Game of Tissues: How the Epidermis Thrones C. elegans Shape
Abstract
:1. The Birth of the Stars
2. Morphogenesis of the Epidermal Tissue
2.1. Dorsal Intercalation
2.2. Ventral Enclosure
Epidermal-Neuroblasts Axis
2.3. Elongation
2.3.1. 1st Stage of Elongation
2.3.2. 2nd Stage of Elongation
Epidermal-Muscle Axis
3. At Last
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hardin, J. Epidermal morphogenesis. WormBook 2005, 1–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chisholm, A.D.; Hsiao, T.I. The C. elegans epidermis as a model skin. I: development, patterning, and growth. Wiley Interdiscip. Rev. Dev. Biol. 2012. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, K.W.; Joshi, P.; Dymond, J.S.; Gorrepati, L.; Smith, H.; Krause, M.; Eisenmann, D.M. The Paired-box protein PAX-3 regulates the choice between lateral and ventral epidermal cell fates in C. elegans. Dev. Biol. 2016, 41, 191–207. [Google Scholar] [CrossRef]
- Koh, K.; Rothman, J.H. ELT-5 and ELT-6 are required continuously to regulate epidermal seam cell differentiation and cell fusion in C. elegans. Development 2001, 128, 2867–2880. [Google Scholar]
- Cassata, G.; Shemer, G.; Morandi, P.; Donhauser, R.; Podbilewicz, B.; Baumeister, R. ceh-16/engrailed patterns the embryonic epidermis of Caenorhabditis elegans. Development 2005, 132, 739–749. [Google Scholar] [CrossRef] [Green Version]
- Page, B.D.; Zhang, W.; Steward, K.; Blumenthal, T.; Priess, J.R. Elt-1, a Gata-like transcription factor, is required for epidermal cell fates in caenorhabditis elegans embryos. Genes Dev. 1997, 11, 1651–1661. [Google Scholar] [CrossRef] [Green Version]
- Quintin, S.; Michaux, G.; McMahon, L.; Gansmuller, A.; Labouesse, M. The Caenorhabditis elegans gene lin-26 can trigger epithelial differentiation without conferring tissue specificity. Dev. Biol. 2001, 235, 410–421. [Google Scholar] [CrossRef] [Green Version]
- Gilleard, J.S.; Shafi, Y.; Barry, J.D.; Mcghee, J.D. ELT-3: A Caenorhabditis elegans GATA Factor Expressed in the Embryonic Epidermis during Morphogenesis. Dev. Biol. 1999, 280, 265–280. [Google Scholar] [CrossRef] [Green Version]
- Yanai, I.; Baugh, L.R.; Smith, J.J.; Roehrig, C.; Shen-Orr, S.S.; Claggett, J.M.; Hill, A.A.; Slonim, D.K.; Hunter, C.P. Pairing of competitive and topologically distinct regulatory modules enhances patterned gene expression. Mol. Syst. Biol. 2008, 4. [Google Scholar] [CrossRef]
- Gilleard, J.S.; McGhee, J.D. Activation of Hypodermal Differentiation in the Caenorhabditis elegans Embryo by GATA Transcription Factors ELT-1 and ELT-3. Mol. Cell. Biol. 2001, 21, 2533–2544. [Google Scholar] [CrossRef] [Green Version]
- Quintin, S.; Labouesse, M. Multiple regulatory elements with spatially and temporally distinct activities control the expression of the epithelial differentiation gene lin-26 in C. elegans. Dev. Biol. 2004, 265, 478–490. [Google Scholar] [CrossRef] [Green Version]
- McMahon, L.; Legouis, R.; Vonesch, J.L.; Labouesse, M. Assembly of C. elegans apical junctions involves positioning and compaction by LET-413 and protein aggregation by the MAGUK protein DLG-1. J. Cell Sci. 2001, 114, 2265–2277. [Google Scholar]
- Pásti, G.; Labouesse, M. Epithelial junctions, cytoskeleton, and polarity. WormBook 2014, 1–35. [Google Scholar] [CrossRef] [Green Version]
- Hardin, J.; Lynch, A.; Loveless, T.; Pettitt, J. Cadherins and their partners in the nematode Worm Caenorhabditis elegans. Prog. Mol. Biol. Transl. Sci. 2013, 239–262. [Google Scholar] [CrossRef]
- Costa, M.; Raich, W.; Agbunag, C.; Leung, B.; Hardin, J.; Priess, J.R. A putative catenin-cadherin system mediates morphogenesis of the caenorhabditis elegans embryo. J. Cell Biol. 1998, 141, 297–308. [Google Scholar] [CrossRef]
- Raich, W.B.; Agbunag, C.; Hardin, J. Rapid epithelial-sheet sealing in the Caenorhabditis elegans embryo requires cadherin-dependent filopodial priming. Curr. Biol. 1999, 9, 1139–1147. [Google Scholar] [CrossRef] [Green Version]
- Köppen, M.; Simske, J.S.; Sims, P.A.; Firestein, B.L.; Hall, D.H.; Radice, A.D.; Rongo, C.; Hardin, J.D. Cooperative regulation of AJM-1 controls junctional integrity in Caenorhabditis elegans epithelia. Nat. Cell Biol. 2001, 3, 983–991. [Google Scholar] [CrossRef]
- Walck-Shannon, E.; Hardin, J. Another morphogenetic movement on the map: Charting dorsal intercalation in C. elegans. Worm 2016, 5, e1176664. [Google Scholar] [CrossRef] [Green Version]
- Walck-shannon, E.; Reiner, D.; Hardin, J. Polarized Rac-dependent protrusions drive epithelial intercalation in the embryonic epidermis of C. elegans. Development 2015, 142, 3549–3560. [Google Scholar] [CrossRef] [Green Version]
- Shindo, A. Models of convergent extension during morphogenesis. Wiley Interdiscip. Rev. Dev. Biol. 2018, 7, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Williams-Masson, E.M.; Heid, P.J.; Lavin, C.A.; Hardin, J. The Cellular Mechanism of Epithelial Rearrangement during Morphogenesis of the Caenorhabditis elegans Dorsal Hypodermis. Dev. Biol. 1998, 276, 263–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heid, P.J.; Raich, W.B.; Smith, R.; Mohler, W.A.; Gendreau, S.B.; Rothman, J.H.; Hardin, J. The zinc finger protein Die-1 is required for late events during epithelial cell rearrangement in C. elegans. Dev. Biol. 2001, 236, 165–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steven, R.; Kubiseski, T.J.; Zheng, H.; Kulkarni, S.; Mancillas, J.; Morales, A.R.; Hogue, C.W.V.; Pawson, T.; Culotti, J. UNC-73 Activates the Rac GTPase and Is Required for Cell and Growth Cone Migrations in C. elegans. Cell 1998, 92, 785–795. [Google Scholar] [CrossRef] [Green Version]
- Patel, F.B.; Bernadskaya, Y.Y.; Chen, E.; Jobanputra, A.; Pooladi, Z.; Freeman, K.L.; Gally, C.; Mohler, W.A.; Soto, M.C. The WAVE/SCAR complex promotes polarized cell movements and actin enrichment in epithelia during C. elegans embryogenesis. Dev. Biol. 2008, 324, 297–309. [Google Scholar] [CrossRef] [Green Version]
- Walck-shannon, E.; Lucas, B.; Chin-Sang, I.; Reiner, D.; Kumfer, K.; Cochran, H.; Bothfeld, W.; Hardin, J. CDC-42 Orients Cell Migration during Epithelial Intercalation in the Caenorhabditis elegans Epidermis. PLoS Genet. 2016, 11, 1–22. [Google Scholar] [CrossRef] [Green Version]
- Vuong-Brender, T.T.K.; Yang, X.; Labouesse, M. C. Elegans Embryonic Morphogenesis. Curr. Top. Dev. Biol. 2016, 116, 597–616. [Google Scholar] [CrossRef]
- Williams-masson, E.M.; Malik, A.N.; Hardin, J. An actin-mediated two-step mechanism is required for ventral enclosure of the C. elegans hypodermis. Development 1997, 124, 2889–2901. [Google Scholar]
- Gilbert, S.P.R.; Mullan, T.W.; Poole, R.J.; Woollard, A. Caudal-dependent cell positioning directs morphogenesis of the C. elegans ventral epidermis. Dev. Biol. 2020, 1–12. [Google Scholar] [CrossRef]
- Sawa, M.; Suetsugu, S.; Sugimoto, A.; Miki, H.; Yamamoto, M. Essential role of the C. elegans Arp2/3 complex in cell migration during ventral enclosure. J. Cell Sci. 2003, 5, 1505–1518. [Google Scholar] [CrossRef] [Green Version]
- Havrylenko, S.; Noguera, P.; Abou-ghali, M.; Manzi, J.; Pollard, T.D. WAVE binds Ena/VASP for enhanced Arp2/3 complex–based actin assembly. Mol. Biol. Cell 2015, 26, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Ouellette, M.H.; Martin, E.; Lacoste-Caron, G.; Hamiche, K.; Jenna, S. Spatial control of active CDC-42 during collective migration of hypodermal cells in Caenorhabditis elegans. J. Mol. Cell Biol. 2016, 8, 313–327. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zilberman, Y.; Abrams, J.; Anderson, D.C.; Nance, J. Cdc42 regulates junctional actin but not cell polarization in the Caenorhabditis elegans epider. J. Cell Biol. 2017, 216, 3729–3744. [Google Scholar] [CrossRef] [PubMed]
- Fotopoulos, N.; Wernike, D.; Chen, Y.; Makil, N.; Marte, A.; Piekny, A. Caenorhabditis elegans anillin (ani-1) regulates neuroblast cytokinesis and epidermal morphogenesis during embryonic development. Dev. Biol. 2013, 383, 61–74. [Google Scholar] [CrossRef] [PubMed]
- Wernike, D.; Chen, Y.; Mastronardi, K.; Makil, N.; Piekny, A. Mechanical forces drive neuroblast morphogenesis and are required for epidermal closure. Dev. Biol. 2016, 412, 261–277. [Google Scholar] [CrossRef]
- Wallace, A.G.; Raduwan, H.; Carlet, J.; Soto, M.C. The RhoGAP HUM-7/Myo9 integrates signals to modulate RHO-1/RhoA during embryonic morphogenesis in Caenorhabditis elegans. Development 2018, 145, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Tsur, A.; Bening Abu-Shach, U.; Broday, L. ULP-2 SUMO Protease Regulates E-Cadherin Recruitment to Adherens Junctions. Dev. Cell 2015, 35, 63–77. [Google Scholar] [CrossRef] [Green Version]
- Choi, H.J.; Loveless, T.; Lynch, A.M.; Bang, I.; Hardin, J.; Weis, W.I. A Conserved Phosphorylation Switch Controls the Interaction between Cadherin and b -Catenin In Vitro and In Vivo. Dev. Cell. 2015, 82–93. [Google Scholar] [CrossRef] [Green Version]
- Maiden, S.L.; Harrison, N.; Keegan, J.; Cain, B.; Lynch, A.M.; Pettitt, J.; Hardin, J. Specific Conserved C-terminal Amino Acids of Caenorhabditis elegans HMP-1/a-Catenin Modulate F-actin Binding Independently of Vinculin. J. Biol. Chem. 2013, 288, 5694–5706. [Google Scholar] [CrossRef] [Green Version]
- Kwiatkowski, A.V.; Maiden, S.L.; Pokutta, S.; Choi, H.J.; Benjamin, J.M.; Lynch, A.M.; Nelson, W.J.; Weis, W.I.; Hardin, J. In vitro and in vivo reconstitution of the cadherin–catenin-actin complex from Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2010, 107, 14591–14596. [Google Scholar] [CrossRef] [Green Version]
- Kang, H.; Bang, I.; Jin, K.S.; Lee, B.; Lee, J.; Shao, X.; Heier, J.A.; Kwiatkowski, A.V.; Nelson, W.J.; Hardin, J.; et al. Structural and functional characterization of Caenorhabditis elegans a-catenin reveals constitutive binding to b-catenin and F-actin. J. Biol. Chem. 2017, 292, 7077–7086. [Google Scholar] [CrossRef] [Green Version]
- Nance, J. Gastrulation in C. elegans. WormBook 2005, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Assembly, C.; Shah, P.K.; Tanner, M.R.; Kovacevic, I.; Perkins, T.J.; Bao, Z. PCP and SAX-3/Robo Pathways Cooperate to Regulate Convergent Extension-Based Nerve Cord Assembly in C. elegans. Dev. Cell 2017, 41, 195–203. [Google Scholar] [CrossRef] [Green Version]
- Soto, M.C. Sequential Rosettes Drive C. elegans Ventral Nerve Cord Assembly. Dev. Cell 2017, 41, 121–122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kania, A.; Klein, R. Mechanisms of ephrin-Eph signalling in development, physiology and disease. Nat. Rev. Mol. Cell Biol. 2016, 17, 240–256. [Google Scholar] [CrossRef] [PubMed]
- Giurumescu, C.A.; Kang, S.; Planchon, T.A.; Betzig, E.; Bloomekatz, J.; Yelon, D.; Cosman, P.; Chisholm, A.D. Quantitative semi-automated analysis of morphogenesis with single-cell resolution in complex embryos. Development 2012, 139, 4271–4279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- George, S.E.; Simokat, K.; Hardin, J.; Chisholm, A.D. The VAB-1 Eph receptor tyrosine kinase functions in neural and epithelial morphogenesis in C. elegans. Cell 1998, 92, 633–643. [Google Scholar] [CrossRef] [Green Version]
- Chin-Sang, I.D.; George, S.E.; Ding, M.; Moseley, S.L.; Lynch, A.S.; Chisholm, A.D. The ephrin VAB-2/EFN-1 functions in neuronal signaling to regulate epidermal morphogenesis in C. elegans. Cell 1999, 99, 781–790. [Google Scholar] [CrossRef] [Green Version]
- Bernadskaya, Y.Y.; Wallace, A.; Nguyen, J.; Mohler, W.A.; Soto, M.C. UNC-40/DCC, SAX-3/Robo, and VAB-1/Eph Polarize F-Actin during Embryonic Morphogenesis by Regulating the WAVE/SCAR Actin Nucleation Complex. PLoS Genet. 2012, 8. [Google Scholar] [CrossRef] [Green Version]
- Ghenea, S.; Boudreau, J.R.; Lague, N.P.; Chin-Sang, I.D. The VAB-1 Eph receptor tyrosine kinase and SAX-3/Robo neuronal receptors function together during C. elegans embryonic morphogenesis. Development 2005, 132, 3679–3690. [Google Scholar] [CrossRef] [Green Version]
- Ikegami, R.; Simokat, K.; Zheng, H.; Brown, L.; Garriga, G.; Hardin, J.; Culotti, J. Semaphorin and Eph Receptor Signaling Guide a Series of Cell Movements for Ventral Enclosure in C. elegans. Curr. Biol. 2012, 22, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Chin-Sang, I.D.; Moseley, S.L.; Ding, M.; Harrington, R.J.; George, S.E.; Chisholm, A.D. The divergent C. elegans ephrin EFN-4 functions in embryonic morphogenesis in a pathway independent of the VAB-1 Eph receptor. Development 2002, 129, 5499–5510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Harrington, R.J.; Gutch, M.J.; Hengartner, M.O.; Tonks, N.K.; Chisholm, A.D. The C. elegans LAR-like receptor tyrosine phosphatase PTP-3 and VAB-1 Eph receptor tyrosine kinase have partly redundant functions in morphogenesis. Development 2002, 129, 2141–2153. [Google Scholar] [CrossRef] [PubMed]
- Mohler, W.A.; Shemer, G.; Del Campo, J.J.; Valansi, C.; Opoku-Serebuoh, E.; Scranton, V.; Assaf, N.; White, J.G.; Podbilewicz, B. The type 1 membrane protein EFF-1 is essential for development cell fusion. Dev. Cell 2002, 2, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Vuong-Brender, T.T.K.; Ben Amar, M.; Pontabry, J.; Labouesse, M. The interplay of stiffness and force anisotropies drives embryo elongation. Elife 2017, 6, 1–49. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, Y.; Zhu, Z.; Ou, G. WASP-Arp2/3-dependent actin polymerization influences fusogen localization during cell-cell fusion in Caenorhabditis elegans embryos. Biol. Open 2017, 1324–1328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smurova, K.; Podbilewicz, B. RAB-5- and DYNAMIN-1-Mediated Endocytosis of EFF-Fusogen Controls Cell-Cell Fusion. Cell Rep. 2016, 14, 1517–1527. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Labouesse, M. The Making of Hemidesmosome Structures In Vivo. Dev. Dyn. 2010, 239, 1465–1476. [Google Scholar] [CrossRef]
- Hresko, M.C.; Schriefer, L.A.; Shrimankar, P.; Waterston, R.H. Myotactin, a novel Hypodermal protein involved in muscle-cell adhesion in Caenorhabditis elegans. J. Cell Biol. 1999, 146, 659–672. [Google Scholar] [CrossRef] [Green Version]
- Bercher, M.; Wahl, J.; Vogel, B.E.; Lu, C.; Hedgecock, E.M.; Hall, D.H.; Plenefisc, J.D. mua-3, a gene required for mechanical tissue integrity in Caenorhabditis elegans, encodes a novel transmembrane protein of epithelial attachment complexes. J. Cell Biol. 2001, 154, 415–426. [Google Scholar] [CrossRef] [Green Version]
- Hong, L.; Elbl, T.; Ward, J.; Franzini-Armstrong, C.; Rybicka, K.K.; Gatewood, B.K.; Baillie, D.L.; Bucher, E.A. MUP-4 is a novel transmembrane protein with functions in epithelial cell adhesion in Caenorhabditis elegans. J. Cell Biol. 2001, 154, 403–414. [Google Scholar] [CrossRef] [Green Version]
- Fu, R.; Jiang, X.; Huang, Z.; Zhang, H. The spectraplakins of Caenorhabditis elegans: Cytoskeletal crosslinkers and beyond. Semin Cell Dev. Biol. 2017, 69, 58–68. [Google Scholar] [CrossRef] [PubMed]
- Bosher, J.M.; Hahn, B.S.; Legouis, R.; Sookhareea, S.; Weimer, R.M.; Gansmuller, A.; Chisholm, A.D.; Rose, A.M.; Bessereau, J.L.; Labouesse, M. The Caenorhabditis elegans vab-10 spectraplakin isoforms protect the epidermis against internal and external forces. J. Cell Biol. 2003, 161, 757–768. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillard, G.; Nicolle, O.; Brugiere, T.; Prigent, S.; Pinot, M.; Michaux, G. Force Transmission between Three Tissues Controls Bipolar Planar Polarity Establishment and Report Force Transmission between Three Tissues Controls Bipolar Planar Polarity Establishment. Curr. Biol. 2019, 29, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Gotenstein, J.R.; Swale, R.E.; Fukuda, T.; Wu, Z.; Giurumescu, C.A.; Goncharov, A.; Gin, Y.; Chisholm, A.D. The C. elegans peroxidasin PXN-2 is essential for embryonic morphogenesis and inhibits adult axon regeneration. Development 2010, 3613, 3603–3613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Spike, C.A.; Davies, A.G.; Shaw, J.E.; Herman, R.K. MEC-8 regulates alternative splicing of unc-52 transcripts in C. elegans hypodermal cells. Development 2002, 129, 4999–5008. [Google Scholar]
- Gupta, M.C.; Graham, P.L.; Kramer, J.M. Characterization of α1(IV) collagen mutations in Caenorhabditis elegans and the effects of α1 and α2(IV) mutations on type IV collagen distribution. J. Cell Biol. 1997, 137, 1185–1196. [Google Scholar] [CrossRef]
- Woo, W.; Berry, E.C.; Hudson, M.L.; Swale, R.E.; Goncharov, A.; Chisholm, A.D. The C. elegans F-spondin family protein SPON-1 maintains cell adhesion in neural and non-neural tissues. Development 2008, 2756, 2747–2756. [Google Scholar] [CrossRef] [Green Version]
- Rogalski, T.M.; Mullen, G.P.; Bush, J.A.; Gilchrist, E.J.; Moerman, D.G. UNC-52/perlecan isoform diversity and function in Caenorhabditis elegans. Biochem. Soc. 2001, 29, 171–176. [Google Scholar] [CrossRef]
- Labouesse, M. Role of the extracellular matrix in epithelial morphogenesis: A view from C. elegans. Organogenesis 2012, 8, 65–70. [Google Scholar] [CrossRef] [Green Version]
- Mancuso, V.P.; Parry, J.M.; Storer, L.; Poggioli, C.; Nguyen, K.C.Q.; Hall, D.H.; Sundaram, M.V. Extracellular leucine-rich repeat proteins are required to organize the apical extracellular matrix and maintain epithelial junction integrity in C. elegans. Development 2012, 139, 979–990. [Google Scholar] [CrossRef] [Green Version]
- Vuong-Brender, T.T.K.; Suman, S.K.; Labouesse, M. The apical ECM preserves embryonic integrity and distributes mechanical stress during morphogenesis. Development 2017, 144, 4336–4349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, M.; Yochem, J.; Krieg, M.; Calixto, A.; Heiman, M.G.; Kuzmanov, A.; Meli, V.; Chalfie, M.; Goodman, M.B.; Shaham, S.; et al. FBN-1, a fibrillin-related protein, is required for resistance ofthe epidermis to mechanical deformation during c. Elegans embryogenesis. Elife 2015, 2015, 1–71. [Google Scholar] [CrossRef]
- Forman-Rubinsky, R.; Cohen, J.D.; Sundaram, M.V. Lipocalins are required for apical extracellular matrix organization and remodeling in Caenorhabditis elegans. Genetics 2017, 207, 625–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, J.D.; Flatt, K.M.; Schroeder, N.E.; Sundaram, M.V. Epithelial shaping by diverse apical extracellular matrices requires the nidogen domain protein DEX-1 in Caenorhabditis elegans. Genetics 2019, 211, 185–200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Priess James, R.; Hirsch, D.I. Caenorhabditis elegans Morphogenesis: The Role of the Cytoskeleton in Elongation of the Embryo. Dev. Biol. 1986, 173, 156–173. [Google Scholar] [CrossRef]
- Piekny, A.J.; Johnson, J.F.; Cham, G.D.; Mains, P.E. The Caenorhabditis elegans nonmuscle myosin genes nmy-1 and nmy-2 function as redundant components of the let-502/Rho- binding kinase and mel-11/myosin phosphatase pathway during embryonic morphogenesis. Development 2003, 130, 5695–5704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gally, C. Myosin II regulation during C. elegans embryonic elongation: LET-502/ROCK, MRCK-1 and PAK-1, three kinases with different roles. Development 2009, 3119, 3109–3119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wissmann, A.; Mcghee, J.D.; Mains, P.E. Caenorhabditis elegans LET-502 is related to Rho-binding kinases and human myotonic dystrophy kinase and interacts genetically with a homolog of the regulatory subunit of smooth muscle myosin phosphatase to affect cell shape. Genes Dev. 1997, 11, 409–422. [Google Scholar] [CrossRef] [Green Version]
- Chan, B.G.; Rocheleau, S.K.; Smit, R.B.; Mains, P.E. The Rho guanine exchange factor RHGF-2 acts through the Rho-binding kinase LET-502 to mediate embryonic elongation in. Dev. Biol. 2015, 405, 250–259. [Google Scholar] [CrossRef] [Green Version]
- Diogon, M.; Wissler, F.; Quintin, S.; Nagamatsu, Y.; Sookhareea, S.; Landmann, F.; Hutter, H.; Vitale, N.; Labouesse, M. The RhoGAP RGA-2 and LET-502/ROCK achieve a balance of actomyosin-dependent forces in C. elegans epidermis to control morphogenesis. Development 2007, 134, 2469–2479. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.; Harel, S.; Nkengfac, B.; Hamiche, K.; Neault, M.; Jenna, S. pix-1 Controls Early Elongation in Parallel with mel-11 and let-502 in Caenorhabditis elegans. PLoS ONE 2014, 9, e94684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wissmann, A.; Ingles, J.; Mains, P.E. The Caenorhabditis elegans mel-11 Myosin Phosphatase Regulatory Subunit Affects Tissue Contraction in the Somatic Gonad and the Embryonic Epidermis and Genetically Interacts with the Rac Signaling Pathway. Dev. Biol. 1999, 127, 111–127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, L.; Tran, T.; Hu, S.; Cramer, T.; Komuniecki, R.; Steven, R.M. RHGF-2 Is an Essential Rho-1 Specific RhoGEF that binds to the Multi-PDZ Domain Scaffold Protein MPZ-1 in Caenorhabditis elegans. PLoS ONE 2012, 7, e31499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vuong-Brender, T.T.K.; Boutillon, A.; Rodriguez, D.; Lavilley, V.; Labouesse, M. HMP-1/α-catenin promotes junctional mechanical integrity during morphogenesis. PLoS ONE 2018, 13, e0193279. [Google Scholar] [CrossRef] [Green Version]
- Martin, E.; Ouellette, M.H.; Jenna, S. Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes. J. Cell Biol. 2016, 215, 483–498. [Google Scholar] [CrossRef] [Green Version]
- Zaidel-Bar, R.; Joyce, M.J.; Lynch, A.M.; Witte, K.; Audhya, A.; Hardin, J. The F-BAR domain of SRGP-1 facilitates cell-cell adhesion during C. elegans morphogenesis. J. Cell Biol. 2010, 191, 761–769. [Google Scholar] [CrossRef] [Green Version]
- Quintin, S.; Wang, S.; Pontabry, J.; Bender, A.; Robin, F.; Hyenne, V.; Landmann, F.; Gally, C.; Oegema, K.; Labouesse, M. Non-centrosomal epidermal microtubules act in parallel to LET-502/ROCK to promote C. elegans elongation (doi:10.1242/dev.126615) (Development (Cambridge, England) (2016) 143 1 (160–173) PII: dev167262). Development 2016, 145, 160–173. [Google Scholar] [CrossRef] [Green Version]
- Gillard, G.; Shafaq-zadah, M.; Nicolle, O.; Damaj, R.; Pe, J. Control of E-cadherin apical localisation and morphogenesis by a SOAP-1/AP-1/clathrin pathway in C. elegans epidermal cells. Development 2015, 142, 1684–1694. [Google Scholar] [CrossRef] [Green Version]
- Hresko, M.C.; Williams, B.D.; Wareston, R.H. Assembly of Body Wall muscle and muscle Cell attachment structures in Caenorhabditis elegans. J. Cell Biol. 1994, 124, 491–506. [Google Scholar] [CrossRef]
- Waterston, R.H. The minor myosin heavy chain, mhcA, of Caenorhabditis elegans is necessary for the initiation of thick filament assembly. EMBO J. 1989, 8, 3429–3436. [Google Scholar] [CrossRef] [PubMed]
- Sulston, J.E.; Schierenberg, E. The Embryonic Cell Lineage of the Nematode Caenorhabditis elegans. Dev. Biol. 1983, 119, 64–119. [Google Scholar] [CrossRef]
- Gieseler, K.; Qadota, H.; Benian, G.M. Development, Structure, and Maintenance of C. elegans Body Wall Muscle. WormBook 2017, 2017, 1–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, B.D.; Waterston, R.H. Genes critical for muscle development and function in Caenorhabditis elegans identified through lethal mutations. J. Cell Biol. 1994, 124, 475–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barstead, R.J.; Waterston, R.H. The Basal Component of the Nematode Dense-body Is Vinculin. J. Biol. Chem. 1989, 264, 10177–10185. [Google Scholar] [PubMed]
- Barstead, R.J.; Waterston, R.H. Vinculin Is Essential for Muscle Function in the Nematode. J. Cell Biol. 1991, 114, 715–724. [Google Scholar] [CrossRef]
- Tm, R.; Gp, M.; Mm, G.; Bd, W.; Dg, M. The unc-112 gene in Caenorhabditis elegans encodes a novel component of cell-matrix adhesion structures required for integrin localization in the muscle cell membrane. J. Cell Biol. 2000, 150, 253–264. [Google Scholar] [CrossRef]
- Gettner, S.N.; Kenyon, C.; Reichardt, L.F. Characterization of Bpat-3 heterodimers, a family of essential itegrin receptors in C. elegans. J. Cell Biol. 1995, 129, 1127–1141. [Google Scholar] [CrossRef] [Green Version]
- Lardennois, A.; Pásti, G.; Ferraro, T.; Llense, F.; Mahou, P.; Pontabry, J.; Rodriguez, D.; Kim, S.; Ono, S.; Beaurepaire, E.; et al. An actin-based viscoplastic lock ensures progressive body-axis elongation. Nature 2019, 573, E4. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Landmann, F.; Zahreddine, H.; Rodriguez, D.; Koch, M.; Labouesse, M. A tension-induced mechanotransduction pathway promotes epithelial morphogenesis. Nature 2011, 471, 99–103. [Google Scholar] [CrossRef]
- Norman, K.R.; Moerman, D.G. A spectrin is essential for morphogenesis and body wall muscle formation in Caenorhabditis elegans. J. Cell Biol. 2000, 665–677. [Google Scholar] [CrossRef] [Green Version]
- Vanneste, C.A.; Pruyne, D.; Mains, P.E. The role of the formin gene fhod-1 in C. elegans embryonic morphogenesis. Worm 2013. [Google Scholar] [CrossRef] [PubMed]
- Suman, S.K.; Daday, C.; Ferraro, T.; Vuong-Brender, T.; Tak, S.; Quintin, S.; Robin, F.; Grater, F.; Labouesse, M. The plakin domain of C. elegans VAB-10/plectin acts as a hub in a mechanotransduction pathway to promote morphogenesis. Development 2019, 146, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaminsky, R.; Denison, C.; Bening-abu-shach, U.; Chisholm, A.D.; Gygi, S.P.; Broday, L. SUMO regulates the assembly and function of a cytoplasmic intermediate filament protein in C. elegans. Dev. Cell 2009, 17, 724–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moerman, D.G.; Hutter, H.; Mullen, G.P.; Schnabel, R. Cell Autonomous Expression of Perlecan and Plasticity of Cell Shape in Embryonic Muscle of Caenorhabditis elegans. Dev. Biol. 1996, 173, 228–242. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fu, R.; Zhu, Y.; Jiang, X.; Li, Y.; Zhu, M.; Dong, M.; Huang, Z.; Wang, C.; Labouesse, M.; Zhang, H. CCAR-1 affects hemidesmosome biogenesis by regulating unc-52/perlecan alternative splicing in the C. elegans epidermis. J. Cell Sci. 2018, 131, jcs214379. [Google Scholar] [CrossRef] [Green Version]
- Gotenstein, J.R.; Koo, C.C.; Ho, T.W.; Chisholm, A.D. Genetic suppression of basement membrane defects in caenorhabditis elegans by gain of function in extracellular matrix and cell-matrix attachment genes. Genetics 2018, 208, 1499–1512. [Google Scholar] [CrossRef] [Green Version]
- Woo, W.; Goncharov, A.; Jin, Y.; Chisholm, A.D. Intermediate filaments are required for C. elegans epidermal elongation. Dev. Biol. 2004, 267, 216–229. [Google Scholar] [CrossRef] [Green Version]
- Gatewood, B.K.; Buched, E.A. The mup-4 Locus in Caenorhabditis elegans Is Essential for Hypodermal Integrity, Organismal Morphogenesis and Embryonic Body Wall Muscle Position. Genetics 1997, 183, 165–183. [Google Scholar]
- Plenefisch, J.D.; Zhu, X.; Hedgecock, E.M. Fragile skeletal muscle attachments in dystrophic mutants of Caenorhabditis elegans: isolation and characterization of the mua genes. Development. 2000, 1207, 1197–1207. [Google Scholar]
- Page, A.P.; Johnstone, I.L. The cuticle. WormBook 2007, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Van der Keyl, H.; Kim, H.; Espey, R.; Oke, C.V.; Edwards, M.K. Caenorhabditis elegans sqt-3 mutants have mutations in the col-1 collagen gene. Dev. Dyn. 1994, 94, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Novelli, J.; Ahmed, S.; Hodgkin, J. Gene Interactions in Caenorhabditis elegans Define DPY-31 as a as Its Predicted Major Target. Genetics 2004, 1259–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carvalho, C.A.; Broday, L. Game of Tissues: How the Epidermis Thrones C. elegans Shape. J. Dev. Biol. 2020, 8, 7. https://doi.org/10.3390/jdb8010007
Carvalho CA, Broday L. Game of Tissues: How the Epidermis Thrones C. elegans Shape. Journal of Developmental Biology. 2020; 8(1):7. https://doi.org/10.3390/jdb8010007
Chicago/Turabian StyleCarvalho, Cátia A., and Limor Broday. 2020. "Game of Tissues: How the Epidermis Thrones C. elegans Shape" Journal of Developmental Biology 8, no. 1: 7. https://doi.org/10.3390/jdb8010007
APA StyleCarvalho, C. A., & Broday, L. (2020). Game of Tissues: How the Epidermis Thrones C. elegans Shape. Journal of Developmental Biology, 8(1), 7. https://doi.org/10.3390/jdb8010007