De Novo Transcriptome Sequencing and Analysis of Differential Gene Expression among Various Stages of Tail Regeneration in Hemidactylus flaviviridis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Statement
2.2. Animal Maintenance and Tissue Collection
2.3. RNA Extraction, cDNA Library Construction/Preparation
2.4. Removal of Sequence and Quality Filtering
2.5. De Novo Sequencing and Transcriptome Assembly
2.6. Functional Annotation and Classification of Transcripts
2.7. Differential Gene Expression Analysis
2.8. Pathway Analysis
2.9. Statistical Analysis
3. Results
3.1. Illumina Paired-End Sequencing and De Novo Transcriptome Assembly
3.2. Functional Annotation and Gene Ontology (GO) Classification
3.3. Differential Gene Expression Analysis
3.4. Pathway Analysis
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alibardi, L. Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards: A Model System with Implications for Tissue Regeneration in Mammals; Springer: Heidelberg, Germany, 2009. [Google Scholar]
- Hughes, A.; New, D. Tail regeneration in the geckonid lizard. Sphaerodactylus J. Embryol. Exp. Morph. 1959, 7, 281–302. [Google Scholar]
- Vitt, L.J.; Congdon, J.D.; Dickson, N.A. Adaptive strategies and energetics of tail autonomy in lizards. Ecology 1977, 58, 326–337. [Google Scholar] [CrossRef]
- Ranadive, I.; Patel, S.; Buch, P.; Uggini, G.; Desai, I.; Balakrishnan, S. Inherent variations in the cellular events at the site of amputation orchestrate scar-free wound healing in the tail and scarred wound healing in the limb of lizard Hemidactylus flaviviridis. Wound Repair Regen. 2018, 26, 366–380. [Google Scholar] [CrossRef]
- Gilbert, E.A.B.; Delorme, S.L.; Vickaryous, M.K. The regeneration blastema of lizards: An amniote model for the study of appendage replacement. Regeneration 2015, 2, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Lozito, T.P.; Tuan, R.S. Lizard tail regeneration as an instructive model of enhanced healing capabilities in an adult amniotes. Connect. Tissue Res. 2017, 58, 145–154. [Google Scholar] [CrossRef] [Green Version]
- Buch, P.R.; Sarkate, P.; Uggini, G.K.; Desai, I.; Balakrishnan, S. Inhibition of cyclooxygenase-2 alters Wnt/β-catenin signaling in the regenerating tail of lizard Hemidactylus flaviviridis. Tissue Eng. Regen. Med. 2017, 14, 171–178. [Google Scholar] [CrossRef]
- Pillai, A.; Patel, S.; Ranadive, I.; Desai, I.; Balakrishnan, S. Fibroblast growth factor-2 signaling modulates matrix reorganization and cell cycle turnover rate in the regenerating tail of Hemidactylus flaviviridis. Acta Histochem. 2020, 122, 151464. [Google Scholar] [CrossRef]
- Vera, J.C.; Wheat, C.W.; Fescemyer, H.W.; Frilander, M.J.; Crawford, D.L.; Hanski, I.; Marden, J.H. Rapid transcriptome characterization for a non-model organism using 454 pyrosequencing. Mol. Ecol. 2008, 17, 1636–1647. [Google Scholar] [CrossRef]
- Ekblom, R.; Galindo, J. Applications of next generation sequencing in molecular ecology of non-model organisms. Heredity 2011, 107, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Rizzetto, S.; Eltahla, A.A.; Lin, P.; Bull, R.; Lloyd, A.R.; Ho, J.W.; Venturi, V.; Luciani, F. Impact of sequencing depth and read length on single cell RNA sequencing data of T cells. Sci. Rep. 2017, 7, 12781. [Google Scholar] [CrossRef]
- Saxena, S.; Singh, S.K.; Lakshmi, M.G.M.; Meghah, V.; Bhatti, B.; Swamy, C.V.B.; Sundaram, C.S.; Idris, M.M. Proteomic analysis of zebrafish caudal fin regeneration. Mol. Cell Proteom. 2012, 11, 1–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purushothaman, S.; Saxena, S.; Meghah, V.; Swamy, C.V.B.; Ortega-Martinez, O.; Dupont, S.; Idris, M. Transcriptomic and proteomic analyses of Amphiura fliformis arm tissue-undergoing regeneration. J. Proteom. 2015, 112, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.H.; Tsai, M.H.; Ho, C.C.; Chen, C.Y.; Lee, H.S. De novo transcriptome sequencing of axolotl blastema for identification of differentially expressed genes during limb regeneration. BMC Genom. 2013, 14, 434. [Google Scholar] [CrossRef] [Green Version]
- Rabinowitz, J.S.; Robitaille, A.M.; Wang, Y.; Ray, C.A.; Thummel, R.; Gu, H.; Djukovic, D.; Raftery, D.; Berndt, J.D.; Moon, R.T. Transcriptomic, proteomic, and metabolomic landscape of positional memory in the caudal fin of zebrafish. Proc. Natl. Acad. Sci. USA 2017, 114, E717–E726. [Google Scholar] [CrossRef] [Green Version]
- Murawala, H.; Ranadive, I.; Patel, S.; Desai, I.; Balakrishnan, S. Protein expression pattern and analysis of differentially expressed peptides during various stages of tail regeneration in Hemidactylus flaviviridis. Mech. Dev. 2018, 150, 1–9. [Google Scholar] [CrossRef]
- Xu, C.; Hutchins, E.D.; Tokuyama, M.A.; Wilson-Rawls, J.; Kusumi, K. Transcriptional analysis of scar-free wound healing during early stages of tail regeneration in the green anole lizard, Anolis carolinensis. J. Immunol. Regen. Med. 2020, 7, 100025. [Google Scholar] [CrossRef]
- Vitulo, N.; Dalla Valle, L.; Skobo, T.; Valle, G.; Alibardi, L. Transcriptome analysis of the regenerating tail vs. the scarring limb in lizard reveals pathways leading to successful vs. unsuccessful organ regeneration in amniotes. Dev. Dyn. 2017, 246, 116–134. [Google Scholar] [CrossRef] [Green Version]
- Khaire, K.; Verma, U.; Buch, P.; Patel, S.; Ranadive, I.; Balakrishnan, S. Site-specific variation in the activity of COX-2 alters the pattern of wound healing in the tail and limb of northern house gecko by differentially regulating the expression of local inflammatory mediators. Zoology 2021, 148, 125947. [Google Scholar] [CrossRef]
- Hutchins, E.D.; Markov, G.J.; Eckalbar, W.L.; George, R.M.; King, J.M.; Tokuyama, M.A.; Geiger, L.A.; Emmert, N.; Ammar, M.J.; Allen, A.N.; et al. Transcriptomic analysis of tail regeneration in the lizard Anolis carolinensis reveals activation of conserved vertebrate developmental and repair mechanisms. PLoS ONE 2014, 9, 105004. [Google Scholar] [CrossRef] [Green Version]
- Ermolaeva, M.A.; Michallet, M.C.; Papadopoulou, N.; Utermöhlen, O.; Kranidioti, K.; Kollias, G.; Tschopp, J.; Pasparakis, M. Function of TRADD in tumor necrosis factor receptor 1 signaling and in TRIF-dependent inflammatory responses. Nat. Immunol 2008, 9, 1037–1046. [Google Scholar] [CrossRef]
- Nagumantri, S.; Banu, S.; Idris, M. Transcriptomic and proteomic analysis of Hemidactylus frenatus during initial stages of tail regeneration. Sci. Rep. 2021, 11, 3675. [Google Scholar] [CrossRef] [PubMed]
- Poss, K.D.; Shen, J.; Nechiporuk, A.; McMahon, G.; Thisse, B.; Thisse, C.; Keating, M.T. Roles for Fgf signaling during zebrafish fin regeneration. Dev. Biol. 2000, 222, 347–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smith, A.; Avaron, F.; Guay, D.; Padhi, B.K.; Akimenko, M.A. Inhibition of BMP signaling during zebrafish fin regeneration disrupts fin growth and scleroblast differentiation and function. Dev. Biol. 2006, 299, 438–454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wehner, D.; Cizelsky, W.; Vasudevaro, M.D.; Özhan, G.; Haase, C.; Kagermeier-Schenk, B.; Röder, A.; Dorsky, R.I.; Moro, E.; Argenton, F.; et al. Wnt/β-catenin signaling defines organizing centers that orchestrate growth and differentiation of the regenerating zebrafish caudal fin. Cell Rep. 2014, 6, 467–481. [Google Scholar] [CrossRef]
- McCusker, C.D.; Athippozhy, A.; Diaz-Castillo, C.; Fowlkes, C.; Gardiner, D.M.; Voss, S.R. Positional plasticity in regenerating Amybstoma mexicanum limbs is associated with cell proliferation and pathways of cellular differentiation. BMC Dev. Biol. 2015, 15, 45. [Google Scholar] [CrossRef] [Green Version]
- Alibardi, L.; Lovicu, F.J. Immunolocalization of FGF1 and FGF2 in the regenerating tail of the lizard Lampropholis guichenoti: Implications for FGFs as trophic factors in lizard tail regeneration. Acta Histochem. 2010, 112, 459–473. [Google Scholar] [CrossRef]
- Shibata, E.; Yokota, Y.; Horita, N.; Kudo, A.; Abe, G.; Kawakami, K.; Kawakami, A. Fgf signalling controls diverse aspects of fin regeneration. Development 2016, 143, 2920–2929. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.; Shao, M.; Liu, H.; Chen, J.; Hu, J.; Zhu, L.; Liu, F.; Wang, D.; Zou, Y.; Xiong, Y.; et al. Fibroblast growth factor 21 enhances angiogenesis and wound healing of human brain microvascular endothelial cells by activating PPARγ. J. Pharmacol. Sci. 2019, 140, 120–127. [Google Scholar]
- Kawakami, Y.; Esteban, C.R.; Raya, M.; Kawakami, H.; Martí, M.; Dubova, I.; Belmonte, J.C.I. Wnt/β-catenin signaling regulates vertebrate limb regeneration. Genes Dev. 2006, 20, 32332–33237. [Google Scholar] [CrossRef] [Green Version]
- Quint, E.; Smith, A.; Avaron, F.; Laforest, L.; Miles, J.; Gaffield, W.; Akimenko, M.A. Bone patterning is altered in the regenerating zebrafish caudal fin after ectopic expression of sonic hedgehog and bmp2b or exposure to cyclopamine. Proc. Natl. Acad. Sci. USA 2002, 99, 8713–8718. [Google Scholar]
Sample | dpa | Number of Reads (Million) | Number of Bases (Gb) |
---|---|---|---|
Normal Tail (NT) | 0 | 106.57 | 8.81 |
Early Blastema (EBL) | 4 | 80.48 | 6.67 |
Blastema (BL) | 6 | 80.19 | 6.65 |
Differentiation (DF) | 10 | 87.37 | 7.23 |
Stages Compared | Transcripts | |
---|---|---|
Down-Regulated | Up-Regulated | |
Normal Tail vs. Early Blastema | 922 | 1282 |
Normal Tail vs. Blastema | 1152 | 1160 |
Normal Tail vs. Differentiation | 1194 | 719 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, S.; Ranadive, I.; Buch, P.; Khaire, K.; Balakrishnan, S. De Novo Transcriptome Sequencing and Analysis of Differential Gene Expression among Various Stages of Tail Regeneration in Hemidactylus flaviviridis. J. Dev. Biol. 2022, 10, 24. https://doi.org/10.3390/jdb10020024
Patel S, Ranadive I, Buch P, Khaire K, Balakrishnan S. De Novo Transcriptome Sequencing and Analysis of Differential Gene Expression among Various Stages of Tail Regeneration in Hemidactylus flaviviridis. Journal of Developmental Biology. 2022; 10(2):24. https://doi.org/10.3390/jdb10020024
Chicago/Turabian StylePatel, Sonam, Isha Ranadive, Pranav Buch, Kashmira Khaire, and Suresh Balakrishnan. 2022. "De Novo Transcriptome Sequencing and Analysis of Differential Gene Expression among Various Stages of Tail Regeneration in Hemidactylus flaviviridis" Journal of Developmental Biology 10, no. 2: 24. https://doi.org/10.3390/jdb10020024
APA StylePatel, S., Ranadive, I., Buch, P., Khaire, K., & Balakrishnan, S. (2022). De Novo Transcriptome Sequencing and Analysis of Differential Gene Expression among Various Stages of Tail Regeneration in Hemidactylus flaviviridis. Journal of Developmental Biology, 10(2), 24. https://doi.org/10.3390/jdb10020024