, B.; Schroeder, J.I. Mechanisms of abscisic acid-mediated control of stomatal aperture. Curr. Opin. Plant Biol. 2015, 28, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Murata, Y.; Mori, I.C.; Munemasa, S. Diverse stomatal signaling and the signal integration mechanism. Annu. Rev. Plant Biol. 2015, 66, 369–392. [Google Scholar] [CrossRef] [PubMed]
- Daszkowska-Golec, A.; Szarejko, I. Open or close the gate–Stomata action under the control of phytohormones in drought stress conditions. Front. Plant Sci. 2013, 4, 138. [Google Scholar] [CrossRef] [Green Version]
- Werner, T.; Motyka, V.; Strnad, M.; Schmülling, T. Regulation of plant growth by cytokinin. Proc. Natl. Acad. Sci. USA 2001, 98, 10487–10492. [Google Scholar] [CrossRef] [Green Version]
- Schaller, G.E.; Street, I.H.; Kieber, J.J. Cytokinin and the cell cycle. Curr. Opin. Plant Biol. 2014, 21, 7–15. [Google Scholar] [CrossRef]
- Yao, S. Plant Hormone Increases Cotton Yields in Drought Conditions. News & Events. Agricultural Research Service (ARS); U.S. Department of Agriculture: Washington, DC, USA, 2010. [Google Scholar]
- Choi, J.; Huh, S.U.; Kojima, M.; Sakakibara, H.; Paek, K.H.; Hwang, I. The cytokinin-activated transcription factor ARR2 promotes plant immunity via TGA3/NPR1-dependent salicylic acid signaling in arabidopsis. Dev. Cell 2010, 19, 284–295. [Google Scholar] [CrossRef] [Green Version]
- Grobkinsky, D.K.; Naseem, M.; Abdelmohsen, U.R.; Plickert, N.; Engelke, T.; Griebel, T.; Zeier, J.; Novák, O.; Strnad, M.; Pfeifhofer, H.; et al. Cytokinins mediate resistance against Pseudomonas syringae in tobacco through increased antimicrobial phytoalexin synthesis independent of salicylic acid signaling. Plant Physiol. 2011, 157, 815–830. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grobkinsky, D.K.; Tafner, R.; Moreno, M.V.; Stenglein, S.A.; García de Salamone, I.E.; Nelson, L.M.; Novák, O.; Strnad, M.; van der Graaff, E.; Roitsch, T. Cytokinin production by Pseudomonas fluorescens G20-18 determines biocontrol activity against Pseudomonas syringae in Arabidopsis. Sci. Rep. 2016, 6, 23310. [Google Scholar] [CrossRef] [PubMed]
- Ha, S.; Vankova, R.; Yamaguchi-Shinozaki, K.; Shinozaki, K.; Tran, L.S. Cytokinins: Metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci. 2012, 17, 172–179. [Google Scholar] [CrossRef] [PubMed]
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Plant Physiology and Development, 6th ed.; Sinauer Associates: Sunderland, CT, USA, 2015. [Google Scholar]
- Javid, M.G.; Sorooshzadeh, A.; Sanavy, S.A.M.M.; Allahdadi, I.; Moradi, F. Effects of the exogenous application of auxin and cytokinin on carbohydrate accumulation in grains of rice under salt stress. Plant Growth Regul. 2011, 65, 305–313. [Google Scholar] [CrossRef]
- Di Benedetto, A.; Galmarini, C.; Tognetti, J. Effects of combined or single exogenous auxin and/or cytokinin applications on growth and leaf area development in Epipremnum aureum. J. Hortic. Sci. Biotechnol. 2015, 90, 643–654. [Google Scholar] [CrossRef]
- Di Benedetto, A.; Galmarini, C.; Tognetti, J. Exogenous cytokinin promotes Epipremnum aureum L. growth through enhanced dry weight assimilation rather than through changes in partitioning. Am. J. Exp. Agric. 2015, 5, 419–434. [Google Scholar] [CrossRef]
- Zahir, Z.A.; Asghar, H.N.; Arshad, M. Cytokinin and its precursors for improving growth and yield of rice. Soil Biol. Biochem. 2001, 33, 405–408. [Google Scholar] [CrossRef]
- Iqbal, M.; Ashraf, M.; Jamil, A. Seed enhancement with cytokinins: Changes in growth and grain yield in salt stressed wheat plants. Plant Growth Regul. 2006, 50, 29–39. [Google Scholar] [CrossRef]
- Mangena, P. Effect of hormonal seed priming on germination, growth, yield and biomass accumulation in soybean grown under induced drought stress. Indian J. Agric. Res. 2020. [Google Scholar] [CrossRef]
- Sepehri, A.; Rouhi, H.R. Effect of cytokinin on morphological and physiological characteristics and antioxidant enzymes activity of aged groundnut (Arachis hypogaea L.) seeds under drought stress. Iran. J. Seed Sci. Technol 2016, 5, 181–198. [Google Scholar]
- Stoll, M.; Loveys, B.; Dry, P. Hormonal changes induced by partial root zone drying of irrigated grapevine. J. Exp. Bot. 2000, 51, 1627–1634. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, Y.; Sano, T.; Tamaoki, M.; Naka-jima, N.; Kondo, N.; Hasezawa, S. Cytokinin and auxin inhibit abscisic acid-induced stomatal closure by enhancing ethylene production in Arabidopsis. J. Exp. Bot. 2006, 57, 2259–2266. [Google Scholar] [CrossRef]
- Verma, J.; Srivastava, A.K. Physiological basis of salt stress resistance in pigeon pea (Cajanus cajan L.). II. Pre-sowing seed soaking treatment in regulating early seedling metabolism during seed germination. Plant Physiol. Biochem. 1998, 25, 89–94. [Google Scholar]
- Bagheri, A.; Bagherifard, A.; Saborifard, H.; Ahmadi, M.M.; Safarpoor, M. Effects of drought, cytokinin and GA3 on seedling growth of basil (Ocimum basilicum). Int. J. Adv. Biol. Biomed. Res. 2014, 2, 489–493. [Google Scholar]
- Iqbal, M.; Ashraf, M. Presowing seed treatment with cytokinins and its effect on growth, photosynthetic rate, ionic levels and yield of two wheat cultivars differing in salt tolerance. J. Integr. Plant Biol. 2005, 47, 1315–1325. [Google Scholar] [CrossRef]
- Afzal, I.; Basra, S.M.; Iqbal, A. The effects of seed soaking with plant growth regulators on seedling vigor of wheat under salinity stress. J. Stress Physiol. Biochem. 2005, 1, 6–14. [Google Scholar]
- Angrish, A.; Kumar, B.; Datta, K.S. Effect of gibberellic acid and kinetin on nitrogen content and nitrate reductase activity in wheat under saline conditions. Indian J. Plant Physiol. 2001, 6, 172–177. [Google Scholar]
- Gadallah, M.A.A. Effects of kinetin on growth, grain yield and some mineral elements in wheat plants growing under excess salinity and oxygen deficiency. Plant Growth Regul. 1999, 27, 63–74. [Google Scholar] [CrossRef]
- Datta, K.; Varma, S.; Angrish, R.; Kumar, B.; Kumari, P. Alleviation of salt stress by plant growth regulators in Triticum aestivum L. Biol. Plant. 1997, 40, 269–275. [Google Scholar] [CrossRef]
- Hedden, P.; Sponsel, V. A Century of Gibberellin Research. J. Plant Growth Regul. 2015, 34, 740–760. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, S. Gibberellin metabolism and its regulation. Annu. Rev. Plant Physiol. 2008, 59, 225–251. [Google Scholar] [CrossRef] [PubMed]
- Richards, D.E.; King, K.E.; Ait-ali, T.; Harberd, N.P. How gibberellin regulates plant growth and development: A molecular genetic analysis of gibberellin signaling. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 67–88. [Google Scholar] [CrossRef] [Green Version]
- Demir, I.; Ellialtioglu, S.; Tipirdamaz, R. The effect of different priming treatments on reparability of aged eggplant seeds. Acta Hortic. 1994, 362, 205–212. [Google Scholar] [CrossRef]
- Munteanu, V.; Gordeev, V.; Martea, R.; Duca, M. Effect of gibberellin cross talk with other phytohormones on cellular growth and mitosis to endoreduplication transition. Int. J. Adv. Res. Biol. Sci. 2014, 1, 136–153. [Google Scholar]
- Cramer, G.R.; Urano, K.; Delrot, S.; Pezzotti, M.; Shinozaki, K. Effects of abiotic stress on plants: A systems biology perspective. BMC Plant Biol. 2011, 11, 163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hasanuzzaman, M.; Bhuyan, M.H.; Parvin, K.; Bhuiyan, T.F.; Anee, T.I.; Nahar, K.; Hossen, M.; Zulfiqar, F.; Alam, M.; Fujita, M. Regulation of ROS metabolism in plants under environmental stress: A review of recent experimental evidence. Int. J. Mol. Sci. 2020, 22, 8695. [Google Scholar] [CrossRef] [PubMed]
- AlTaey, D.K.A. Alleviation of salinity effects by poultry manure and gibberellin application on growth and peroxidase activity in pepper. Int. J. Environ. Agric. Biotechnol. 2017, 2, 1851–1862. [Google Scholar] [CrossRef] [Green Version]
- Moumita, M.; Mahmud, J.A.; Biswas, P.K.; Nahar, K.; Fujita, M.; Hasanuzzaman, M. Exogenous application of gibberellic acid mitigates drought-induced damage in spring wheat. Acta Agrobot. 2019, 72, 1776. [Google Scholar] [CrossRef] [Green Version]
- Jayasinghe, T.; Perera, P.; Wimalasekera, R. Effect of foliar application of gibberellin in mitigating salt stress in tomato (Solanum Lycopersicum), ‘Thilina’ variety. In Proceedings of the 6th International Conference on Multidisciplinary Approaches (iCMA), Faculty of Graduate Studies, University of Sri Jayewardenepura, Nugegoda, Sri Lanka, 26–27 November 2019; Available online: https://ssrn.com/abstract=3497340 (accessed on 3 December 2019).
- Miceli, A.; Moncada, A.; Sabatino, L.; Vetrano, F. Effect of gibberellic acid on growth, yield, and quality of leaf lettuce and rocket grown in a floating system. Agronomy 2019, 9, 382. [Google Scholar] [CrossRef] [Green Version]
- Guangwu, Z.; Xuwen, J. Roles of gibberellin and auxin in promoting seed germination and seedling vigor in Pinus massoniana. For. Sci. 2014, 60, 367–373. [Google Scholar] [CrossRef]
- Abido, W.A.E.; Allem, A.; Zsombik, L.; Attila, N. Effect of gibberellic acid on germination of six wheat cultivars under salinity stress levels. Asian J. Biol. Sci. 2019, 12, 51–60. [Google Scholar] [CrossRef] [Green Version]
- Ghodrat, V.; Rousta, M.J. Effect of priming with gibberellic acid (GA3) on germination and growth of corn (Zea mays L.) under saline conditions. Int. J. Agric. Crop. Sci. 2012, 4, 883–885. [Google Scholar]
- Ma, H.Y.; Zhao, D.D.; Ning, Q.R.; Wei, J.P.; Li, Y.; Wang, M.M.; Liu, X.L.; Jiang, C.J.; Liang, Z.W. A Multi-year beneficial effect of seed priming with gibberellic acid-3 (GA 3) on plant growth and production in a perennial grass, Leymus chinensis. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Shineeanwarialmas, B.; Menaka, C.; Yuvaraja, A. Effect of different seed priming treatments for improving seedling growth of maize seeds. Int. J. Chem. Stud. 2019, 7, 1777–1781. [Google Scholar]
- Toklu, F. Effects of different priming treatments on seed germination properties, yield components and grain yield of lentil (Lens culinaris Medik.). Not. Bot. Horti. Agrobo. 2015, 43, 153–158. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Guan, B.; Zhou, D.; Yu, J.; Li, G.; Lou, Y. Responses of seed germination, seedling growth, and seed yield traits to seed pretreatment in maize (Zea mays L.). Sci. World J. 2014, 2014, 834630. [Google Scholar] [CrossRef] [Green Version]
- Ghobadi, M.; Abnavi, M.S.; Honarmand, S.J.; Ghobadi, M.E.; Mohammadi, R.M. Effect of hormonal priming (GA3) and osmopriming on behaviour of seed germination in wheat (Triticum aestivum L.). J. Agric. Sci. 2012, 4, 244–250. [Google Scholar] [CrossRef] [Green Version]
- Sedghi, M.; Nemati, A.; Esmaielpour, B. Effect of seed priming on germination and seedling growth of two medicinal plants under salinity. Emir. J. Food Agric. 2010, 22, 130–139. [Google Scholar] [CrossRef] [Green Version]
- Sedghi, M.; Nemati, A.; Amanpour-Balaneji, B.; Gholipouri, A. Influence of different priming materials on germination and seedling establishment of milk thistle (Silybum marianum) under salinity stress. World Appl. Sci. J. 2010, 11, 604–609. [Google Scholar]
- Shariatmadari, M.H.; Parsa, M.; Nezami, A.; Kafi, M. Effects of hormonal priming with gibberellic acid on emergence, growth and yield of chickpea under drought stress. Biosci. Res. 2017, 14, 34–41. [Google Scholar]
- Sheykhbaglou, R.; Rahimzadeh, S.; Ansari, O.; Sedghi, M. The Effect of salicylic acid and gibberellin on seed reserve utilization, germination and enzyme activity of sorghum (Sorghum bicolor L) seeds under drought stress. J. Stress Physiol. Biochem. 2014, 10, 5–13. [Google Scholar]
- Tsegay, B.A.; Andargie, M. Seed priming with gibberellic acid (GA3) alleviates salinity induced inhibition of germination and seedling growth of Zea mays L., Pisum sativum Var. abyssinicum A. Braun and Lathyrus sativus L. J. Crop Sci. Biotechnol. 2018, 21, 261–267. [Google Scholar] [CrossRef]
- Watanabe, H.; Honma, K.; Adachi, Y.; Fukuda, A. Effects of combinational treatment with ethephon and gibberellic acid on rice seedling growth and carbohydrate mobilization in seeds under flooded conditions. Plant Prod. Sci. 2018, 21, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Younesi, O.; Moradi, A. Effect of priming of seeds of Medicago sativa ‘Bami’ with gibberellic acid on germination, seedlings growth and antioxidant enzymes activity under salinity stress. J. Hortic. Res. 2014, 22, 167–174. [Google Scholar] [CrossRef] [Green Version]
- Raheem, S.; Khan, J.; Gurmani, A.R.; Waqas, M.; Hamayun, M.; Khan, A.L.; Kang, S.M.; Lee, I.J. Seed priming with gibberellic acid (GA3) in sponge gourd modulated high salinity stress. Pakhtunkhwa J. Life Sci. 2014, 2, 75–86. [Google Scholar]
- Dai, L.Y.; Zhu, H.D.; Yin, K.D.; Du, J.D.; Zhang, Y.X. Seed priming mitigates the effects of saline-alkali stress in soybean seedlings. Chil. J. Agric. Res. 2017, 77, 118–125. [Google Scholar] [CrossRef]
- Hamza, J.H.; Ali, M.K.M. Effect of seed soaking with GA3 on emergence and seedling growth of corn under salt stress. Iraqi J. Agric. Sci. 2017, 48, 560–566. [Google Scholar] [CrossRef]
- Zhu, G.; An, L.; Jiao, X.; Chen, X.; Zhou, G.; McLaughlin, N. Effects of gibberellic acid on water uptake and germination of sweet sorghum seeds under salinity stress. Chil. J. Agric. Res. 2019, 79, 415–424. [Google Scholar] [CrossRef] [Green Version]
- Nada, H.S.; Hamza, J.H. Priming of maize seed with gibberellin (GA3) to tolerate drought stress. 2. Field emergence and its properties. Iraqi J. Des. Stud. 2019, 9, 1–12. [Google Scholar]
- Yakoubi, F.; Babou, F.Z.; Belkhodja, M. Effects of gibberellic and abscisic acids on germination and seedling growth of okra (Abelmoschus esculentus L.) under salt stress. Pertanika J. Trop. Agric. Sc. 2019, 42, 847–860. [Google Scholar]
- Samad, R.; Karmokar, J.L. Effects of gibberellic acid and kn on seed germination and accumulation of Na+ and K+ in the seedlings of Triticale-I under salinity stress. Bangladesh J. Bot. 2012, 41, 123–129. [Google Scholar] [CrossRef] [Green Version]
- Ye, N.; Jia, L.; Zhang, J. ABA signal in rice under stress conditions. Rice 2012, 5, 1. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mittler, R.; Blumwald, E. The roles of ROS and ABA in systemic acquired acclimation. Plant Cell 2015, 27, 64–70. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sah, S.K.; Reddy, K.R.; Li, J. Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 2016, 7, 571. [Google Scholar] [CrossRef] [Green Version]
- Eyidogan, F.; Oz, M.T.; Yucel, M.; Oktem, H.A. Signal transduction of phytohormones under abiotic stresses. In Phytohormones and Abiotic Stress Tolerance in Plants Khan; Nazar, R., Iqbal, N., Anjum, N.A., Eds.; Springer: Berlin, Germany, 2012; pp. 1–4. [Google Scholar]
- Devinar, G.; Llanes, A.; Masciarelli, O.; Luna, V. Different relative humidity conditions combined with chloride and sulfate salinity treatments modify abscisic acid and salicylic acid levels in the halophyte Prosopis strombulifera. Plant Growth Regul. 2013, 70, 247–256. [Google Scholar] [CrossRef]
- Gurmani, A.R.; Bano, A.; Ullah, N.; Khan, H.; Jahangir, M.; Flowers, T.J. Exogenous abscisic acid (ABA) and silicon (Si) promote salinity tolerance by reducing sodium (Na+) transport and bypass flow in rice (Oryza sativa indica). Aust. J. Crop. Sci. 2013, 7, 1219–1226. [Google Scholar]
- Gurmani, A.; Bano, A.; Khan, S.; Din, J.; Zhang, J. Alleviation of salt stress by seed treatment with abscisic acid (ABA), 6-benzylaminopurine (BA) and chlormequat chloride (CCC) optimizes ion and organic matter accumulation and increases yield of rice (‘Oryza sativa’ L.). Aust. J. Crop. Sci. 2011, 5, 1278–1285. [Google Scholar]
- Gurmani, A.; Bano, A.; Salim, M. Effect of growth regulators on growth, yield and ions accumulation of rice (Oryza sativa L.) under salt stress. Pak. J. Bot. 2006, 38, 1415–1424. [Google Scholar]
- Li, X.J.; Yang, M.F.; Chen, H.; Qu, L.Q.; Chen, F.; Shen, S.H. Abscisic acid pretreatment enhances salt tolerance of rice seedlings: Proteomic evidence. Biochim. Biophys. Acta 2010, 1804, 929–940. [Google Scholar] [CrossRef]
- Liu, X.L.; Zhang, H.; Jin, Y.Y.; Wang, M.M.; Yang, H.Y.; Ma, H.Y.; Jiang, C.J.; Liang, Z.W. Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes. Plant Soil 2019, 438, 39–55. [Google Scholar] [CrossRef]
- Wei, L.X.; Lv, B.S.; Wang, M.M.; Ma, H.Y.; Yang, H.Y.; Liu, X.L.; Jiang, C.J.; Liang, Z.W. Priming effect of abscisic acid on alkaline stress tolerance in rice (Oryza sativa L.) seedlings. Plant Physiol. Biochem. 2015, 90, 50–57. [Google Scholar] [CrossRef]
- Amzallag, G.N.; Lerner, H.R. Physiological adaptation of plants to environmental stresses. In Handbook for Plant and Crop Physiology; Pessarakli, M., Ed.; Marcel Dekker Inc.: Boca Raton, NY, USA, 1990; pp. 557–576. [Google Scholar]
- Fricke, W.; Akhiyarova, G.; Veselov, D.; Kudoyarova, G. Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves. J. Exp. Bot. 2004, 5, 1115–1123. [Google Scholar] [CrossRef] [PubMed]
- Safari, H.; Hosseini, S.M.; Azari, A.; Rafsanjani, M.H. Effects of seed priming with ABA and SA on seed germination and seedling growth of sesame (Sesamum indicum L.) under saline condition. Aust. J. Crop Sci. 2018, 12, 1385. [Google Scholar] [CrossRef]
- Zongshuai, W.; Xiangnan, L.; Xiancan, Z.; Shengqun, L.; Fengbin, S.; Fulai, L.; Yang, W.; Xiaoning, Q.; Fahong, W.; Zhiyu, Z.; et al. Salt acclimation induced salt tolerance is enhanced by abscisic acid priming in wheat. Plant Soil Environ. 2017, 63, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Garciarrubio, A.; Legaria, J.P.; Covarrubias, A.A. Abscisic acid inhibits germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta 1997, 203, 182–187. [Google Scholar] [CrossRef]
- Nambara, E.; Okamoto, M.; Tatematsu, K.; Yano, R.; Seo, M.; Kamiya, Y. Abscisic acid and the control of seed dormancy and germination. Seed Sci. Res. 2010, 20, 55–67. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Lokhande, V.H.; Patade, V.Y.; Suprasanna, P.; Sjahril, R.; Dsouza, S.F. Comparative evaluation of hydro-, chemo-, and hormonal-priming methods for imparting salt and PEG stress tolerance in Indian mustard (Brassicajuncea L.). Acta Physiol. Plant. 2010, 32, 1135–1144. [Google Scholar] [CrossRef]
- Holbrook, N.M.; Shashidar, V.R.; James, R.A.; Munns, R. Stomatal control in tomato with ABA deficient roots: Response of grafted plants to soil drying. J. Exp. Bot. 2002, 53, 1503–1514. [Google Scholar]
- Islam, M.M.; Ye, W.; Matsushima, D.; Rhaman, M.S.; Munemasa, S.; Okuma, E.; Nakamura, Y.; Biswas, M.S.; Mano, J.I.; Murata, Y. Reactive carbonyl species function as signal mediators downstream of H2O2 production and regulate [Ca2+]cyt elevation in ABA signal pathway in Arabidopsis guard cells. Plant Cell Physiol. 2019, 60, 1146–1159. [Google Scholar] [CrossRef]
- Rhaman, M.S.; Nakamura, T.; Nakamura, Y.; Munemasa, S.; Murata, Y. The myrosinases TGG1 and TGG2 function redundantly in reactive carbonyl species signaling in Arabidopsis guard cells. Plant Cell Physiol. 61, 967–977. [CrossRef]
- Ye, W.; Ando, E.; Rhaman, M.S.; Tahjib-Ul-Arif, M.; Okuma, E.; Nakamura, Y.; Kinoshita, T.; Murata, Y. Inhibition of light-induced stomatal opening by allyl isothiocyanate does not require guard cell cytosolic Ca2+ signaling. J. Exp. Bot. 2020, 71, 2922–2932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marthandan, V.; Geetha, R.; Kumutha, K.; Renganathan, V.G.; Karthikeyan, A.; Ramalingam, J. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. Int. J. Mol. Sci. 2020, 21, 8258. [Google Scholar] [CrossRef] [PubMed]
- Khan, W.; Prithiviraj, B.; Smith, D. Photosynthetic response of corn and soybean to foliar application of salicylates. J. Plant Physiol. 2003, 160, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Senaratna, T.; Touchell, D.; Bumm, E.; Dixon, K. Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regul. 2000, 30, 157–161. [Google Scholar] [CrossRef]
- Bastam, N.; Baninasab, B.; Ghobadi, C. Improving salt tolerance by exogenous application of salicylic acid in seedlings of pistachio. Plant Growth Regul. 2013, 69, 275–284. [Google Scholar] [CrossRef]
- Jia, C.; Zhang, L.; Liu, L.; Wang, J.; Li, C.; Wang, Q. Multiple phytohormone signalling pathways modulate susceptibility of tomato plants to Alternaria alternate f. sp. lycopersici. J. Exp. Bot. 2013, 64, 637–650. [Google Scholar] [CrossRef] [Green Version]
- Matilla-Vazquez, M.A.; Matilla, A.J. Ethylene: Role in plants under environmental stress. In Physiological Mechanisms and Adaptation Strategies in Plants under Changing Environment; Ahmad, P., Wani, M.R., Eds.; Springer: New York, NY, USA, 2014; Volume 2, pp. 189–222. [Google Scholar]
- Fahad, S.; Bano, A. Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak. J. Bot. 2012, 44, 1433–1438. [Google Scholar]
- Khanna, P.; Kaur, K.; Gupta, A.K. Salicylic acid induces differential anti-oxidant response in spring maize under high temperature stress. Indian J. Exp. Biol. 2016, 54, 386–393. [Google Scholar]
- Habibi, A.; Abdoli, M. Influence of salicylic acid pre-treatment on germination, vigor and growth parameters of garden cress (Lepidium sativum) seedlings under water potential loss at salinity stress. Int. Res. J. Basic Appl. Sci. 2013, 4, 1393–1399. [Google Scholar]
- Chavoushi, M.; Najafi, F.; Salimi, A.; Angaji, S.A. Improvement in drought stress tolerance of safflower during vegetative growth by exogenous application of salicylic acid and sodium nitroprusside. Ind. Crops Prod. 2019, 134, 168–176. [Google Scholar] [CrossRef]
- Shinwari, K.I.; Jan, M.; Shah, G.; Khattak, S.R.; Urehman, S.; Daud, M.K.; Naeem, R.; Jamil, M. Seed priming with salicylic acid induces tolerance against chromium (VI) toxicity in rice (Oryza sativa L.). Pak. J. Bot. 2015, 47, 161–170. [Google Scholar]
- Shatpathy, P.; Kar, M.; Dwibedi, S.K.; Dash, A. Seed priming with salicylic acid improves germination and seedling growth of rice (Oryza sativa L.) under PEG-6000 induced water stress. Int. J. Cur. Microbiol. Appl. Sci. 2018, 7, 907–924. [Google Scholar] [CrossRef]
- Pouramir-Dashtmian, F.; Khajeh-Hosseini, M.; Esfahani, M. Improving chilling tolerance of rice seedling by seed priming with salicylic acid. Arch. Agron. Soil Sci. 2014, 60, 1291–1302. [Google Scholar] [CrossRef]
- Theerakulpisut, P.; Kanawapee, N.; Panwong, B. Seed priming alleviated salt stress effects on rice seedlings by improving Na+/K+ and maintaining membrane integrity. Int. J. Plant Biol. 2016, 7, 6402. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Xu, J.; Gao, Y.; Wang, C.; Guo, G.; Luo, Y.; Huang, Y.; Hu, W.; Sheteiwy, M.S.; Guan, Y.; et al. The synergistic priming effect of exogenous salicylic acid and H2O2 on chilling tolerance enhancement during maize (Zea mays L.) seed germination. Front. Plant Sci. 2017, 8, 1153. [Google Scholar] [CrossRef] [Green Version]
- Farooq, M.; Aziz, T.; Basra, S.M.; Cheema, M.A.; Rehman, H. Chilling tolerance in hybrid maize induced by seed priming with salicylic acid. J. Agron. Crop. Sci. 2008, 194, 161–168. [Google Scholar] [CrossRef]
- Zanganeh, R.; Jamei, R.; Rahmani, F. Impacts of seed priming with salicylic acid and sodium hydrosulfide on possible metabolic pathway of two amino acids in maize plant under lead stress. Mol. Biol. Res. Commun. 2018, 7, 83–88. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.P.; Kumar, J.; Singh, M.; Singh, S.; Prasad, S.M.; Dwivedi, R.; Singh, M.P. Role of salicylic acid-seed priming in the regulation of chromium (VI) and UV-B toxicity in maize seedlings. Plant Growth Regul. 2016, 78, 79–91. [Google Scholar] [CrossRef]
- Afzal, I.; Basra, S.M.; Farooq, M.; Nawaz, A. Alleviation of salinity stress in spring wheat by hormonal priming with ABA, salicylic acid and ascorbic acid. Int. J. Agric. Biol. 2006, 8, 23–28. [Google Scholar]
- Ulfat, A.N.; Majid, S.A.; Hameed, A. Hormonal seed priming improves wheat (Triticum aestivum) field performance under drought and non-stress conditions. Pak. J. Bot. 2017, 49, 1239–1253. [Google Scholar]
- Khamseh, S.R.; Shekari, F.; Zangani, E. The effects of priming with salicylic acid on resistance to osmotic stress in germination stage of wheat. Int. J. Agric. Res. Rev. 2013, 3, 543–558. [Google Scholar]
- Azeem, M.; Abbasi, M.W.; Qasim, M.; Ali, H. Salicylic acid seed priming modulates some biochemical parameters to improve germination and seedling growth of salt stressed wheat (Triticum aestivum L.). Pak. J. Bot. 2018, 51, 385–391. [Google Scholar] [CrossRef]
- El-Shazoly, R.M.; Metwally, A.A.; Hamada, A.M. Salicylic acid or thiamin increases tolerance to boron toxicity stress in wheat. J. Plant Nutr. 2019, 42, 702–722. [Google Scholar] [CrossRef]
- Gul, F.; Arfan, M.; Shahbaz, M.; Basra, S. Salicylic acid seed priming modulates morphology, nutrient relations and photosynthetic attributes of wheat grown under cadmium stress. Int. J. Agric. Biol. 2020, 23, 197–204. [Google Scholar] [CrossRef]
- Namdari, A.; Baghbani, A. Consequences of seed priming with salicylic acid and hydro priming on smooth vetch seedling growth under water deficiency. J. Agric. Sci. 2017, 9, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Bahadoori, S.; Behrooz, E.; Mokhtar, H.; Surur, K.; Mosadegh, P.S.; Hassankeloo, N.T.; Alireza, G. Effects of seed priming with salicylic acid and polyamines on physiological and biochemical characteristics of okra (Abelmoschus esculentus) under low temperature stress. J. Plant Process Funct. 2016, 5, 145–156. [Google Scholar]
- Tabatabaei, S.A. Effect of salicylic acid and ascorbic acid on germination indexes and enzyme activity of sorghum seeds under drought stress. J. Stress Physiol. Biochem. 2013, 9, 32–38. [Google Scholar]
- Ghoohestani, A.; Gheisary, H.; Zahedi, S.; Dolatkhahi, A. Effect of seed priming of tomato with salicylic acid, ascorbic acid and hydrogen peroxide on germination and plantlet growth in saline conditions. Int. J. Agron. Plant Prod. 2012, 3, 700–704. [Google Scholar]
- Singh, S.K.; Singh, P.K. Effect of seed priming of tomato with salicylic acid on growth, flowering, yield and fruit quality under high temperature stress conditions. Int. J. Adv. Res. 2016, 4, 723–727. [Google Scholar]
- Rafique, N.; Raza, S.H.; Qasim, M.; Iqbal, N.A. Pre-sowing application of ascorbic acid and salicylic acid to seed of pumpkin and seedling response to salt. Pak. J. Bot. 2011, 43, 2677–2682. [Google Scholar]
- Azooz, M.M. Salt stress mitigation by seed priming with salicylic acid in two faba bean genotypes differing in salt tolerance. Int. J. Agric. Biol. 2009, 11, 343–350. [Google Scholar]
- Rehman, H.; Farooq, M.; Basra, S.M.; Afzal, I. Hormonal priming with salicylic acid improves the emergence and early seedling growth in cucumber. J. Agric. Soc. Sci. 2011, 7, 109–113. [Google Scholar]
- Soliman, M.H.; Al-Juhani, R.S.; Hashash, M.A.; Al-Juhani, F.M. Effect of seed priming with salicylic acid on seed germination and seedling growth of broad bean (Vicia faba L.). Int. J. Agric. Technol. 2016, 12, 1125–1138. [Google Scholar]
- Ahmad, F.; Iqbal, S.; Khan, M.R.; Abbas, M.W.; Ahmad, J.; Nawaz, H.; Shah, S.M.; Iqbal, S.; Ahmad, M.; Ali, M. Influence of seed priming with salicylic acid on germination and early growth of sesame. Pure Appl. Biol. 2019, 8, 1206–1213. [Google Scholar] [CrossRef]
- Mori, I.C.; Pinontoan, R.; Kawano, T.; Muto, S. Involvement of superoxide generation in salicylic acid-induced stomatal closure in Vicia faba. Plant Cell Physiol. 2001, 42, 1383–1388. [Google Scholar] [CrossRef] [PubMed]
- Khokon, M.A.; Okuma, E.I.; Hossain, M.A.; Munemasa, S.; Uraji, M.; Nakamura, Y.; Mori, I.C.; Murata, Y. Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis. Plant Cell Environ. 2011, 34, 434–443. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Li, H.; Ecker, J.R. Ethylene biosynthesis and signaling networks. Plant Cell 2002, 14, S131–S151. [Google Scholar] [CrossRef] [Green Version]
- Montalvo, E.; Garcia, H.S.; Tovar, B.; Mata, M. Application of exogenous ethylene on postharvest ripening of refrigerated ‘Ataulfo’ mangoes. LWT-Food Sci. Technol. 2007, 40, 1466–1472. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, M.; Wang, J.; Jiang, C.-Z.; Wang, Q. Application of exogenous ethylene inhibits postharvest peel browning of ‘Huangguan’ pear. Front. Plant Sci. 2017, 7, 2029. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y.; Seo, C.; Khan, A.L.; Mun, B.G.; Shahzad, R.; Ko, J.W.; Yun, B.W.; Park, S.K.; Lee, I.J. Exo-ethylene application mitigates waterlogging stress in soybean (Glycine max L.). BMC Plant Biol. 2018, 18, 254. [Google Scholar] [CrossRef]
- Nascimento, W.M.; Cantliffe, D.J.; Huber, D.J. Ethylene evolution and endo-beta-mannanase activity during lettuce seed germination at high temperature. Sci. Agric. 2004, 61, 156–163. [Google Scholar] [CrossRef] [Green Version]
- Manoharlal, R.; Saiprasad, G.V.S.; Kovařík, A. Gene-specific DNA demethylation changes associates with ethylene induced germination of soybean [Glycine max (L.) Merrill]. Plant Physiol. Rep. 2019, 24, 272–277. [Google Scholar] [CrossRef]
- Sheteiwy, M.S.; Gong, D.; Gao, Y.; Pan, R.; Hu, J.; Guan, Y. Priming with methyl jasmonate alleviates polyethylene glycol-induced osmotic stress in rice seeds by regulating the seed metabolic profile. Environ. Exp. Bot. 2018, 153, 236–248. [Google Scholar] [CrossRef]
- Hassini, I.; Martinez-Ballesta, M.C.; Boughanmi, N.; Moreno, D.A.; Carvajal, M. Improvement of broccoli sprouts (Brassica oleracea L. var. italica) growth and quality by KCl seed priming and methyl jasmonate under salinity stress. Sci. Hortic. 2017, 226, 141–151. [Google Scholar] [CrossRef]
- Król, P.; Igielski, R.; Pollmann, S.; Kępczyńska, E. Priming of seeds with methyl jasmonate induced resistance to hemi-biotroph Fusarium oxysporum f. sp. lycopersici in tomato via 12-oxo-phytodienoic acid, salicylic acid, and flavonol accumulation. J. Plant Physiol. 2015, 179, 122–132. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, X.; Liu, A.; Chen, S. Brassinosteroids in plant tolerance to abiotic stress. J. Plant Growth Regul. 2020. [Google Scholar] [CrossRef]
- Zhang, S.; Hu, J.; Zhang, Y.; Xie, X.J.; Knapp, A. Seed priming with brassinolide improves lucerne (Medicago sativa L.) seed germination and seedling growth in relation to physiological changes under salinity stress. Aust. J. Agric. Res. 2007, 58, 811–815. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, L.; Zeng, R.; Wang, X.; Zhang, H.; Wang, L.; Liu, S.; Wang, X.; Chen, T. Brassinosteroid priming improves peanut drought tolerance via eliminating inhibition on genes in photosynthesis and hormone signaling. Genes 2020, 11, 919. [Google Scholar] [CrossRef]
Plant | Stresses | Responses of Plant | References |
---|---|---|---|
Soybean (Glycine max) | Drought | Improved drought tolerance in soybean plants | [54] |
Pigeon pea (Cajanus cajan) | Salt | Prevented the damage caused by the apparatus involved in protein synthesis | [58] |
Cadmium | Tolerance to the effects of Cd stress | [26] | |
Basil (Ocimum basilicum) | Drought | Reduced negative effects of drought stress | [59] |
Wheat (Triticum aestivum) | Salt | Decreased ABA concentration, increased IAAs concentration, and enhancement of salt tolerance | [60] |
Salt | Improved photosynthetic rate, water use efficiency and stomatal conductance, decreased Na+ and Cl− level, increased K+ level | [61] | |
Salt | Decreased electrolyte leakage and conferred salt tolerance | [62] | |
Salt | Increased tissue N content and nitrate reductase activity | [63] | |
Salt | Induced reduction in inorganic ion accumulation and increasing membranes stability and K+/Na+ ratio, enhanced chlorophyll formation and soluble sugar accumulation | [64] | |
Salt | Alleviated salt stress by enhanced ethylene production | [65] |
Plants | Stresses | Responses of Plant | References |
---|---|---|---|
Pigeon pea (Cajanus cajan) | Cadmium | Increased germination speed index and germination percentage and tolerance to Cd stress | [26] |
Pot marigold and Sweet fennel | Salt | Increased dry matter and enhanced tolerance to salinity by enhancing antioxidant enzyme activities | [84] |
Milk Thistle (Silybum marianum) | Salt | Increased α-amylase activity and alleviated salt stress effects | [85] |
Chickpea (Cicer arietinum) | Drought | Increased relative water content, seed protein, and reduced electrolyte leakage | [86] |
Wheat (Triticum aestivum) | Salt | Promoted better salinity tolerance | [77] |
Sorghum (Sorghum bicolor) | Drought | Increased CAT and APX activities | [87] |
Corn (Zea mays) | Salt | Increased tissue water content | [78] |
Maize (Zea mays), Pea (Pisum sativum), Grass pea (Lathyrus sativus) | Salt | Alleviated salt stress effects | [88] |
Rice (Oryza sativa) | Flood | Increased α-Amylase activity, sucrose, glucose, and fructose content in seeds. | [89] |
Alfalfa (Medicago sativa) | Salt | Induced enzymatic activities (SOD, CAT, GPX, APX, GR), and decreased lipid peroxidation, and reduced membrane damage of alfalfa. | [90] |
Sponge gourd (Luffa aegyptiaca) | Salt | Prevented the adverse effect of salinity | [91] |
Soybean (Glycine max) | Saline-alkali | Increased activities of the antioxidant defense system, photosynthetic pigment contents, better membrane integrity | [92] |
Maize (Zea mays) | Salt | Reduced negative effect of salt stress | [93] |
Sweet sorghum (Sorghum bicolor) | Salt | Enhanced water absorption and improved salinity tolerance | [94] |
Maize (Zea mays) | Drought | Increased chlorophyll content and enhance drought tolerance | [95] |
Okra (Abelmoschus esculentus) | Salt | Increased water content of the okra seedlings | [96] |
Triticale | Salt | Reduced Na+ accumulation and increased K+ uptake | [97] |
Crops | Stresses | Responses of Plants | References |
---|---|---|---|
Rice (Oryza sativa) | Chromium | Increased chlorophyll content and proper nutrient uptake | [130] |
Water deficit | Decreased water stress | [131] | |
Chilling | Enhanced antioxidant enzyme activities, detoxified ROS | [132] | |
Salinity | Improved Na+/K+ and maintaining membrane integrity | [133] | |
Safflower (Carthamus tinctorius) | Drought | Enhanced antioxidant enzyme activities and reduced oxidative damage | [129] |
Maize (Zea mays) | Chilling | Increased α-amylase and antioxidant enzyme activities and endogenous SA content | [134] |
Chilling | Enhanced enzymatic antioxidant activities, high tissue water content | [135] | |
Lead | Increased glycine betaine and nitric oxide content and regulation of gene expression | [136] | |
Chromium and UV-B | Reduced the accumulation of chromium and ROS | [137] | |
Wheat (Triticum aestivum) | Salinity | Decreased the electrolyte leakage | [138] |
Drought | Balanced nutrient uptake | [139] | |
Osmotic | Resistance to osmotic stress | [140] | |
Salinity | Higher contents of photosynthetic pigments, soluble sugar, and protein | [141] | |
Boron toxicity | Increased photosynthetic pigments | [142] | |
Cadmium | Modulates nutrient relations and photosynthetic attributes | [143] | |
Smooth vetch (Vicia dasycarpa) | Water deficit | Higher accumulation of proline and glycine betaine | [144] |
Okra (Abelmoschus esculentus) | Chilling | Enhanced antioxidant enzyme activities and membrane integrity | [145] |
Sorghum (Sorghum bicolor) | Drought | Improved antioxidant defense system | [146] |
Tomato (Solanum lycopersicum) | Salinity | Decreased salinity stress | [147] |
Heat | Increased lycopene content | [148] | |
Pumpkin | Salinity | Protein contents and nitrate reductase were increased | [149] |
Faba bean (Vicia faba) | Salinity | Higher osmotic solute content, carotenoids, and antioxidant enzyme activity | [150] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rhaman, M.S.; Imran, S.; Rauf, F.; Khatun, M.; Baskin, C.C.; Murata, Y.; Hasanuzzaman, M. Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress. Plants 2021, 10, 37. https://doi.org/10.3390/plants10010037
Rhaman MS, Imran S, Rauf F, Khatun M, Baskin CC, Murata Y, Hasanuzzaman M. Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress. Plants. 2021; 10(1):37. https://doi.org/10.3390/plants10010037
Chicago/Turabian StyleRhaman, Mohammad Saidur, Shahin Imran, Farjana Rauf, Mousumi Khatun, Carol C. Baskin, Yoshiyuki Murata, and Mirza Hasanuzzaman. 2021. "Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress" Plants 10, no. 1: 37. https://doi.org/10.3390/plants10010037
APA StyleRhaman, M. S., Imran, S., Rauf, F., Khatun, M., Baskin, C. C., Murata, Y., & Hasanuzzaman, M. (2021). Seed Priming with Phytohormones: An Effective Approach for the Mitigation of Abiotic Stress. Plants, 10(1), 37. https://doi.org/10.3390/plants10010037