Possible Role of Peroxynitrite in the Responses Induced by Fusicoccin in Plant Cultured Cells
Abstract
:1. Introduction
2. Results
2.1. Effect of FC and Urate on RNS Accumulation in the Cells
2.2. Effect of FC and Urate on Cell Viability and on Accumulation of TUNEL-Positive Cells
2.3. Effect of FC and Urate on Accumulation of O2− and Malondialdehyde and on Caspase-3-Like Activity
2.4. Effects of FC and Urate on Stress-Related Proteins
3. Discussion
3.1. Effect of FC and Urate on ONOO− Accumulation in the Cells
3.2. Effect of FC and Urate on Cell Death and on Accumulation of TUNEL-Positive Cells
3.3. Effect of FC and Urate on O2− and MDA Accumulation
3.4. Effect of FC and Urate on Caspase-3-Like Activity and on the Release of Cytochrome c from Mitochondria
3.5. Effect of FC and Urate on the Levels of Mitochondrial Hsp90, Microsomal BiP, and Cytosolic 14-3-3 Proteins
3.6. Future Research Directions
4. Material and Methods
4.1. Cell Culture Growth and Experimental Design
4.2. Cell Viability Assay and Determination of Cells Undergoing PCD
4.3. O2− Assay and RNS Imaging
4.4. Activity of Caspase-3-Like Proteases and Level of Lipid Peroxidation
4.5. Cell Fraction Preparation, SDS-PAGE and Protein Gel Blot Analysis
4.6. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Marrè, E. Fusicoccin: A tool in plant physiology. Ann. Rev. Plant Physiol. 1979, 30, 273–288. [Google Scholar] [CrossRef]
- Palmgren, M.G. Plant plasma membrane H+-ATPases: Powerhouses for nutrient uptake. Ann. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 817–845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer, C.; Waldkötter, K.; Sprenger, A.; Schlösser, U.G.; Luther, M.; Weiler, E.W. Survey for the taxonomic and tissue distribution of microsomal binding sites for the non-host selective fungal phytotoxin fusicoccin. Z. Naturforrsch. C. 1993, 48, 595–602. [Google Scholar] [CrossRef]
- Bunney, T.D.; De Boer, A.H.; Levin, M. Fusicoccin signaling reveals 14-3-3 protein function as a novel step in left-right patterning during amphibian embryogenesis. Development 2003, 130, 4847–4858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aitken, A.; Collinge, D.B.; van Heusden, B.P.; Isobe, T.; Roseboom, P.H.; Rosenfeld, G.; Soll, J. 14-3-3 proteins: A highly conserved, widespread family of eukaryotic proteins. Trends Biochem. Sci. 1992, 17, 498–502. [Google Scholar] [CrossRef] [Green Version]
- Freeman, A.K.; Morrison, D.K. 14-3-3 proteins: Diverse functions in cell proliferation and cancer progression. Semin. Cell. Dev. Biol. 2011, 22, 681–687. [Google Scholar] [CrossRef] [Green Version]
- Honma, Y. Cotylenin A-a plant growth regulator as a differentiation-inducing agent against myeloma leukemia. Leuk. Lymphoma 2002, 43, 1169–1178. [Google Scholar] [CrossRef] [PubMed]
- Rodolfo, C.; Rocco, M.; Cattaneo, L.; Tartaglia, M.; Sassi, M.; Aducci, P.; Scaloni, A.; Camoni, L.; Marra, M. Ophiolobin A induces autofagy and activates the mitochondrial pathway of apoptosis in human melanoma cells. PLoS ONE 2016, 11, e0167672. [Google Scholar] [CrossRef] [PubMed]
- De Wries-van Leeuwen, I.J.; Kortekaas-Thijssen, C.; Nzigou Mandouckou, J.A.; Kas, S.; Evidente, A.; De Boer, A.H. Fusicoccin-A selectively induces apoptosis in tumor cells after interferon-alpha priming. Cancer Lett. 2010, 293, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Bury, M.; Andolfi, A.; Rogister, B.; Cimmino, A.; Mégalizzi, V.; Mathieu, V.; Berger, W.; Evidente, A.; Kiss, R. Fusicoccin A, a phytotoxic carbotricyclic diterpene glucoside of fingal origin, reduces proliferation and invasion of glioblastoma cells by targeting multiple tyrosine kinases. Transl. Oncol. 2013, 6, 112–123. [Google Scholar] [CrossRef] [Green Version]
- Kaplan, A.; Morquette, B.; Kroner, A.; Leong, S.; Madwar, C.; Sanz, R.; Banerjee, S.L.; Antel, J.; Bisson, N.; David, S.; et al. Small-molecule stabilization of 14-3-3 protein-protein interactions stimulates axon regeneration. Neuron 2017, 93, 1082–1093.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaplan, A.; Ottmann, C.; Fournier, A.E. 14-3-3 adaptor protein-protein interactions as therapeutic targets for CNS diseases. Pharmacol. Res. 2017, 125, 114–121. [Google Scholar] [CrossRef] [PubMed]
- Camoni, L.; Visconti, S.; Aducci, P.; Marra, M. From plant physiology to pharmacology: Fusicoccin leaves the leaves. Planta 2019, 249, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.; Crosti, P.; Cerana, R. Ethylene is involved in stress responses induced by fusicoccin in sycamore cultured cells. J. Plant Physiol. 2010, 167, 1442–1447. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.T. Harnessing evolutionary toxins for signaling: Reactive oxygen species, nitric oxide and hydrogen sulfide in plant cell regulation. Front. Plant Sci. 2016. [Google Scholar] [CrossRef] [Green Version]
- Malerba, M.; Crosti, P.; Cerana, R.; Bianchetti, R. Fusicoccin stimulates the production of H2O2 in sycamore cell cultures and induces alternative respiration and cytochrome c leakage from mitochondria. Physiol. Plant. 2003, 119, 480–488. [Google Scholar] [CrossRef]
- Malerba, M.; Contran, N.; Tonelli, M.; Crosti, P.; Cerana, R. Role of nitric oxide in actin depolymerization and programmed cell death induced by fusicoccin in sycamore cultured cells. Physiol. Plant. 2008, 133, 449–457. [Google Scholar] [CrossRef]
- Farnese, F.S.; Menezes-Silva, P.E.; Gusman, G.S.; Oliveira, J.A. When bad guys become good ones: The key role of reactive oxygen species and nitric oxide in the plant responses to abiotic stress. Front. Plant Sci. 2016, 7. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Nahar, K.; Alam, M.M.; Roychowdhury, R.; Fujita, M. Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int. J. Mol. Sci. 2013, 14, 9643–9684. [Google Scholar] [CrossRef]
- Pacher, P.; Beckman, J.S.; Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 2007, 87, 315–424. [Google Scholar] [CrossRef] [Green Version]
- Vandelle, E.; Delledonne, M. Peroxynitrite formation and function in plants. Plant Sci. 2011, 181, 534–539. [Google Scholar] [CrossRef] [PubMed]
- Arasimowicz-Jelonek, M.; Floryszak-Wieczorek, J. Understanding the fate of peroxynitrite in plant cells—From physiology to pathophysiology. Phytochemistry 2011, 72, 681–688. [Google Scholar] [CrossRef] [PubMed]
- Koul, A.; Sharma, M.; Metha, M.; Mallubhotla, S.; Bhushan, I. Reactive oxygen and nitrogen species: Key players in plant response to stress. Plant Cell Biotechnol. Mol. Biol. 2020, 21, 34–43. [Google Scholar]
- Gaupels, F.; Spiazzi-Vandelle, E.; Yang, D.; Delledonne, M. Detection of peroxynitrite accumulation in Arabidopsis thaliana during the hypersensitive defense response. Nitr. Ox. 2011, 25, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.; Cerana, R.; Crosti, P. Fusicoccin induces in plant cells a programmed cell death showing apoptotic features. Protoplasma 2003, 222, 113–116. [Google Scholar] [CrossRef] [PubMed]
- Lam, E. Controlled cell death, plant survival and development. Nat. Rev. Mol. Cell. Biol. 2004, 5, 305–315. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.; Cerana, R. Role of peroxynitrite in the responses induced by heat stress in tobacco BY-2 cultured cells. Protoplasma 2018, 255, 1079–1087. [Google Scholar] [CrossRef]
- Contran, N.; Cerana, R.; Crosti, P.; Malerba, M. Cyclosporin A inhibits programmed cell death and cytochrome c release induced by fusicoccin in sycamore cells. Protoplasma 2007, 231, 193–199. [Google Scholar] [CrossRef]
- Saito, S.; Yamamoto-Katou, A.; Yoshioka, H.; Doke, N.; Kawakita, K. Peroxynitrite generation and tyrosine nitration in defense responses in tobacco BY-2 cells. Plant Cell Physiol. 2006, 47, 689–697. [Google Scholar] [CrossRef]
- Sakamoto, A.; Sakurao, S.; Fukunaga, K.; Matsubara, T.; Ueda-Hashimoto, M.; Tsukamoto, S.; Takahashi, M.; Morikawa, H. Three distinct Arabidopsis hemoglobins exhibit peroxidase-like activity and differentially mediate nitrite-dependent protein nitration. FEBS Lett. 2004, 572, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.N.; Wang, H.L.; Liu, F.Q.; Chen, Y.; Tam, P.K.H.; Yang, D. BODIPY-based fluorescent probe for peroxynitrite detection and imaging in living cells. Org. Lett. 2009, 11, 1187–1190. [Google Scholar] [CrossRef] [PubMed]
- Serrano, I.; Romero-Puertas, M.C.; Rodríguez Serrano, M.; Sandalio, L.M.; Olmedilla, A. Role of peroxynitrite in programmed cell death induced in self-incompatible pollen. Plant Signal. Behav. 2012, 7, 779–781. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Contran, N.; Tonelli, M.G.; Crosti, P.; Cerana, R.; Malerba, M. Antioxidant system in programmed cell death of sycamore (Acer pseudoplatanus L.) cultured cells. Acta Physiol. Plant. 2012, 34, 617–629. [Google Scholar] [CrossRef]
- Hancock, J.T.; Neill, S.J. Nitric oxide: Its generation and interactions with other reactive signaling compounds. Plants. 2019, 8, 41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Piszczek, E.; Gutman, W. Caspase-like proteases and their role in programmed cell death in plants. Acta Physiol. Plant. 2007, 29, 391–398. [Google Scholar] [CrossRef]
- Belenghi, B.; Romero-Puertas, M.C.; Vercammen, D.; Brackenier, A.; Inzé, D.; Delledonne, M.; van Breusegem, F. Metacaspase activity of Arabidopsis thaliana is regulated by S-nitrosylation of a critical cysteine residue. J. Biol. Chem. 2007, 282, 1352–1358. [Google Scholar] [CrossRef] [Green Version]
- Sandoval, M.; Zhang, X.J.; Liu, X.; Mannick, E.E.; Clark, D.A.; Miller, M.J.S. Peroxynitrite-induced apoptosis in T84 and raw 264.7 cells: Attenuation by L-ascorbic acid. Free Radic. Biol. Med. 1997, 22, 489–495. [Google Scholar] [CrossRef]
- Niles, J.C.; Wishnok, J.S.; Tannenbau, S.R. Peroxynitrite-induced oxidation and nitration products of guanine 8-oxoguanine: Structures and mechanisms of product formation. Nitr. Ox. 2006, 14, 109–121. [Google Scholar] [CrossRef]
- Marsoni, M.; Cantara, C.; De Pinto, M.C.; Gadatela, C.; De Gara, L.; Bracale, M.; Vannini, C. Exploring the soluble proteome of Tobacco Bright Yellow-2 cells at the switch towards different cell fates in response to heat shocks. Plant Cell Environ. 2010, 33, 1161–1175. [Google Scholar]
- Kadota, Y.; Shirazu, K. The HSP90 complex of plants. Biochim. Biophys. Acta 2012, 1823, 689–697. [Google Scholar] [CrossRef] [Green Version]
- Kang, B.H.; Plescia, J.; Dohi, T.; Rosa, J.; Doxsey, S.J.; Altieri, D.C. Regulation of tumor cell mitochondrial homeostasis by an organelle-specific Hsp90 chaperone network. Cell 2007, 131, 257–270. [Google Scholar] [CrossRef] [PubMed]
- Altieri, D.C.; Stein, G.S.; Lian, J.B.; Languino, L.R. TRAP-1 the mitochondrial Hsp90. Biochim. Biophys. Acta 2012, 1823, 767–773. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagata, T.; Nemoto, Y.; Hasezawa, S. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int. Rev. Cytol. 1992, 132, 1–30. [Google Scholar]
- Urade, R. Cellular response to unfolded proteins in the endoplasmic reticulum of plants. FEBS J. 2007, 274, 1152–1171. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Srivastava, R.; Stephen, H.; Howell, S.H.; Bassham, D.C. Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. Plant J. 2016, 85, 83–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lozano-Durán, R.; Robatzek, S. 14-3-3 proteins in plant-pathogen interactions. Mol. Plant Mic. Inter. 2015, 28, 511–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alamillo, J.M.; García-Olmedo, F. Effects of urate, a natural scavenger of peroxynitrite-mediated toxicity, in the response of Arabidopsis thaliana to the bacterial pathogen Pseudomonas syringae. Plant J. 2001, 25, 529–540. [Google Scholar] [CrossRef] [Green Version]
- Arasimowicz-Jelonek, M.; Floryszak-Wieczorek, J.; Izbiańska, K.; Gzyl, J.; Jelonek, T. Implication of peroxynitrite in defence responses of potato to Phytophthora infestans. Plant Pathol. 2016, 65, 754–766. [Google Scholar] [CrossRef] [Green Version]
- Gzyl., J.; Izbiańska, K.; Floryszak-Wieczorek, J.; Jelonek, T.; Arasimowicz-Jelonek, M. Cadmium affects peroxynitrite generation and tyrosine nitration in seedling roots of soybean (Glycine max L.). Environ. Exp. Bot. 2016, 131, 155–163. [Google Scholar] [CrossRef]
- Changxia, L.; Dengjing, H.; Chunlei, W.; Ni, W.; Yandong, Y.; Weifang, L.; Weibiao, L. NO is involved in H2-induced adventitious rooting in cucumber by regulating the expression and interaction of plasma membrane H+-ATPase and 14-3-3. Planta 2020, 252. [Google Scholar] [CrossRef]
- Yuan, S.; Gopal, J.V.; Ren, S.; Chen, L.; Liu, L.; Gao, Z. Anticancer fungal natural products: Mechanisms of action and biosynthesis. Eur. J. Medicin. Chem. 2020, 202, 112502. [Google Scholar] [CrossRef] [PubMed]
- Harmange Magnani, C.S.; Maimone, T.J. Fusicoccin keeps getting stickier: Modulation of an adaptor protein interactome with a molecular glue leads to neurite outgrowth. Cell Chem. Biol. 2020, 27, 635–637. [Google Scholar] [CrossRef] [PubMed]
- Malerba, M.; Crosti, P.; Cerana, R. Defense/stress responses activated by chitosan in sycamore cultured cells. Protoplasma 2011, 249, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Crosti, P.; Malerba, M.; Bianchetti, R. Tunicamycin and Brefeldin A induce in plant cells a programmed cell death showing apoptotic features. Protoplasma 2001, 216, 31–38. [Google Scholar] [CrossRef]
- Staszek, P.; Gniazdowska, A. Peroxynitrite induced signaling pathways in plant response to non-proteinogenic amino acids. Planta 2020, 252, 5. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malerba, M.; Cerana, R. Possible Role of Peroxynitrite in the Responses Induced by Fusicoccin in Plant Cultured Cells. Plants 2021, 10, 182. https://doi.org/10.3390/plants10010182
Malerba M, Cerana R. Possible Role of Peroxynitrite in the Responses Induced by Fusicoccin in Plant Cultured Cells. Plants. 2021; 10(1):182. https://doi.org/10.3390/plants10010182
Chicago/Turabian StyleMalerba, Massimo, and Raffaella Cerana. 2021. "Possible Role of Peroxynitrite in the Responses Induced by Fusicoccin in Plant Cultured Cells" Plants 10, no. 1: 182. https://doi.org/10.3390/plants10010182
APA StyleMalerba, M., & Cerana, R. (2021). Possible Role of Peroxynitrite in the Responses Induced by Fusicoccin in Plant Cultured Cells. Plants, 10(1), 182. https://doi.org/10.3390/plants10010182