The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Genetics
2.2. Plasmid Construction
2.3. Fluorescence Microscopy
2.4. Statistics
2.5. Data Availability
3. Results
3.1. Isolation of a VD13-Selective Marker
3.2. VD13 Morphology is Dependent on Wnt-Signaling
3.3. Expression of lhIs97 in VD13 is Dependent on Certain Wnt Pathway Genes
3.4. egl-5 is Necessary for lhIs97 Expression in VD13
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramón y Cajal, S. Histologie du Système Nerveux de l’homme & des Vertébrés; Consejo Superior de Investigaciones Científicas, Instituto Ramón y Cajal: Madrid, Spain, 1909. [Google Scholar]
- Marquardt, T.; Pfaff, S.L. Cracking the transcriptional code for cell specification in the neural tube. Cell 2001, 106, 651–654. [Google Scholar] [CrossRef] [Green Version]
- Mizuguchi, R.; Sugimori, M.; Takebayashi, H.; Kosako, H.; Nagao, M.; Yoshida, S.; Nabeshima, Y.; Shimamura, K.; Nakafuku, M. Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 2001, 31, 757–771. [Google Scholar] [CrossRef] [Green Version]
- Landmesser, L. The development of motor projection patterns in the chick hind limb. J. Physiol. 1978, 284, 391–414. [Google Scholar] [CrossRef] [PubMed]
- Landmesser, L. The distribution of motoneurones supplying chick hind limb muscles. J. Physiol. 1978, 284, 371–389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osseward, P.J., 2nd; Pfaff, S.L. Cell type and circuit modules in the spinal cord. Curr. Opin. Neurobiol. 2019, 56, 175–184. [Google Scholar] [CrossRef]
- Cave, C.; Sockanathan, S. Transcription factor mechanisms guiding motor neuron differentiation and diversification. Curr. Opin. Neurobiol. 2018, 53, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dasen, J.S.; Jessell, T.M. Hox networks and the origins of motor neuron diversity. Curr. Top. Dev. Biol. 2009, 88, 169–200. [Google Scholar] [CrossRef] [PubMed]
- McIntire, S.L.; Jorgensen, E.; Horvitz, H.R. Genes required for GABA function in Caenorhabditis elegans. Nature 1993, 364, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Jorgensen, E.; Hartwieg, E.; Horvitz, H.R. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J. Neurosci. 1999, 19, 539–548. [Google Scholar] [CrossRef] [Green Version]
- McIntire, S.L.; Reimer, R.J.; Schuske, K.; Edwards, R.H.; Jorgensen, E.M. Identification and characterization of the vesicular GABA transporter. Nature 1997, 389, 870–876. [Google Scholar] [CrossRef]
- Hallam, S.; Singer, E.; Waring, D.; Jin, Y. The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development 2000, 127, 4239–4252. [Google Scholar] [PubMed]
- Jin, Y.; Hoskins, R.; Horvitz, H.R. Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 1994, 372, 780–783. [Google Scholar] [CrossRef] [PubMed]
- Eastman, C.; Horvitz, H.R.; Jin, Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J. Neurosci. 1999, 19, 6225–6234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melkman, T.; Sengupta, P. Regulation of chemosensory and GABAergic motor neuron development by the C. elegans Aristaless/Arx homolog alr-1. Development 2005, 132, 1935–1949. [Google Scholar] [CrossRef] [Green Version]
- Topalidou, I.; Chalfie, M. Shared gene expression in distinct neurons expressing common selector genes. Proc. Natl. Acad. Sci. USA 2011, 108, 19258–19263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, H.M.; Walthall, W.W. UNC-55, an orphan nuclear hormone receptor, orchestrates synaptic specificity among two classes of motor neurons in Caenorhabditis elegans. J. Neurosci. 1998, 18, 10438–10444. [Google Scholar] [CrossRef] [Green Version]
- Campbell, R.F.; Walthall, W.W. Meis/UNC-62 isoform dependent regulation of CoupTF-II/UNC-55 and GABAergic motor neuron subtype differentiation. Dev. Biol. 2016, 419, 250–261. [Google Scholar] [CrossRef]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar]
- Josephson, M.P.; Chai, Y.; Ou, G.; Lundquist, E.A. EGL-20/Wnt and MAB-5/Hox Act Sequentially to Inhibit Anterior Migration of Neuroblasts in C. elegans. PLoS ONE 2016, 11, e0148658. [Google Scholar] [CrossRef] [Green Version]
- Durbin, R.M. Studies on the Development and Organisation of the Nervous System of Caenorhabditis Elegans; Kings College: Cambridge, UK, 1987. [Google Scholar]
- White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1986, 314, 1–340. [Google Scholar]
- Howell, K.; White, J.G.; Hobert, O. Spatiotemporal control of a novel synaptic organizer molecule. Nature 2015, 523, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Hallam, S.J.; Jin, Y. lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans. Nature 1998, 395, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Ackley, B.D. Wnt signaling and planar cell polarity genes regulate axon guidance along the anteroposterior axis in C. elegans. Dev. Neurobiol. 2013, 74, 781–796. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakao, F.; Hudson, M.L.; Suzuki, M.; Peckler, Z.; Kurokawa, R.; Liu, Z.; Gengyo-Ando, K.; Nukazuka, A.; Fujii, T.; Suto, F.; et al. The PLEXIN PLX-2 and the ephrin EFN-4 have distinct roles in MAB-20/Semaphorin 2A signaling in Caenorhabditis elegans morphogenesis. Genetics 2007, 176, 1591–1607. [Google Scholar] [CrossRef] [Green Version]
- Huang, X.; Cheng, H.J.; Tessier-Lavigne, M.; Jin, Y. MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion. Neuron 2002, 34, 563–576. [Google Scholar] [CrossRef] [Green Version]
- Gerstein, M.B.; Lu, Z.J.; Van Nostrand, E.L.; Cheng, C.; Arshinoff, B.I.; Liu, T.; Yip, K.Y.; Robilotto, R.; Rechtsteiner, A.; Ikegami, K.; et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 2010, 330, 1775–1787. [Google Scholar] [CrossRef] [Green Version]
- Maro, G.S.; Klassen, M.P.; Shen, K. A beta-catenin-dependent Wnt pathway mediates anteroposterior axon guidance in C. elegans motor neurons. PLoS ONE 2009, 4, e4690. [Google Scholar] [CrossRef] [Green Version]
- Harterink, M.; Kim, D.H.; Middelkoop, T.C.; Doan, T.D.; van Oudenaarden, A.; Korswagen, H.C. Neuroblast migration along the anteroposterior axis of C. elegans is controlled by opposing gradients of Wnts and a secreted Frizzled-related protein. Development 2011, 138, 2915–2924. [Google Scholar] [CrossRef] [Green Version]
- Huarcaya Najarro, E.; Ackley, B.D. C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons. Dev. Biol. 2013, 377, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Hobert, O. Terminal Selectors of Neuronal Identity. Curr. Top. Dev. Biol. 2016, 116, 455–475. [Google Scholar] [CrossRef]
- Zheng, C.; Diaz-Cuadros, M.; Chalfie, M. Hox Genes Promote Neuronal Subtype Diversification through Posterior Induction in Caenorhabditis elegans. Neuron 2015, 88, 514–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Genotype | N | C Shape | Polarity (T/P) | Outgrowth (N/O) |
---|---|---|---|---|
wild type (lhIs97) | 161 | 82% | 9% | 9% |
lin-44(n1792) | 88 | 77% | 18% | 5% |
(P = 0.0446) | (P = 0.3135) | |||
egl-20(gk453010) | 159 | 64% | 23% | 14% |
(P = 0.003) | (P = 0.0769) | |||
lin-17(n671) | 40 | 48% | 50% | 3% |
(P < 0.0001) | (P = 0.6961) | |||
mig-5(rh97) | 85 | 36% | 52% | 12% |
(P < 0.0001) | (P = 0.0339) | |||
dsh-1(ok1445) | 177 | 24% | 71% | 5% |
(P < 0.0001) | (P = 0.2113) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurland, M.; O’Meara, B.; Tucker, D.K.; Ackley, B.D. The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling. J. Dev. Biol. 2020, 8, 5. https://doi.org/10.3390/jdb8010005
Kurland M, O’Meara B, Tucker DK, Ackley BD. The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling. Journal of Developmental Biology. 2020; 8(1):5. https://doi.org/10.3390/jdb8010005
Chicago/Turabian StyleKurland, Meagan, Bryn O’Meara, Dana K. Tucker, and Brian D. Ackley. 2020. "The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling" Journal of Developmental Biology 8, no. 1: 5. https://doi.org/10.3390/jdb8010005
APA StyleKurland, M., O’Meara, B., Tucker, D. K., & Ackley, B. D. (2020). The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling. Journal of Developmental Biology, 8(1), 5. https://doi.org/10.3390/jdb8010005