Novel Technological Advances in Functional Connectomics in C. elegans
Abstract
:1. Introduction
2. Functional Characterization of Neural Circuits: Using Connectome to Generate Hypotheses
3. Technologies Employed to Unravel the Functional Connectome
3.1. Neuronal Imaging in C. elegans
3.2. Whole-Brain Imaging in C. elegans
3.3. Optogenetics and the Worm Connectome
3.4. Computational Strategies
4. Analysis of the Functional Connectome
4.1. Divergent Functions within a Single Neuronal Class
4.2. Developmental Connectomics: Rewiring of the Connectome during Larval Development
4.3. Sex Differences in the Functional Connectome
4.4. Modulation of Neural Circuits
5. Discussion and Future Directions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Seung, H.S. Neuroscience: Towards functional connectomics. Nature 2011, 471, 170–172. [Google Scholar] [CrossRef] [PubMed]
- Berger, D.R.; Seung, H.S.; Lichtman, J.W. VAST (Volume Annotation and Segmentation Tool): Efficient Manual and Semi-Automatic Labeling of Large 3D Image Stacks. Front. Neural Circuits 2018, 12, 88. [Google Scholar] [CrossRef]
- Albertson, D.G.; Thomson, J.N. The pharynx of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1976, 275, 299–325. [Google Scholar] [CrossRef] [PubMed]
- White, J.G.; Southgate, E.; Thomson, J.N.; Brenner, S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 1986, 314, 1–340. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. The Genetics of Caenorhabsitis elegans. Genetics 1974, 77, 71–94. [Google Scholar]
- Jarrell, T.A.; Wang, Y.; Bloniarz, A.E.; Brittin, C.A.; Xu, M.; Thomson, J.N.; Albertson, D.G.; Hall, D.H.; Emmons, S.W. The connectome of a decision-making neural network. Science 2012, 337, 437–444. [Google Scholar] [CrossRef]
- Schafer, W.R. The Worm Connectome: Back to the Future. Trends Neurosci. 2018, 41, 763–765. [Google Scholar] [CrossRef]
- Colosimo, C.; Pontieri, F.E. Yawning in Parkinson’s disease. Neurology 1999, 52, 428. [Google Scholar] [CrossRef]
- Bargmann, C.; Marder, E. From the connectome to brain function. Nat. Methods 2013, 10, 483–490. [Google Scholar] [CrossRef]
- Bargmann, C.I. Beyond the connectome: How neuromodulators shape neural circuits. BioEssays News Rev. Mol. Cell. Dev. Biol. 2012, 34, 458–465. [Google Scholar] [CrossRef]
- Hall, D.H. Gap junctions in C. elegans: Their roles in behavior and development. Dev. Neurobiol. 2017, 77, 587–596. [Google Scholar] [CrossRef]
- Hall, D.H. The role of gap junctions in the C. elegans connectome. Neurosci. Lett. 2017. [Google Scholar] [CrossRef]
- Bentley, B.; Branicky, R.; Barnes, C.L.; Chew, Y.L.; Yemini, E.; Bullmore, E.T.; Vertes, P.E.; Schafer, W.R. The Multilayer Connectome of Caenorhabditis elegans. PLoS Comput. Biol. 2016, 12, e1005283. [Google Scholar] [CrossRef]
- Jékely, G.; Melzer, S.; Beets, I.; Kadow, I.C.G.; Koene, J.; Haddad, S.; Holden-Dye, L. The long and the short of it—A perspective on peptidergic regulation of circuits and behaviour. J. Exp. Biol. 2018, 221. [Google Scholar] [CrossRef]
- Gray, J.M.; Hill, J.J.; Bargmann, C.I. A circuit for navigation in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2005, 102, 3184–3191. [Google Scholar] [CrossRef]
- Chalfie, M.; Sulston, J.; White, J.; Southgate, E.; Thomson, J.; Brenner, S. The neural circuit for touch sensitivity in Caenorhabditis elegans. J. Neurosci. 1985, 5, 956–964. [Google Scholar] [CrossRef]
- Fang-Yen, C.; Gabel, C.V.; Samuel, A.D.T.; Bargmann, C.I.; Avery, L. Laser Microsurgery in Caenorhabditis elegans. Methods Cell Biol. 2012, 107, 177–206. [Google Scholar]
- Zheng, Z.; Lauritzen, J.S.; Perlman, E.; Robinson, C.G.; Nichols, M.; Milkie, D.; Torrens, O.; Price, J.; Fisher, C.B.; Sharifi, N.; et al. A Complete Electron Microscopy Volume of the Brain of Adult Drosophila melanogaster. Cell 2018, 174, 730–743.e22. [Google Scholar] [CrossRef]
- Piggott, B.J.; Liu, J.; Feng, Z.; Wescott, S.A.; Xu, X.Z. The neural circuits and synaptic mechanisms underlying motor initiation in C. elegans. Cell 2011, 147, 922–933. [Google Scholar] [CrossRef]
- Rakowski, F.; Karbowski, J. Optimal synaptic signaling connectome for locomotory behavior in Caenorhabditis elegans: Design minimizing energy cost. PLoS Comput. Biol. 2017, 13, e1005834. [Google Scholar] [CrossRef]
- Rakowski, F.; Srinivasan, J.; Sternberg, P.W.; Karbowski, J. Synaptic polarity of the interneuron circuit controlling C. elegans locomotion. Front. Comput. Neurosci. 2013, 7, 128. [Google Scholar] [CrossRef]
- Chew, Y.L.; Schafer, W.R. A network for swimming. eLife 2017, 6. [Google Scholar] [CrossRef]
- Wragg, R.T.; Hapiak, V.; Miller, S.B.; Harris, G.P.; Gray, J.; Komuniecki, P.R.; Komuniecki, R.W. Tyramine and octopamine independently inhibit serotonin-stimulated aversive behaviors in Caenorhabditis elegans through two novel amine receptors. J. Neurosci. Off. J. Soc. Neurosci. 2007, 27, 13402–13412. [Google Scholar] [CrossRef]
- De Bono, M.; Tobin, D.M.; Davis, M.W.; Avery, L.; Bargmann, C.I. Social feeding in Caenorhabditis elegans is induced by neurons that detect aversive stimuli. Nature 2002, 419, 899–903. [Google Scholar] [CrossRef]
- Hilliard, M.A.; Bergamasco, C.; Arbucci, S.; Plasterk, R.H.; Bazzicalupo, P. Worms taste bitter: ASH neurons, QUI-1, GPA-3 and ODR-3 mediate quinine avoidance in Caenorhabditis elegans. EMBO J. 2004, 23, 1101–1111. [Google Scholar] [CrossRef]
- Campbell, J.C.; Chin-Sang, I.D.; Bendena, W.G. Mechanosensation circuitry in Caenorhabditis elegans: A focus on gentle touch. Peptides 2015, 68, 164–174. [Google Scholar] [CrossRef]
- Kaplan, J.M.; Horvitz, H.R. A dual mechanosensory and chemosensory neuron in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1993, 90, 2227–2231. [Google Scholar] [CrossRef]
- Hart, A.C.; Kass, J.; Shapiro, J.E.; Kaplan, J.M. Distinct signaling pathways mediate touch and osmosensory responses in a polymodal sensory neuron. J. Neurosci. Off. J. Soc. Neurosci. 1999, 19, 1952–1958. [Google Scholar] [CrossRef]
- Hart, A.C.; Sims, S.; Kaplan, J.M. Synaptic code for sensory modalities revealed by C. elegans GLR-1 glutamate receptor. Nature 1995, 378, 82–85. [Google Scholar] [CrossRef]
- Bastiani, C.; Mendel, J. Heterotrimeric G proteins in C. elegans. WormBook 2006, 13, 1–25. [Google Scholar] [CrossRef]
- Richmond, J.E.; Jorgensen, E.M. One GABA and two acetylcholine receptors function at the C. elegans neuromuscular junction. Nat. Neurosci. 1999, 2, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Lockery, S.R.; Goodman, M.B. Tight-seal whole-cell patch clamping of Caenorhabditis elegans neurons. Methods Enzymol. 1998, 293, 201–217. [Google Scholar] [PubMed]
- Goodman, M.B.; Lindsay, T.H.; Lockery, S.R.; Richmond, J.E. Electrophysiological methods for Caenorhabditis elegans neurobiology. Methods Cell Biol. 2012, 107, 409–436. [Google Scholar] [PubMed]
- Goodman, M.B.; Hall, D.H.; Avery, L.; Lockery, S.R. Active currents regulate sensitivity and dynamic range in C. elegans neurons. Neuron 1998, 20, 763–772. [Google Scholar] [CrossRef]
- Segev, A.; Garcia-Oscos, F.; Kourrich, S. Whole-cell Patch-clamp Recordings in Brain Slices. J. Vis. Exp. 2016, 112. [Google Scholar] [CrossRef]
- Kerr, R.A. Imaging the activity of neurons and muscles. WormBook 2006, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kerr, R.A.; Schafer, W.R. Intracellular Ca2+ imaging in C. elegans. Methods Mol. Biol. 2006, 351, 253–264. [Google Scholar]
- Kato, S.; Kaplan, H.S.; Schrodel, T.; Skora, S.; Lindsay, T.H.; Yemini, E.; Lockery, S.; Zimmer, M. Global brain dynamics embed the motor command sequence of Caenorhabditis elegans. Cell 2015, 163, 656–669. [Google Scholar] [CrossRef]
- Wang, W.; Xu, Z.J.; Wu, Y.Q.; Qin, L.W.; Li, Z.Y.; Wu, Z.X. Off-response in ASH neurons evoked by CuSO4 requires the TRP channel OSM-9 in Caenorhabditis elegans. Biochem. Biophys. Res. Commun. 2015, 461, 463–468. [Google Scholar] [CrossRef]
- Hendricks, M.; Ha, H.; Maffey, N.; Zhang, Y. Compartmentalized calcium dynamics in a C. elegans interneuron encode head movement. Nature 2012, 487, 99–103. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, N.; He, Y.; Liu, Y.; Ge, L.; Zou, L.; Song, S.; Xiong, W.; Liu, X. Improved calcium sensor GCaMP-X overcomes the calcium channel perturbations induced by the calmodulin in GCaMP. Nat. Commun. 2018, 9, 1504. [Google Scholar] [CrossRef]
- Chen, T.W.; Wardill, T.J.; Sun, Y.; Pulver, S.R.; Renninger, S.L.; Baohan, A.; Schreiter, E.R.; Kerr, R.A.; Orger, M.B.; Jayaraman, V.; et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 2013, 499, 295–300. [Google Scholar] [CrossRef]
- Dana, H.; Mohar, B.; Sun, Y.; Narayan, S.; Gordus, A.; Hasseman, J.P.; Tsegaye, G.; Holt, G.T.; Hu, A.; Walpita, D.; et al. Sensitive red protein calcium indicators for imaging neural activity. eLife 2016, 5. [Google Scholar] [CrossRef]
- Chronis, N.; Zimmer, M.; Bargmann, C.I. Microfluidics for in vivo imaging of neuronal and behavioral activity in Caenorhabditis elegans. Nat. Methods 2007, 4, 727–731. [Google Scholar] [CrossRef]
- Reilly, D.K.; Lawler, D.E.; Albrecht, D.R.; Srinivasan, J. Using an Adapted Microfluidic Olfactory Chip for the Imaging of Neuronal Activity in Response to Pheromones in Male C. elegans Head Neurons. J. Vis. Exp. 2017. [Google Scholar] [CrossRef]
- Larsch, J.; Flavell, S.W.; Liu, Q.; Gordus, A.; Albrecht, D.R.; Bargmann, C.I. A Circuit for Gradient Climbing in C. elegans Chemotaxis. Cell Rep. 2015, 12, 1748–1760. [Google Scholar] [CrossRef]
- Cho, Y.; Zhao, C.L.; Lu, H. Trends in high-throughput and functional neuroimaging in Caenorhabditis elegans. Wiley Interdiscip. Rev. Syst. Biol. Med. 2017, 9. [Google Scholar] [CrossRef] [PubMed]
- Ben-Yakar, A.; Chronis, N.; Lu, H. Microfluidics for the analysis of behavior, nerve regeneration, and neural cell biology in C. elegans. Curr. Opin. Neurobiol. 2009, 19, 561–567. [Google Scholar] [CrossRef]
- Richmond, J.E. Electrophysiological recordings from the neuromuscular junction of C. elegans. WormBook 2006, 1–8. [Google Scholar] [CrossRef]
- Cunningham, J.P.; Yu, B.M. Dimensionality reduction for large-scale neural recordings. Nat. Neurosci. 2014, 17, 1500–1509. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, H.; Kerr, R.; Bianchi, L.; Frokjaer-Jensen, C.; Slone, D.; Xue, J.; Gerstbrein, B.; Driscoll, M.; Schafer, W.R. In vivo imaging of C. elegans mechanosensory neurons demonstrates a specific role for the MEC-4 channel in the process of gentle touch sensation. Neuron 2003, 39, 1005–1017. [Google Scholar] [CrossRef]
- Luo, L.; Wen, Q.; Ren, J.; Hendricks, M.; Gershow, M.; Qin, Y.; Greenwood, J.; Soucy, E.R.; Klein, M.; Smith-Parker, H.K.; et al. Dynamic encoding of perception, memory, and movement in a C. elegans chemotaxis circuit. Neuron 2014, 82, 1115–1128. [Google Scholar] [CrossRef]
- Chalasani, S.H.; Chronis, N.; Tsunozaki, M.; Gray, J.M.; Ramot, D.; Goodman, M.B.; Bargmann, C.I. Dissecting a circuit for olfactory behaviour in Caenorhabditis elegans. Nature 2007, 450, 63–70. [Google Scholar] [CrossRef]
- Ahrens, M.B.; Li, J.M.; Orger, M.B.; Robson, D.N.; Schier, A.F.; Engert, F.; Portugues, R. Brain-wide neuronal dynamics during motor adaptation in zebrafish. Nature 2012, 485, 471–477. [Google Scholar] [CrossRef]
- Panier, T.; Romano, S.A.; Olive, R.; Pietri, T.; Sumbre, G.; Candelier, R.; Debregeas, G. Fast functional imaging of multiple brain regions in intact zebrafish larvae using selective plane illumination microscopy. Front. Neural Circuits 2013, 7, 65. [Google Scholar] [CrossRef]
- Marder, E.; Bucher, D. Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 2007, 69, 291–316. [Google Scholar] [CrossRef] [PubMed]
- Bruno, A.M.; Frost, W.N.; Humphries, M.D. Modular deconstruction reveals the dynamical and physical building blocks of a locomotion motor program. Neuron 2015, 86, 304–318. [Google Scholar] [CrossRef]
- Arshavsky, Y.I.; Deliagina, T.G.; Orlovsky, G.N.; Panchin, Y.V.; Popova, L.B.; Sadreyev, R.I. Analysis of the central pattern generator for swimming in the mollusk Clione. Ann. N. Y. Acad. Sci. 1998, 860, 51–69. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, J.P.; Shipley, F.B.; Linder, A.N.; Plummer, G.S.; Liu, M.; Setru, S.U.; Shaevitz, J.W.; Leifer, A.M. Whole-brain calcium imaging with cellular resolution in freely behaving Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2016, 113, E1074–E1081. [Google Scholar] [CrossRef]
- Venkatachalam, V.; Ji, N.; Wang, X.; Clark, C.; Mitchell, J.K.; Klein, M.; Tabone, C.J.; Florman, J.; Ji, H.; Greenwood, J.; et al. Pan-neuronal imaging in roaming Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2016, 113, E1082–E1088. [Google Scholar] [CrossRef]
- Izquierdo, E.J.; Beer, R.D. The whole worm: Brain-body-environment models of C. elegans. Curr. Opin. Neurobiol. 2016, 40, 23–30. [Google Scholar] [CrossRef]
- Deisseroth, K. Optogenetics: Controlling the Brain with Light [Extended Version]. Sci. Am. 2010, 49–55. [Google Scholar]
- Akerboom, J.; Carreras Calderon, N.; Tian, L.; Wabnig, S.; Prigge, M.; Tolo, J.; Gordus, A.; Orger, M.B.; Severi, K.E.; Macklin, J.J.; et al. Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front. Mol. Neurosci. 2013, 6, 2. [Google Scholar] [CrossRef]
- Bergs, A.; Schultheis, C.; Fischer, E.; Tsunoda, S.P.; Erbguth, K.; Husson, S.J.; Govorunova, E.; Spudich, J.L.; Nagel, G.; Gottschalk, A.; et al. Rhodopsin optogenetic toolbox v2.0 for light-sensitive excitation and inhibition in Caenorhabditis elegans. PLoS ONE 2018, 13, e0191802. [Google Scholar] [CrossRef]
- Brown, J.; Behnam, R.; Coddington, L.; Tervo, D.G.R.; Martin, K.; Proskurin, M.; Kuleshova, E.; Park, J.; Phillips, J.; Bergs, A.C.F.; et al. Expanding the Optogenetics Toolkit by Topological Inversion of Rhodopsins. Cell 2018, 175, 1131–1140.e1111. [Google Scholar] [CrossRef]
- Husson, S.J.; Costa, W.S.; Wabnig, S.; Stirman, J.N.; Watson, J.D.; Spencer, W.C.; Akerboom, J.; Looger, L.L.; Treinin, M.; Miller, D.M., 3rd; et al. Optogenetic analysis of a nociceptor neuron and network reveals ion channels acting downstream of primary sensors. Curr. Biol. 2012, 22, 743–752. [Google Scholar] [CrossRef]
- Husson, S.J.; Gottschalk, A.; Leifer, A.M. Optogenetic manipulation of neural activity in C. elegans: From synapse to circuits and behaviour. Biol. Cell 2013, 105, 235–250. [Google Scholar] [CrossRef]
- Liewald, J.F.; Brauner, M.; Stephens, G.J.; Bouhours, M.; Schultheis, C.; Zhen, M.; Gottschalk, A. Optogenetic analysis of synaptic function. Nat. Methods 2008, 5, 895–902. [Google Scholar] [CrossRef]
- Nagel, G.; Brauner, M.; Liewald, J.F.; Adeishvili, N.; Bamberg, E.; Gottschalk, A. Light activation of channelrhodopsin-2 in excitable cells of Caenorhabditis elegans triggers rapid behavioral responses. Curr. Biol. 2005, 15, 2279–2284. [Google Scholar] [CrossRef]
- Wen, Q.; Po, M.D.; Hulme, E.; Chen, S.; Liu, X.; Kwok, S.W.; Gershow, M.; Leifer, A.M.; Butler, V.; Fang-Yen, C.; et al. Proprioceptive coupling within motor neurons drives C. elegans forward locomotion. Neuron 2012, 76, 750–761. [Google Scholar] [CrossRef]
- Husson, S.J.; Liewald, J.F.; Schultheis, C.; Stirman, J.N.; Lu, H.; Gottschalk, A. Microbial light-activatable proton pumps as neuronal inhibitors to functionally dissect neuronal networks in C. elegans. PLoS ONE 2012, 7, e40937. [Google Scholar] [CrossRef] [PubMed]
- Stirman, J.N.; Crane, M.M.; Husson, S.J.; Wabnig, S.; Schultheis, C.; Gottschalk, A.; Lu, H. Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans. Nat. Methods 2011, 8, 153–158. [Google Scholar] [CrossRef] [PubMed]
- Kunert-Graf, J.M.; Shlizerman, E.; Walker, A.; Kutz, J.N. Multistability and Long-Timescale Transients Encoded by Network Structure in a Model of C. elegans Connectome Dynamics. Front. Comput. Neurosci. 2017, 11, 53. [Google Scholar] [CrossRef]
- Kunert, J.; Shlizerman, E.; Kutz, J.N. Low-dimensional functionality of complex network dynamics: Neurosensory integration in the Caenorhabditis Elegans connectome. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 2014, 89, 052805. [Google Scholar] [CrossRef]
- Sporns, O. The non-random brain: Efficiency, economy, and complex dynamics. Front. Comput. Neurosci. 2011, 5, 5. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Kim, J.; Shlizerman, E. Functional connectomics from neural dynamics: Probabilistic graphical models for neuronal network of Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2018, 373. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Leahy, W.; Shlizerman, E. Neural Interactome: Interactive Simulation of a Neuronal System. BioRxiv 2018. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O. Connectome Networks: From Cells to Systems; Kennedy, H., Essen, D.V., Christen, Y., Eds.; Springer: Berlin, Germany, 2016. [Google Scholar]
- Ohyama, T.; Schneider-Mizell, C.M.; Fetter, R.D.; Aleman, J.V.; Franconville, R.; Rivera-Alba, M.; Mensh, B.D.; Branson, K.M.; Simpson, J.H.; Truman, J.W.; et al. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 2015, 520, 633–639. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.D.; Nitabach, M.N.; Zhang, Y.; Harris, G. Multisensory integration in C. elegans. Curr. Opin. Neurobiol. 2017, 43, 110–118. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, D.D.; Sanders, T.; Hong, S.; McCurdy, L.Y.; Chase, D.L.; Cohen, N.; Koelle, M.R.; Nitabach, M.N. Neural Architecture of Hunger-Dependent Multisensory Decision Making in C. elegans. Neuron 2016, 92, 1049–1062. [Google Scholar] [CrossRef] [PubMed]
- Hilliard, M.A.; Bargmann, C.I.; Bazzicalupo, P. C. elegans responds to chemical repellents by integrating sensory inputs from the head and the tail. Curr. Biol. 2002, 12, 730–734. [Google Scholar] [CrossRef]
- Metaxakis, A.; Petratou, D.; Tavernarakis, N. Multimodal sensory processing in Caenorhabditis elegans. Open Biol. 2018, 8. [Google Scholar] [CrossRef]
- Hart, A.C.; Chao, M.Y. From Odors to Behaviors in Caenorhabditis elegans. In The Neurobiology of Olfaction; CRC Press/Taylor & Francis: Boca Raton, FL, USA, 2010. [Google Scholar]
- Walker, D.S.; Vazquez-Manrique, R.P.; Gower, N.J.; Gregory, E.; Schafer, W.R.; Baylis, H.A. Inositol 1,4,5-trisphosphate signalling regulates the avoidance response to nose touch in Caenorhabditis elegans. PLoS Genet. 2009, 5, e1000636. [Google Scholar] [CrossRef]
- Maricq, A.V.; Peckol, E.; Driscoll, M.; Bargmann, C.I. Mechanosensory signalling in C. elegans mediated by the GLR-1 glutamate receptor. Nature 1995, 378, 78–81. [Google Scholar] [CrossRef]
- Mellem, J.E.; Brockie, P.J.; Zheng, Y.; Madsen, D.M.; Maricq, A.V. Decoding of polymodal sensory stimuli by postsynaptic glutamate receptors in C. elegans. Neuron 2002, 36, 933–944. [Google Scholar] [CrossRef]
- Edison, A.S. Caenorhabditis elegans pheromones regulate multiple complex behaviors. Curr. Opin. Neurobiol. 2009, 19, 378–388. [Google Scholar] [CrossRef]
- Srinivasan, J.; Kaplan, F.; Ajredini, R.; Zachariah, C.; Alborn, H.T.; Teal, P.E.; Malik, R.U.; Edison, A.S.; Sternberg, P.W.; Schroeder, F.C. A blend of small molecules regulates both mating and development in Caenorhabditis elegans. Nature 2008, 454, 1115–1118. [Google Scholar] [CrossRef]
- Von Reuss, S.H.; Bose, N.; Srinivasan, J.; Yim, J.J.; Judkins, J.C.; Sternberg, P.W.; Schroeder, F.C. Comparative metabolomics reveals biogenesis of ascarosides, a modular library of small-molecule signals in C. elegans. J. Am. Chem. Soc. 2012, 134, 1817–1824. [Google Scholar] [CrossRef] [PubMed]
- Von Reuss, S.H.; Schroeder, F.C. Combinatorial chemistry in nematodes: Modular assembly of primary metabolism-derived building blocks. Natural Prod. Rep. 2015, 32, 994–1006. [Google Scholar] [CrossRef]
- Jang, H.; Kim, K.; Neal, S.J.; Macosko, E.; Kim, D.; Butcher, R.A.; Zeiger, D.M.; Bargmann, C.I.; Sengupta, P. Neuromodulatory state and sex specify alternative behaviors through antagonistic synaptic pathways in C. elegans. Neuron 2012, 75, 585–592. [Google Scholar] [CrossRef] [PubMed]
- Macosko, E.Z.; Pokala, N.; Feinberg, E.H.; Chalasani, S.H.; Butcher, R.A.; Clardy, J.; Bargmann, C.I. A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 2009, 458, 1171–1175. [Google Scholar] [CrossRef] [PubMed]
- Sulston, J.E.; Horvitz, H.R. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 1977, 56, 110–156. [Google Scholar] [CrossRef]
- Sulston, J.E.; Schierenberg, E.; White, J.G.; Thomson, J.N. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 1983, 100, 64–119. [Google Scholar] [CrossRef]
- Varshney, L.R.; Chen, B.L.; Paniagua, E.; Hall, D.H.; Chklovskii, D.B. Structural properties of the Caenorhabditis elegans neuronal network. PLoS Comput. Biol. 2011, 7, e1001066. [Google Scholar] [CrossRef] [PubMed]
- Alicea, B. The emergent connectome in Caenorhabditis elegans embryogenesis. Biosystems 2018, 173, 247–255. [Google Scholar] [CrossRef] [PubMed]
- Wasserstrom, A.; Adar, R.; Shefer, G.; Frumkin, D.; Itzkovitz, S.; Stern, T.; Shur, I.; Zangi, L.; Kaplan, S.; Harmelin, A.; et al. Reconstruction of cell lineage trees in mice. PLoS ONE 2008, 3, e1939. [Google Scholar] [CrossRef] [PubMed]
- Azulay, A.; Itskovits, E.; Zaslaver, A. The C. elegans connectome consists of homogenous circuits with defined functional roles. PLoS Comput. Biol. 2016, 12, e1005021. [Google Scholar] [CrossRef] [PubMed]
- Muschiol, D.; Schroeder, F.; Traunspurger, W. Life cycle and population growth rate of Caenorhabditis elegans studied by a new method. BMC Ecol. 2009, 9, 14. [Google Scholar] [CrossRef]
- White, J.G.; Albertson, D.G.; Anness, M.A. Connectivity changes in a class of motoneurone during the development of a nematode. Nature 1978, 271, 764–766. [Google Scholar] [CrossRef]
- Von Stetina, S.E.; Treinin, M.; Miller, D.M., 3rd. The motor circuit. Int. Rev. Neurobiol. 2006, 69, 125–167. [Google Scholar] [PubMed]
- Nicosia, V.; Vértes, P.E.; Schafer, W.R.; Latora, V.; Bullmore, E.T. Phase transition in the economically modeled growth of a cellular nervous system. Proc. Natl. Acad. Sci. USA 2013, 110, 7880–7885. [Google Scholar] [CrossRef] [PubMed]
- Fagan, K.A.; Luo, J.; Lagoy, R.C.; Schroeder, F.C.; Albrecht, D.R.; Portman, D.S. A Single-Neuron Chemosensory Switch Determines the Valence of a Sexually Dimorphic Sensory Behavior. Curr. Biol. 2018, 28, 902–914.e905. [Google Scholar] [CrossRef] [PubMed]
- White, J.Q.; Nicholas, T.J.; Gritton, J.; Truong, L.; Davidson, E.R.; Jorgensen, E.M. The sensory circuitry for sexual attraction in C. elegans males. Curr. Biol. 2007, 17, 1847–1857. [Google Scholar] [CrossRef] [PubMed]
- Weinberg, P.; Berkseth, M.; Zarkower, D.; Hobert, O. Sexually Dimorphic unc-6/Netrin Expression Controls Sex-Specific Maintenance of Synaptic Connectivity. Curr. Biol. 2018, 28, 623–629.e623. [Google Scholar] [CrossRef] [PubMed]
- Hilbert, Z.A.; Kim, D.H. PDF-1 neuropeptide signaling regulates sexually dimorphic gene expression in shared sensory neurons of C. elegans. Elife 2018, 7. [Google Scholar] [CrossRef] [PubMed]
- Barr, M.M.; Garcia, L.R.; Portman, D.S. Sexual dimorphism and sex differences in Caenorhabditis elegans neuronal development and behavior. Genetics 2018, 208, 909–935. [Google Scholar] [CrossRef]
- Barrios, A.; Ghosh, R.; Fang, C.; Emmons, S.W.; Barr, M.M. PDF-1 neuropeptide signaling modulates a neural circuit for mate-searching behavior in C. elegans. Nat. Neurosci. 2012, 15, 1675–1682. [Google Scholar] [CrossRef]
- Lee, K.; Portman, D.S. Neural sex modifies the function of a C. elegans sensory circuit. Curr. Biol. 2007, 17, 1858–1863. [Google Scholar] [CrossRef]
- Mowrey, W.R.; Bennett, J.R.; Portman, D.S. Distributed effects of biological sex define sex-typical motor behavior in Caenorhabditis elegans. J. Neurosci. 2014, 34, 1579–1591. [Google Scholar] [CrossRef]
- Sakai, N.; Iwata, R.; Yokoi, S.; Butcher, R.A.; Clardy, J.; Tomioka, M.; Iino, Y. A sexually conditioned switch of chemosensory behavior in C. elegans. PLoS ONE 2013, 8, e68676. [Google Scholar] [CrossRef]
- Sulston, J.; Albertson, D.; Thomson, J. The Caenorhabditis elegans male: Postembryonic development of nongonadal structures. Dev. Biol. 1980, 78, 542–576. [Google Scholar] [CrossRef]
- Narayan, A.; Venkatachalam, V.; Durak, O.; Reilly, D.K.; Bose, N.; Schroeder, F.C.; Samuel, A.D.T.; Srinivasan, J.; Sternberg, P.W. Contrasting responses within a single neuron class enable sex-specific attraction in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2016, 113, E1392–E1401. [Google Scholar] [CrossRef]
- Conradt, B.; Horvitz, H.R. The TRA-1A sex determination protein of C. elegans regulates sexually dimorphic cell deaths by repressing the egl-1 cell death activator gene. Cell 1999, 98, 317–327. [Google Scholar] [CrossRef]
- Singhal, A.; Shaham, S. Infrared laser-induced gene expression for tracking development and function of single C. elegans embryonic neurons. Nat. Commun. 2017, 8, 14100. [Google Scholar] [CrossRef]
- Oren-Suissa, M.; Bayer, E.A.; Hobert, O. Sex-specific pruning of neuronal synapses in Caenorhabditis elegans. Nature 2016, 533, 206–211. [Google Scholar] [CrossRef]
- Bayer, E.A.; Hobert, O. Past experience shapes sexually dimorphic neuronal wiring through monoaminergic signalling. Nature 2018, 561, 117–121. [Google Scholar] [CrossRef]
- Ruta, V.; Datta, S.R.; Vasconcelos, M.L.; Freeland, J.; Looger, L.L.; Axel, R. A dimorphic pheromone circuit in Drosophila from sensory input to descending output. Nature 2010, 468, 686–690. [Google Scholar] [CrossRef]
- Kohl, J.; Ostrovsky, A.D.; Frechter, S.; Jefferis, G.S.X.E. A bidirectional circuit switch reroutes pheromone signals in male and female brains. Cell 2013, 155, 1610–1623. [Google Scholar] [CrossRef]
- Datta, S.R.; Vasconcelos, M.L.; Ruta, V.; Luo, S.; Wong, A.; Demir, E.; Flores, J.; Balonze, K.; Dickson, B.J.; Axel, R. The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 2008, 452, 473–477. [Google Scholar] [CrossRef]
- Chute, C.D.; Srinivasan, J. Chemical mating cues in C. elegans. Semin. Cell Dev. Biol. 2014, 33, 18–24. [Google Scholar] [CrossRef]
- Liu, Z.; Kariya, M.J.; Chute, C.D.; Pribadi, A.K.; Leinwand, S.G.; Tong, A.; Curran, K.P.; Bose, N.; Schroeder, F.C.; Srinivasan, J.; et al. Predator-secreted sulfolipids induce defensive responses in C. elegans. Nat. Commun. 2018, 9, 1128. [Google Scholar] [CrossRef] [PubMed]
- Di Martino, A.; Fair, D.A.; Kelly, C.; Satterthwaite, T.D.; Castellanos, F.X.; Thomason, M.E.; Craddock, R.C.; Luna, B.; Leventhal, B.L.; Zuo, X.-N.; et al. Unraveling the miswired connectome: A developmental perspective. Neuron 2014, 83, 1335–1353. [Google Scholar] [CrossRef] [PubMed]
- Sherlekar, A.L.; Janssen, A.; Siehr, M.S.; Koo, P.K.; Caflisch, L.; Boggess, M.; Lints, R. The C. elegans male exercises directional control during mating through cholinergic regulation of sex-shared command interneurons. PLoS ONE 2013, 8, e60597. [Google Scholar] [CrossRef] [PubMed]
- Chao, M.Y.; Komatsu, H.; Fukuto, H.S.; Dionne, H.M.; Hart, A.C. Feeding status and serotonin rapidly and reversibly modulate a Caenorhabditis elegans chemosensory circuit. Proc. Natl. Acad. Sci. USA 2004, 101, 15512–15517. [Google Scholar] [CrossRef] [PubMed]
- Harris, G.; Korchnak, A.; Summers, P.; Hapiak, V.; Law, W.J.; Stein, A.M.; Komuniecki, P.; Komuniecki, R. Dissecting the serotonergic food signal stimulating sensory-mediated aversive behavior in C. elegans. PLoS ONE 2011, 6, e21897. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Wu, T.H.; Song, Y.X.; Ge, M.H.; Su, C.M.; Niu, W.P.; Li, L.L.; Xu, Z.J.; Ge, C.L.; Al-Mhanawi, M.T.; et al. Reciprocal inhibition between sensory ASH and ASI neurons modulates nociception and avoidance in Caenorhabditis elegans. Nat. Commun. 2015, 6, 5655. [Google Scholar] [CrossRef] [PubMed]
- Flavell, S.W.; Pokala, N.; Macosko, E.Z.; Albrecht, D.R.; Larsch, J.; Bargmann, C.I. Serotonin and the neuropeptide PDF initiate and extend opposing behavioral states in C. elegans. Cell 2013, 154, 1023–1035. [Google Scholar] [CrossRef]
- Kim, S.B.; Bae, H.; Koo, K.-I.; Dokmeci, M.R.; Ozcan, A.; Khademhosseini, A. Lens-Free Imaging for Biological Applications. J. Lab. Autom. 2012, 17, 43–49. [Google Scholar] [CrossRef]
- Palyanov, A.; Khayrulin, S.; Larson, S.D. Application of smoothed particle hydrodynamics to modeling mechanism of biological tissue. Adv. Eng. Softw. 2016, 98, 1–11. [Google Scholar] [CrossRef]
- Gleeson, P.; Cantarelli, M.; Currie, M.; Hokanson, J.; Idili, G.; Khayrulin, S.; Palyanov, A.; Szigeti, B.; Larson, S. The OpenWorm Project: Currently available resources and future plans. BMC Neurosci. 2015, 16, P141. [Google Scholar] [CrossRef]
- Kubanek, J.; Shukla, P.; Das, A.; Baccus, S.A.; Goodman, M.B. Ultrasound Elicits Behavioral Responses through Mechanical Effects on Neurons and Ion Channels in a Simple Nervous System. J. Neurosci. Off. J. Soc. Neurosci. 2018, 38, 3081–3091. [Google Scholar] [CrossRef]
- Ibsen, S.; Tong, A.; Schutt, C.; Esener, S.; Chalasani, S.H. Sonogenetics is a non-invasive approach to activating neurons in Caenorhabditis elegans. Nat. Commun. 2015, 6, 8264. [Google Scholar] [CrossRef]
- Zhou, W.; Wang, J.; Wang, K.; Huang, B.; Niu, L.; Li, F.; Cai, F.; Chen, Y.; Liu, X.; Zhang, X.; et al. Ultrasound neuro-modulation chip: Activation of sensory neurons in Caenorhabditis elegans by surface acoustic waves. Lab Chip 2017, 17, 1725–1731. [Google Scholar] [CrossRef] [PubMed]
- Fishman, P.S. Thalamotomy for essential tremor: FDA approval brings brain treatment with FUS to the clinic. J. Ther. Ultrasound 2017, 5, 19. [Google Scholar] [CrossRef] [PubMed]
- Yuste, R.; Bargmann, C. Toward a Global BRAIN Initiative. Cell 2017, 168, 956–959. [Google Scholar] [CrossRef]
- Amunts, K.; Ebell, C.; Muller, J.; Telefont, M.; Knoll, A.; Lippert, T. The Human Brain Project: Creating a European Research Infrastructure to Decode the Human Brain. Neuron 2016, 92, 574–581. [Google Scholar] [CrossRef] [PubMed]
- Van Essen, D.C.; Smith, S.M.; Barch, D.M.; Behrens, T.E.J.; Yacoub, E.; Ugurbil, K.; Consortium, W.U.-M.H. The WU-Minn Human Connectome Project: An overview. NeuroImage 2013, 80, 62–79. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O. Making sense of brain network data. Nat. Methods 2013, 10, 491–493. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
DiLoreto, E.M.; Chute, C.D.; Bryce, S.; Srinivasan, J. Novel Technological Advances in Functional Connectomics in C. elegans. J. Dev. Biol. 2019, 7, 8. https://doi.org/10.3390/jdb7020008
DiLoreto EM, Chute CD, Bryce S, Srinivasan J. Novel Technological Advances in Functional Connectomics in C. elegans. Journal of Developmental Biology. 2019; 7(2):8. https://doi.org/10.3390/jdb7020008
Chicago/Turabian StyleDiLoreto, Elizabeth M., Christopher D. Chute, Samantha Bryce, and Jagan Srinivasan. 2019. "Novel Technological Advances in Functional Connectomics in C. elegans" Journal of Developmental Biology 7, no. 2: 8. https://doi.org/10.3390/jdb7020008
APA StyleDiLoreto, E. M., Chute, C. D., Bryce, S., & Srinivasan, J. (2019). Novel Technological Advances in Functional Connectomics in C. elegans. Journal of Developmental Biology, 7(2), 8. https://doi.org/10.3390/jdb7020008