The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling
Abstract
1. Introduction
2. Materials and Methods
2.1. Strains and Genetics
2.2. Plasmid Construction
2.3. Fluorescence Microscopy
2.4. Statistics
2.5. Data Availability
3. Results
3.1. Isolation of a VD13-Selective Marker
3.2. VD13 Morphology is Dependent on Wnt-Signaling
3.3. Expression of lhIs97 in VD13 is Dependent on Certain Wnt Pathway Genes
3.4. egl-5 is Necessary for lhIs97 Expression in VD13
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ramón y Cajal, S. Histologie du Système Nerveux de l’homme & des Vertébrés; Consejo Superior de Investigaciones Científicas, Instituto Ramón y Cajal: Madrid, Spain, 1909. [Google Scholar]
- Marquardt, T.; Pfaff, S.L. Cracking the transcriptional code for cell specification in the neural tube. Cell 2001, 106, 651–654. [Google Scholar] [CrossRef]
- Mizuguchi, R.; Sugimori, M.; Takebayashi, H.; Kosako, H.; Nagao, M.; Yoshida, S.; Nabeshima, Y.; Shimamura, K.; Nakafuku, M. Combinatorial roles of olig2 and neurogenin2 in the coordinated induction of pan-neuronal and subtype-specific properties of motoneurons. Neuron 2001, 31, 757–771. [Google Scholar] [CrossRef]
- Landmesser, L. The development of motor projection patterns in the chick hind limb. J. Physiol. 1978, 284, 391–414. [Google Scholar] [CrossRef] [PubMed]
- Landmesser, L. The distribution of motoneurones supplying chick hind limb muscles. J. Physiol. 1978, 284, 371–389. [Google Scholar] [CrossRef] [PubMed]
- Osseward, P.J., 2nd; Pfaff, S.L. Cell type and circuit modules in the spinal cord. Curr. Opin. Neurobiol. 2019, 56, 175–184. [Google Scholar] [CrossRef]
- Cave, C.; Sockanathan, S. Transcription factor mechanisms guiding motor neuron differentiation and diversification. Curr. Opin. Neurobiol. 2018, 53, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Dasen, J.S.; Jessell, T.M. Hox networks and the origins of motor neuron diversity. Curr. Top. Dev. Biol. 2009, 88, 169–200. [Google Scholar] [CrossRef] [PubMed]
- McIntire, S.L.; Jorgensen, E.; Horvitz, H.R. Genes required for GABA function in Caenorhabditis elegans. Nature 1993, 364, 334–337. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.; Jorgensen, E.; Hartwieg, E.; Horvitz, H.R. The Caenorhabditis elegans gene unc-25 encodes glutamic acid decarboxylase and is required for synaptic transmission but not synaptic development. J. Neurosci. 1999, 19, 539–548. [Google Scholar] [CrossRef]
- McIntire, S.L.; Reimer, R.J.; Schuske, K.; Edwards, R.H.; Jorgensen, E.M. Identification and characterization of the vesicular GABA transporter. Nature 1997, 389, 870–876. [Google Scholar] [CrossRef]
- Hallam, S.; Singer, E.; Waring, D.; Jin, Y. The C. elegans NeuroD homolog cnd-1 functions in multiple aspects of motor neuron fate specification. Development 2000, 127, 4239–4252. [Google Scholar] [PubMed]
- Jin, Y.; Hoskins, R.; Horvitz, H.R. Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 1994, 372, 780–783. [Google Scholar] [CrossRef] [PubMed]
- Eastman, C.; Horvitz, H.R.; Jin, Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J. Neurosci. 1999, 19, 6225–6234. [Google Scholar] [CrossRef] [PubMed]
- Melkman, T.; Sengupta, P. Regulation of chemosensory and GABAergic motor neuron development by the C. elegans Aristaless/Arx homolog alr-1. Development 2005, 132, 1935–1949. [Google Scholar] [CrossRef]
- Topalidou, I.; Chalfie, M. Shared gene expression in distinct neurons expressing common selector genes. Proc. Natl. Acad. Sci. USA 2011, 108, 19258–19263. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.M.; Walthall, W.W. UNC-55, an orphan nuclear hormone receptor, orchestrates synaptic specificity among two classes of motor neurons in Caenorhabditis elegans. J. Neurosci. 1998, 18, 10438–10444. [Google Scholar] [CrossRef][Green Version]
- Campbell, R.F.; Walthall, W.W. Meis/UNC-62 isoform dependent regulation of CoupTF-II/UNC-55 and GABAergic motor neuron subtype differentiation. Dev. Biol. 2016, 419, 250–261. [Google Scholar] [CrossRef]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar]
- Josephson, M.P.; Chai, Y.; Ou, G.; Lundquist, E.A. EGL-20/Wnt and MAB-5/Hox Act Sequentially to Inhibit Anterior Migration of Neuroblasts in C. elegans. PLoS ONE 2016, 11, e0148658. [Google Scholar] [CrossRef]
- Durbin, R.M. Studies on the Development and Organisation of the Nervous System of Caenorhabditis Elegans; Kings College: Cambridge, UK, 1987. [Google Scholar]
- White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1986, 314, 1–340. [Google Scholar]
- Howell, K.; White, J.G.; Hobert, O. Spatiotemporal control of a novel synaptic organizer molecule. Nature 2015, 523, 83–87. [Google Scholar] [CrossRef] [PubMed]
- Hallam, S.J.; Jin, Y. lin-14 regulates the timing of synaptic remodelling in Caenorhabditis elegans. Nature 1998, 395, 78–82. [Google Scholar] [CrossRef] [PubMed]
- Ackley, B.D. Wnt signaling and planar cell polarity genes regulate axon guidance along the anteroposterior axis in C. elegans. Dev. Neurobiol. 2013, 74, 781–796. [Google Scholar] [CrossRef] [PubMed]
- Nakao, F.; Hudson, M.L.; Suzuki, M.; Peckler, Z.; Kurokawa, R.; Liu, Z.; Gengyo-Ando, K.; Nukazuka, A.; Fujii, T.; Suto, F.; et al. The PLEXIN PLX-2 and the ephrin EFN-4 have distinct roles in MAB-20/Semaphorin 2A signaling in Caenorhabditis elegans morphogenesis. Genetics 2007, 176, 1591–1607. [Google Scholar] [CrossRef][Green Version]
- Huang, X.; Cheng, H.J.; Tessier-Lavigne, M.; Jin, Y. MAX-1, a novel PH/MyTH4/FERM domain cytoplasmic protein implicated in netrin-mediated axon repulsion. Neuron 2002, 34, 563–576. [Google Scholar] [CrossRef]
- Gerstein, M.B.; Lu, Z.J.; Van Nostrand, E.L.; Cheng, C.; Arshinoff, B.I.; Liu, T.; Yip, K.Y.; Robilotto, R.; Rechtsteiner, A.; Ikegami, K.; et al. Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 2010, 330, 1775–1787. [Google Scholar] [CrossRef]
- Maro, G.S.; Klassen, M.P.; Shen, K. A beta-catenin-dependent Wnt pathway mediates anteroposterior axon guidance in C. elegans motor neurons. PLoS ONE 2009, 4, e4690. [Google Scholar] [CrossRef]
- Harterink, M.; Kim, D.H.; Middelkoop, T.C.; Doan, T.D.; van Oudenaarden, A.; Korswagen, H.C. Neuroblast migration along the anteroposterior axis of C. elegans is controlled by opposing gradients of Wnts and a secreted Frizzled-related protein. Development 2011, 138, 2915–2924. [Google Scholar] [CrossRef]
- Huarcaya Najarro, E.; Ackley, B.D. C. elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons. Dev. Biol. 2013, 377, 224–235. [Google Scholar] [CrossRef]
- Hobert, O. Terminal Selectors of Neuronal Identity. Curr. Top. Dev. Biol. 2016, 116, 455–475. [Google Scholar] [CrossRef]
- Zheng, C.; Diaz-Cuadros, M.; Chalfie, M. Hox Genes Promote Neuronal Subtype Diversification through Posterior Induction in Caenorhabditis elegans. Neuron 2015, 88, 514–527. [Google Scholar] [CrossRef] [PubMed]
Genotype | N | C Shape | Polarity (T/P) | Outgrowth (N/O) |
---|---|---|---|---|
wild type (lhIs97) | 161 | 82% | 9% | 9% |
lin-44(n1792) | 88 | 77% | 18% | 5% |
(P = 0.0446) | (P = 0.3135) | |||
egl-20(gk453010) | 159 | 64% | 23% | 14% |
(P = 0.003) | (P = 0.0769) | |||
lin-17(n671) | 40 | 48% | 50% | 3% |
(P < 0.0001) | (P = 0.6961) | |||
mig-5(rh97) | 85 | 36% | 52% | 12% |
(P < 0.0001) | (P = 0.0339) | |||
dsh-1(ok1445) | 177 | 24% | 71% | 5% |
(P < 0.0001) | (P = 0.2113) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kurland, M.; O’Meara, B.; Tucker, D.K.; Ackley, B.D. The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling. J. Dev. Biol. 2020, 8, 5. https://doi.org/10.3390/jdb8010005
Kurland M, O’Meara B, Tucker DK, Ackley BD. The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling. Journal of Developmental Biology. 2020; 8(1):5. https://doi.org/10.3390/jdb8010005
Chicago/Turabian StyleKurland, Meagan, Bryn O’Meara, Dana K. Tucker, and Brian D. Ackley. 2020. "The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling" Journal of Developmental Biology 8, no. 1: 5. https://doi.org/10.3390/jdb8010005
APA StyleKurland, M., O’Meara, B., Tucker, D. K., & Ackley, B. D. (2020). The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling. Journal of Developmental Biology, 8(1), 5. https://doi.org/10.3390/jdb8010005