GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity
Abstract
1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Volatile Compounds
2.2. Chemometric Analysis Based on GC-MS
2.3. Antioxidant Activity of Astragalus Species
2.4. Enzyme Inhibitory Activity of Astragalus Species
3. Materials and Methods
3.1. Plant Materials
3.2. Essential Oil Isolation
3.3. GC-MS Analysis
3.4. Chemometric Analysis
3.5. Antioxidant and Enzyme Inhibitory Assays
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amiri, M.S.; Joharchi, M.R.; Nadaf, M.; Nasseh, Y. Ethnobotanical knowledge of Astragalus spp.: The world’s largest genus of vascular plants. Avicenna J. Phytomed. 2020, 10, 128–142. [Google Scholar] [PubMed]
- Khassanov, F. Lectotypifications in the genus Astragalus L. s.l. (Fabaceae) in the flora of Uzbekistan. Stapfia 2015, 103, 67–73. [Google Scholar]
- Li, X.; Qu, L.; Dong, Y.; Han, L.; Liu, E.; Fang, S.; Zhang, Y.; Wang, T. A review of recent research progress on the Astragalus genus. Molecules 2014, 19, 18850–18880. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Carneiro, J.N.P.; Rocha, J.E.; Coutinho, H.D.M.; Morais Braga, M.F.B.; Sharifi-Rad, J.; Semwal, P.; Painuli, S.; Moujir, L.M.; de Zarate Machado, V.; et al. Astragalus species: Insights on its chemical composition toward pharmacological applications. Phytother. Res. 2020. [Google Scholar] [CrossRef]
- Yang, L.P.; Shen, J.G.; Xu, W.C.; Li, J.; Jiang, J.Q. Secondary Metabolites of the Genus Astragalus: Structure and Biological-Activity Update. Chem. Biodiver. 2013, 10, 1004–1054. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Astragalus and Chrysanthemum for Sustainable Life; LAP LAMBERT Academic Publishing: Rīgā, Latvia, 2019. [Google Scholar]
- Rezaee, M.B.; Jaimand, K.; Karimi, M. Chemical Constituents of the Essential Oil from Astragalus microcephalus Willd. J. Essent. Oil Res. 2006, 18, 84–85. [Google Scholar] [CrossRef]
- Akhlaghi, H. Chemical Composition of the Essential Oil from Aerial Parts of Astragalus schahrudensis Bge. from Northeast of Iran. J. Essent. Oil Bear. Plants 2009, 12, 59–63. [Google Scholar] [CrossRef]
- Akhlaghi, H.; Rustaiyan, A.; Larijani, K.; Shafaghat, A.; Masnabadi, N.; Masoudi, S. Chemical Composition of the Essential Oil from Flower, Stem and Leaves of Astragalus schahrudensis Bge. from Iran. J. Essent. Oil Res. 2007, 19, 269–270. [Google Scholar] [CrossRef]
- Naghiloo, S.; Movafeghi, A.; Delazar, A.; Nazemiyeh, H.; Asnaashari, S.; Dadpour, M.R. Ontogenetic variation of volatiles and antioxidant activity in leaves of Astragalus compactus Lam. (Fabaceae). EXCLI J. 2012, 11, 436–443. [Google Scholar]
- Movafeghi, A.; Delazar, A.; Amini, M.; Asnaashari, S.; Nazifi, E. Composition of volatile organic compounds in flowers of Astragalus sahendi. Nat. Prod. Res. 2010, 24, 1330–1336. [Google Scholar] [CrossRef]
- Movafeghi, A.; Djozan, D.; Razeghi, J.A.; Baheri, T. Identification of volatile organic compounds in leaves, roots and gum of Astragalus compactus Lam. using solid phase microextraction followed by GC-MS analysis. Nat. Prod. Res. 2010, 24, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Teyeb, H.; Zouari, S.; Douki, W.; Najjar, M.F.; Neffati, M. Variation in volatiles of Astragalus gombiformis Pomel. Z. Naturforsch. C 2011, 66, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Teyeb, H.; Zouari, S.; Douki, W.; Najjar, M.F.; Neffati, M. Essential Oils of Leaves, Flowers and Fruits of Astragalus gombiformis Pomel (Fabaceae). Acta Hortic. 2010, 853, 263–268. [Google Scholar] [CrossRef]
- Iskender, N.; Kahriman, N.; Tosun, G.; Terzioğlu, S.; Alpay Karaoğlu, Ş.; Yayli, N. Chemical Composition and Antimicrobial Activity of the Essential Oils from the Aerial Parts of Astragalus hamzaoglui Extracted by Hydrodistillation and Microwave Distillation. Rec. Nat. Prod. 2013, 7, 177–183. [Google Scholar]
- Li, J.K.; Li, F.; Xu, Y.; Yang, W.J.; Qu, L.L.; Xiang, Q.; Liu, C.; Li, D.P. Chemical Composition and Synergistic Antioxidant Activities of Essential Oils from Atractylodes macrocephala and Astragalus membranaceus. Nat. Prod. Commun. 2013, 8, 1321–1324. [Google Scholar] [CrossRef]
- Gecibesler, I.H.; Behcet, L.; Erdogan, M.K.; Askin, H. Antioxidant potencies and chemical compositions of essential oils of two endemic species grow in Turkey: Astragalus oocephalus subsp stachyophorus and Astragalus sericans. Prog. Nutr. 2017, 19, 60–67. [Google Scholar] [CrossRef]
- Ghasemian-Yadegari, J.; Nazemiyeh, H.; Asnaashari, S.; Fathiazad, F. Chemical Characterization of the Essential Oil from Aerial Parts of Astragalus maximus from Northwest of Iran. Adv. Biosci. Clin. Med. 2015, 3, 32–39. [Google Scholar]
- Sahin Yaglioglu, A.; Temirturk, M.; Ugur, E.; Dolarslan, M.; Demirtas, I. Metabolomics of endemic six Astragalus species by combined NMR and GC-MS analysis. Phytochem. Anal. 2020, 31, 306–313. [Google Scholar] [CrossRef]
- El Bishbishy, M.H.; Gad, H.A.; Aborehab, N.M. Chemometric discrimination of three Pistacia species via their metabolic profiling and their possible in vitro effects on memory functions. J. Pharm. Biomed. Anal. 2020, 177, 112840. [Google Scholar] [CrossRef]
- Gad, H.A.; El-Ahmady, S.H.; Abou-Shoer, M.I.; Al-Azizi, M.M. Application of Chemometrics in Authentication of Herbal Medicines: A Review. Phytochem. Anal. 2012, 24, 1–24. [Google Scholar] [CrossRef]
- Ghahari, S.; Alinezhad, H.; Nematzadeh, G.A.; Tajbakhsh, M.; Baharfar, R. Phytochemical, Antioxidant and Biological Activities of the Essential Oil of Astragalus alopecurus Pall. Fruits from Northern Iran. J. Essent. Oil Bear. Plants 2018, 21, 103–115. [Google Scholar] [CrossRef]
- López, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crops Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J. Agric. Food Chem. 2005, 53, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- Bonesi, M.; Menichini, F.; Tundis, R.; Loizzo, M.R.; Conforti, F.; Passalacqua, N.G.; Statti, G.A.; Menichini, F. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. J. Enzyme Inhib. Med. Chem. 2010, 25, 622–628. [Google Scholar] [CrossRef] [PubMed]
- Wojtunik-Kulesza, K.A.; Targowska-Duda, K.; Klimek, K.; Ginalska, G.; Jóźwiak, K.; Waksmundzka-Hajnos, M.; Cieśla, Ł. Volatile terpenoids as potential drug leads in Alzheimer’s disease. Open Chem. 2017, 15, 332–343. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Zengin, G. Polyphenol Profile and Biological Activity Comparisons of Different Parts of Astragalus macrocephalus subsp. finitimus from Turkey. Biology 2020, 9. [Google Scholar] [CrossRef]
- Sekeroglu, N.; Gezici, S. Astragalus neurocarpus Bioss. as a potential source of natural enzyme inhibitor associated with Alzheime’ s and Parkinson diseases along with its rich polyphenolic content and antioxidant activities. Ann. Phytomed. 2019, 8, 82–87. [Google Scholar] [CrossRef]
- Santoro, V.; Parisi, V.; D’Ambola, M.; Sinisgalli, C.; Monné, M.; Milella, L.; Russo, R.; Severino, L.; Braca, A.; Tommasi, N.D. Chemical Profiling of Astragalus membranaceus Roots (Fish.) Bunge Herbal Preparation and Evaluation of Its Bioactivity. Nat. Prod. Commun. 2020, 15, 1934578X20924152. [Google Scholar] [CrossRef]
- Youssef, F.S.; Mamatkhanova, M.A.; Mamadalieva, N.Z.; Zengin, G.; Aripova, S.F.; Alshammari, E.; Ashour, M.L. Chemical Profiling and Discrimination of Essential Oils from Six Ferula Species Using GC Analyses Coupled with Chemometrics and Evaluation of Their Antioxidant and Enzyme Inhibitory Potential. Antibiotics 2020, 9. [Google Scholar] [CrossRef]
- Mamadalieva, N.Z.; Abdullaeva, N.S.; Rosenau, T.; Fakhrutdinova, M.; Azimova, S.S.; Bohmdorfer, S. Composition of essential oils from four Apiaceae and Asteraceae species growing in Uzbekistan. Nat. Prod. Res. 2018, 32, 1118–1122. [Google Scholar] [CrossRef]
- Brereton, R.G. Applied Chemometrics for Scientists; John Wiley & Sons: Chichester, UK, 2007; p. 379. [Google Scholar]
- Mamadalieva, N.Z.; Böhmdorfer, S.; Zengin, G.; Bacher, M.; Potthast, A.; Akramov, D.K.; Janibekov, A.; Rosenau, T. Phytochemical and biological activities of Silene viridiflora extractives. Development and validation of a HPTLC method for quantification of 20-hydroxyecdysone. Ind. Crops Prod. 2019, 129, 542–548. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Zengin, G. A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems. Ind. Crops Prod. 2016, 83, 39–43. [Google Scholar] [CrossRef]
Rt | Compound | RI | Content (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Rep. | Cal. | Aca | Ach | Ale | Ama | Amu | Asi | |||
1. | 8.49 | β-Phellandrene | 1205 | 1203 | - | - | - | - | 0.25 | - |
2. | 8.91 | Sylvestrene | 1205 | 1204 | - | - | 5.56 | 10.63 | 14.14 | 64.64 |
3. | 9.42 | 1,8-Cineole | 1208 | 1208 | - | - | - | 3.19 | 3.11 | 1.30 |
4. | 9.58 | Unidentified | 1212 | - | 3.69 | 2.50 | - | - | 0.53 | |
5. | 9.81 | (E)-2-Hexenal | 1219 | 1219 | - | 10.1 | 9.97 | 4.57 | 4.42 | - |
6. | 10.13 | Unidentified | 1230 | - | - | 1.32 | - | - | 0.50 | |
7. | 10.49 | (Z)-4-Heptenal | 1242 | 1242 | - | - | 1.22 | - | - | - |
8. | 10.75 | n-Pentanol | 1250 | 1250 | - | - | - | - | 0.47 | - |
9. | 11.3 | o-Cymene | 1268 | 1268 | - | - | - | - | 1.14 | - |
10. | 11.89 | n-Octanal | 1287 | 1287 | - | - | 2.73 | - | - | - |
11. | 13.37 | 6-Methyl-5-hepten-2-one | 1335 | 1335 | - | - | 1.18 | - | - | - |
12. | 13.76 | 1-Hexanol | 1350 | 1350 | - | 5.27 | 3.09 | 1.12 | 2.07 | 2.13 |
13. | 14.59 | cis-3-Hexenol | 1379 | 1379 | - | - | 0.63 | 1.58 | 0.72 | 0.48 |
14. | 14.89 | Nonanal | 1389 | 1389 | 3.29 | 0.90 | 0.54 | 4.71 | 1.04 | 1.22 |
15. | 15.04 | 2,4-Hexadienal | 1395 | 1395 | - | - | 1.95 | 0.55 | 0.92 | - |
16. | 15.22 | (E)-2-Hexen-1-ol | 1402 | 1401 | - | - | 0.92 | - | - | - |
17. | 15.46 | Butyl hexanoate | 1410 | 1410 | - | 6.76 | 0.73 | - | - | - |
18. | 15.8 | trans-2-Octenal | 1423 | 1423 | - | - | - | - | 0.42 | - |
19. | 16.03 | Unidentified | 1430 | - | - | 0.73 | - | - | - | |
20. | 16.13 | cis-Linalool oxide | 1435 | 1435 | - | - | - | 0.55 | 0.50 | 0.31 |
21. | 16.44 | 1-Octen-3-ol | 1445 | 1446 | 6.89 | - | - | 0.39 | 1.11 | - |
22. | 16.56 | 1-Heptanol | 1452 | 1451 | - | - | 1.65 | 0.48 | 0.56 | 1.82 |
23. | 16.74 | 1-Octen-5-ol | 1458 | 1458 | - | - | 1.48 | 1.75 | 1.27 | 0.28 |
24. | 16.91 | trans-Linalool oxide | 1466 | 1464 | - | 6.81 | 0.98 | - | - | - |
25. | 17.3 | Unidentified | 1478 | - | 4.64 | 4.17 | - | 0.5 | - | |
26. | 17.49 | (E,E)-2,4-Heptadienal | 1486 | 1486 | - | - | - | 0.83 | 1.07 | 0.48 |
27. | 17.7 | Decanal | 1494 | 1493 | - | - | 0.66 | - | 0.65 | - |
28. | 17.96 | Camphor | 1505 | 1503 | - | - | 0.5 | 1.16 | 0.55 | 0.44 |
29. | 18.04 | 2-Ethyl-1-hexanol | 1509 | 1509 | - | - | - | - | 0.41 | - |
30. | 18.2 | Benzaldehyde | 1513 | 1513 | 2.68 | 3.11 | 5.54 | 2.25 | 1.97 | 1.14 |
31. | 18.58 | (Z)-2-Nonenal | 1530 | 1530 | - | - | 0.57 | 0.35 | 0.40 | - |
32. | 18.94 | β-Linalool | 1542 | 1542 | - | 2.50 | 3.52 | 1.10 | 1.17 | 3.83 |
33. | 19.17 | n-Octanol | 1552 | 1552 | - | - | - | 2.68 | 0.52 | - |
34. | 19.43 | (E,E)-3,5-Octadien-2-one | 1562 | 1562 | - | - | 1.12 | 0.34 | 0.63 | 0.25 |
35. | 19.87 | Bornyl acetate | 1579 | 1579 | - | - | 0.48 | 0.84 | 0.93 | - |
36. | 19.98 | (E)-6-Methyl-3,5-heptadien-2-one, | 1582 | 1584 | - | - | 0.61 | 0.75 | 0.74 | - |
37. | 20.22 | 4-Terpineol | 1597 | 1594 | - | - | 0.35 | - | 0.91 | 0.25 |
38. | 20.33 | Undecanal | 1598 | 1598 | - | 2.20 | 1.35 | - | 0.45 | - |
39. | 20.56 | Butyl octanoate | 1610 | 1608 | - | - | 0.45 | - | - | - |
40. | 20.61 | β-Cyclocitral | 1611 | 1610 | 1.98 | - | - | 1.43 | 1.02 | - |
41. | 20.83 | 1-Terpineol | 1621 | 1619 | - | - | - | - | 0.44 | - |
42. | 21.06 | Unidentified | 1629 | - | 1.52 | 0.91 | - | - | - | |
43. | 21.16 | Benzene acetaldehyde | 1633 | 1634 | 5.78 | - | 1.40 | 3.45 | 2.8 | 1.11 |
44. | 21.65 | 1-Nonanol | 1655 | 1654 | - | - | 0.31 | - | 0.96 | - |
45. | 21.98 | 4-Vinylanisole | 1670 | 1668 | - | - | - | 1.02 | 0.6 | - |
46. | 22.3 | 2,6,6-Trimethyl-2-cyclohexene-1,4-dione | 1677 | 1682 | - | - | - | 0.48 | - | - |
47. | 22.46 | α-Terpineol | 1688 | 1688 | - | - | 0.92 | 0.20 | 0.64 | 0.72 |
48. | 22.52 | endo-Borneol | 1691 | 1691 | - | - | - | - | 0.82 | 0.67 |
49. | 22.81 | Dodecanal | 1704 | 1703 | - | - | - | - | 0.36 | - |
50. | 22.96 | Butyl nonanoate | 1714 | 1710 | - | 2.71 | 0.84 | - | - | - |
51. | 23.66 | 3,6-Nonadien-1-ol, (E,Z)- | 1731 | 1731 | - | - | 1.23 | - | - | - |
52. | 23.78 | Unidentified | 1743 | - | - | 1.16 | 0.42 | 0.44 | - | |
53. | 23.97 | 1-Decanol | 1756 | 1755 | - | - | - | - | 0.41 | - |
54. | 24.98 | 2,4-Decadienal | 1806 | 1800 | - | - | 0.49 | - | - | |
55. | 25.17 | β-Damascenone | 1815 | 1809 | - | - | - | 0.51 | - | |
56. | 25.21 | Butyl decanoate | 1821 | 1821 | - | - | 0.71 | - | - | - |
57. | 25.75 | Geraniol | 1836 | 1836 | - | - | - | - | - | 0.45 |
58. | 25.82 | n-Hexanoic acid | 1840 | 1840 | - | - | 1.28 | 0.16 | 1.75 | |
59. | 25.96 | (Z) -Geranyl acetone | 1838 | 1846 | - | - | - | - | 0.34 | 0.46 |
60. | 26.34 | Benzyl Alcohol | 1864 | 1864 | 2.80 | - | - | 1.13 | 1.21 | 0.49 |
61. | 27.42 | Tetradecanal | 1911 | 1915 | - | - | - | 0.82 | - | - |
62. | 27.49 | Neophytadiene | 1922 | 1922 | 2.38 | - | - | 0.98 | 0.62 | 0.78 |
63. | 27.64 | trans-β-Ionone | 1926 | 1927 | 3.34 | 0.42 | 0.42 | 1.73 | 1.76 | 0.38 |
64. | 27.96 | 2-Ethyl-hexanoic acid | 1950 | 1943 | - | 0.63 | - | - | - | - |
65. | 28.73 | β-Ionone epoxide | 1977 | 1980 | 2.32 | - | - | 0.96 | 0.98 | 0.5 |
66. | 29.03 | Eicosane | 2000 | 1992 | - | - | - | - | 1.99 | - |
67. | 29.17 | Methyl eugenol | 2002 | 2002 | - | - | - | 1.98 | 0.89 | 0.38 |
68. | 29.54 | Pentadecanal | 2024 | 2021 | - | - | 3.40 | 0.87 | - | - |
69. | 30.14 | Octanoic acid | 2052 | 2052 | - | - | 0.46 | - | 0.5 | - |
70. | 30.34 | 4-Hydroxy-2-nonenoic acid lactone | 2068 | 2062 | - | - | - | - | 0.36 | - |
71. | 31.4 | Hexahydrofarnesyl acetone | 2114 | 2118 | 1.54 | - | 2.23 | 0.96 | 0.84 | 1.72 |
72. | 31.62 | 2-Hydroxy-4-methoxy-benzaldehyde | 2135 | 2130 | - | - | 0.56 | 0.52 | 1.79 | - |
73. | 31.79 | Unidentified | 2139 | 1.57 | - | - | 0.70 | 0.96 | 0.63 | |
74. | 32.06 | Eugenol | 2151 | 2151 | - | - | - | 1.87 | - | - |
75. | 32.15 | Nonanoic acid | 2158 | 2158 | - | - | 0.92 | 0.45 | 0.63 | - |
76. | 32.25 | 4-ethyl- Phenol | 2164 | 2164 | - | - | - | 1.03 | - | - |
77. | 32.59 | 2-Methoxy-4-vinylphenol | 2181 | 2182 | 2.92 | - | - | - | - | - |
78. | 32.65 | Unidentified | 2154 | 4.56 | - | - | 0.58 | 0.71 | - | |
79. | 33.11 | Methyl hexadecanoate | 2208 | 2208 | 2.57 | - | - | 0.46 | - | - |
80. | 33.21 | Elemicin | 2215 | 2215 | - | - | - | 0.36 | 1.84 | - |
81. | 33.31 | Butyl myristate | 2229 | 2221 | - | - | 0.41 | - | - | - |
82. | 33.78 | Ethyl hexadecanoate | 2246 | 2247 | - | 1.72 | - | - | - | - |
83. | 34.07 | n-Decanoic acid | 2264 | 2264 | - | - | 0.58 | - | 0.55 | - |
84. | 34.41 | Unidentified | 2283 | 3.44 | - | - | 0.42 | 0.46 | - | |
85. | 34.68 | n-Tricosane | 2300 | 2298 | - | 2.72 | - | 0.98 | 0.54 | 0.33 |
86. | 35.12 | Dihydroactinidiolide | 2324 | 2322 | 1.6 | - | 0.73 | 0.66 | 0.52 | 0.34 |
87. | 35.4 | Octadecanal | 2343 | 2340 | - | - | - | 0.32 | - | - |
88. | 38.9 | 1-Hexadecanol | 2365 | 2369 | - | - | - | 3.48 | - | - |
89. | 36.08 | 4-Vinylphenol | 2379 | 2379 | 3 | - | - | 1.37 | 1.25 | - |
90. | 36.21 | Isoelemicin | 2390 | 2387 | 2.59 | - | - | - | 1.16 | - |
91. | 36.37 | n-Tetracosane | 2396 | - | 3.81 | - | - | 1.08 | 0.28 | |
92. | 36.86 | Butyl hexadecanoate | 2419 | 2428 | - | 7.21 | 3.29 | 0.59 | - | 0.37 |
93. | 37.67 | Dodecanoic acid | 2451 | 2453 | - | - | - | 0.43 | 1.57 | - |
94. | 38.02 | n-Pentacosane | 2469 | - | 4.86 | 0.52 | 0.82 | 1.77 | 0.51 | |
95. | 38.81 | Vanillin | 2545 | 2544 | 1.61 | - | - | - | - | - |
96. | 38.91 | Methyl linolenate | 2550 | 2551 | - | - | - | 0.97 | - | - |
97. | 39.40 | 1-Octadecanol | 2581 | 2585 | - | - | - | 7.89 | - | - |
98. | 39.65 | n-Hexacosane | 2597 | - | 4.71 | 0.46 | 0.41 | 1.97 | 0.34 | |
99. | 39.74 | Phytol | 2603 | 2603 | 7.49 | - | - | 3.15 | 0.88 | - |
100. | 40.20 | n-Butyl octadecanoate | 2632 | - | 2.13 | - | - | - | - | |
101. | 41.19 | Tetradecanoic acid | 2698 | 2697 | 9.92 | 4.53 | 1.47 | 0.15 | 1.95 | 1.72 |
102. | 42.68 | n-Octacosane | 2794 | - | 5.32 | 0.87 | 1.09 | - | 0.56 | |
103. | 44.13 | n-Hexadecanoic acid | 2899 | 2898 | - | 3.61 | 0.47 | 0.65 | 1.67 | 0.29 |
104. | 45.53 | n-Triacontane | 3000 | 2999 | 8.58 | 3.14 | 2.63 | 4.29 | 2.86 | 0.42 |
105. | 46.80 | n-Hentriacontane | 3100 | 3099 | - | 1.86 | - | - | 0.92 | - |
Total | 82.85 | 96.88 | 85.17 | 90.05 | 88.9 | 93.05 | ||||
Monoterpene hydrocarbons | - | 2.50 | 9.08 | 11.73 | 15.56 | 68.47 | ||||
Oxygenated monoterpene | 11.83 | 7.23 | 4.38 | 14.93 | 18.06 | 6.20 | ||||
Sesquiterpene hydrocarbons | 1.54 | - | 2.23 | 0.96 | 0.84 | 1.72 | ||||
Oxygenated sesquiterpene | - | - | - | - | - | - | ||||
Alcohols | 12.49 | 5.27 | 12.04 | 22.90 | 8.62 | 2.38 | ||||
Aldehydes and ketones | 15.61 | 16.31 | 30.56 | 20.81 | 11.38 | 5.20 | ||||
Fatty acids and their esters | 13.36 | 29.30 | 11.61 | 3.86 | 17.60 | 4.20 | ||||
Others | 69.48 | 87.15 | 69.48 | 62.43 | 53.90 | 16.66 |
Samples | PM (mmol TE/g Oil) | DPPH (mg TE/g Oil) | ABTS (mg TE/g Oil) | CUPRAC (mg TE/g Oil) | FRAP (mg TE/g Oil) | FIC (mg EDTAE/g Oil) |
---|---|---|---|---|---|---|
A. sieversianus | 0.85 ± 0.09 b | 9.11 ± 0.33 d | 51.66 ± 2.42 e | 56.80 ± 0.25 c | 30.65 ± 2.08 c | 36.01 ± 0.46 b |
A. mucidus | 1.57 ± 0.08 a | 15.95 ± 0.25 c | 91.54 ± 1.97 a | 72.46 ± 2.29 b | 38.11 ± 1.19 b | 18.11 ± 0.22 c |
A. macronyx | 0.95 ± 0.04 b | 24.12 ± 2.24 a | 82.65 ± 4.94 b | 80.28 ± 2.65 a | 49.02 ± 2.32 a | 38.00 ± 0.88 b |
A. lehmannianus | 1.31 ± 0.12 a | 21.90 ± 0.76 ab | 69.58 ± 5.04 c | 84.06 ± 0.57 a | 49.47 ± 0.13 a | 4.03 ± 0.41 d |
A. chiwensis | 0.97 ± 0.17 b | 18.62 ± 1.36 bc | 57.84 ± 0.15 de | 70.73 ± 2.22 b | 39.03 ± 1.63 b | 11.74 ± 0.97 c |
A. campylotrichus | 0.81 ± 0.07 b | 15.19 ± 1.53 c | 64.61 ± 1.74 cd | 67.78 ± 0.83 b | 39.27 ± 0.75 b | 51.69 ± 5.94 a |
Samples | AChE Inhibition (mg GALAE/g Oil) | BChE Inhibition (mg GALAE/g Oil) | Tyrosinase Inhibition (mg KAE/g Oil) | Amylase Inhibition (mmol ACAE/g Oil) |
---|---|---|---|---|
A. sieversianus | 4.55 ± 0.09 a | 3.61 ± 0.33 a | 118.20 ± 3.53 d | 0.84 ± 0.04 a,b |
A. mucidus | 4.48 ± 0.04 a | 3.61 ± 0.33 a | 124.75 ± 1.23 c | 0.90 ± 0.02 a |
A. macronyx | 4.01 ± 0.13 b | 1.04 ± 0.09 d | 132.14 ± 0.81 b | 0.89 ± 0.04 a,b |
A. lehmannianus | 4.51 ± 0.07 a | 3.12 ± 0.36 a,b | 138.42 ± 0.66 a | 0.95 ± 0.09 a |
A. chiwensis | 4.52 ± 0.07a | 2.79 ± 0.25 b,c | 132.79 ± 1.04 b | 0.76 ± 0.04 b |
A. campylotrichus | 4.11 ± 0.15 b | 2.08 ± 0.34 c | 131.80 ± 1.11 b | 0.85 ± 0.09 a,b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gad, H.A.; Mamadalieva, N.Z.; Böhmdorfer, S.; Rosenau, T.; Zengin, G.; Mamadalieva, R.Z.; Al Musayeib, N.M.; Ashour, M.L. GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity. Plants 2021, 10, 124. https://doi.org/10.3390/plants10010124
Gad HA, Mamadalieva NZ, Böhmdorfer S, Rosenau T, Zengin G, Mamadalieva RZ, Al Musayeib NM, Ashour ML. GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity. Plants. 2021; 10(1):124. https://doi.org/10.3390/plants10010124
Chicago/Turabian StyleGad, Haidy A., Nilufar Z. Mamadalieva, Stefan Böhmdorfer, Thomas Rosenau, Gokhan Zengin, Rano Z. Mamadalieva, Nawal M. Al Musayeib, and Mohamed L. Ashour. 2021. "GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity" Plants 10, no. 1: 124. https://doi.org/10.3390/plants10010124
APA StyleGad, H. A., Mamadalieva, N. Z., Böhmdorfer, S., Rosenau, T., Zengin, G., Mamadalieva, R. Z., Al Musayeib, N. M., & Ashour, M. L. (2021). GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity. Plants, 10(1), 124. https://doi.org/10.3390/plants10010124