Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies
Abstract
:1. Introduction
2. Embryology
3. Genetics
3.1. Neural Tube Defects in Animal Models
3.2. Human Genetics
4. Nongenetic Factors
4.1. Maternal Factors
4.2. Medications
5. Folate Metabolism
6. Pathophysiology
7. Management
7.1. Chiari II and Hydrocephalus
7.2. Bowel, Bladder, and Sexual Dysfunction
7.3. Extremity Motor Function
7.4. Fetal Intervention
7.5. In Utero Cellular Therapies
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Avagliano, L.; Massa, V.; George, T.M.; Qureshy, S.; Bulfamante, G.P.; Finnell, R.H. Overview on Neural Tube Defects: From Development to Physical Characteristics. Birth Defects Res. 2019, 111, 1455–1467. [Google Scholar] [CrossRef] [PubMed]
- Blencowe, H.; Kancherla, V.; Moorthie, S.; Darlison, M.W.; Modell, B. Estimates of Global and Regional Prevalence of Neural Tube Defects for 2015: A Systematic Analysis. Ann. N. Y. Acad. Sci. 2018, 1414, 31–46. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mai, C.T.; Isenburg, J.L.; Canfield, M.A.; Meyer, R.E.; Correa, A.; Alverson, C.J.; Lupo, P.J.; Riehle-Colarusso, T.; Cho, S.J.; Aggarwal, D.; et al. National Population-based Estimates for Major Birth Defects, 2010–2014. Birth Defects Res. 2019, 111, 1420–1435. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, G.; Canfield, M.A.; Mai, C.T.; Gilboa, S.M.; Meyer, R.E.; Anderka, M.; Copeland, G.E.; Kucik, J.E.; Nembhard, W.N.; et al. Racial/Ethnic Differences in Survival of United States Children with Birth Defects: A Population-Based Study. J. Pediatr. 2015, 166, 819–826.e2. [Google Scholar] [CrossRef] [Green Version]
- Matthews, T.J.; MacDorman, M.F.; Thoma, M.E. Infant Mortality Statistics from the 2013 Period Linked Birth/Infant Death Data Set. Natl. Vital Stat. Rep. 2015, 64, 1–30. [Google Scholar] [PubMed]
- Harris, M.J.; Juriloff, D.M. An Update to the List of Mouse Mutants with Neural Tube Closure Defects and Advances toward a Complete Genetic Perspective of Neural Tube Closure. Birth Defects Res. Part Clin. Mol. Teratol. 2010, 88, 653–669. [Google Scholar] [CrossRef] [PubMed]
- Volpe, J.J. Neural Tube Formation and Prosencephalic Development. In Neurology of the Newborn; Saunders: London, UK, 2008; Volume 889, pp. 5–8. ISBN 9781416039952. [Google Scholar]
- Blom, H.J.; Shaw, G.M.; den Heijer, M.; Finnell, R.H. Neural Tube Defects and Folate: Case Far from Closed. Nat. Rev. Neurosci. 2006, 7, 724–731. [Google Scholar] [CrossRef]
- Schoenwolf, G.C.; Smith, J.L. Mechanisms of Neurulation: Traditional Viewpoint and Recent Advances. Development 1990, 109, 243–270. [Google Scholar] [CrossRef]
- Nakatsu, T.; Uwabe, C.; Shiota, K. Neural Tube Closure in Humans Initiates at Multiple Sites: Evidence from Human Embryos and Implications for the Pathogenesis of Neural Tube Defects. Anat. Embryol. 2000, 201, 455–466. [Google Scholar] [CrossRef] [PubMed]
- O’Rahilly, R.; Müller, F. The Two Sites of Fusion of the Neural Folds and the Two Neuropores in the Human Embryo. Teratology 2002, 65, 162–170. [Google Scholar] [CrossRef] [PubMed]
- Copp, A.J. Neurulation in the Cranial Region—Normal and Abnormal. J. Anat. 2005, 207, 623–635. [Google Scholar] [CrossRef]
- Macdonald, K.B.; Juriloff, D.M.; Harris, M.J. Developmental Study of Neural Tube Closure in a Mouse Stock with a High Incidence of Exencephaly. Teratology 1989, 39, 195–213. [Google Scholar] [CrossRef]
- Detrait, E.R.; George, T.M.; Etchevers, H.C.; Gilbert, J.R.; Vekemans, M.; Speer, M.C. Human Neural Tube Defects: Developmental Biology, Epidemiology, and Genetics. Neurotoxicol. Teratol. 2005, 27, 515–524. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.H.; Lee, J.Y.; Wang, K.-C. Secondary Neurulation Defects-1: Retained Medullary Cord. J. Korean Neurosurg. Soc. 2020, 63, 314–320. [Google Scholar] [CrossRef] [PubMed]
- Pang, D.; Chong, S.; Wang, K. Textbook of Pediatric Neurosurgery. In Secondary Neurulation Defects-1: Thickened Filum Terminale, Retained Medullary Cord; Rocco, C.D., Pang, D., Rutka, J.T., Eds.; Springer: Cham, Switzerland, 2020; pp. 1–18. ISBN 978-3-319-72167-5. [Google Scholar]
- Pang, D.; Zovickian, J.; Moes, G.S. Retained Medullary Cord in Humans Late Arrest of Secondary Neurulation. Neurosurgery 2011, 68, 1500–1519. [Google Scholar] [CrossRef] [PubMed]
- Padmanabhan, R. Etiology, Pathogenesis and Prevention of Neural Tube Defects. Congenit. Anom. 2006, 46, 55–67. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, Y.; Shinotsuka, N.; Nonomura, K.; Takemoto, K.; Kuida, K.; Yosida, H.; Miura, M. Live Imaging of Apoptosis in a Novel Transgenic Mouse Highlights Its Role in Neural Tube Closure. J. Cell Biol. 2011, 195, 1047–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, L.E.; Adzick, N.S.; Melchionne, J.; Pasquariello, P.S.; Sutton, L.N.; Whitehead, A.S. Spina Bifida. Lancet 2004, 364, 1885–1895. [Google Scholar] [CrossRef]
- Kibar, Z.; Vogan, K.J.; Groulx, N.; Justice, M.J.; Underhill, D.A.; Gros, P. Ltap, a Mammalian Homolog of Drosophila Strabismus/Van Gogh, Is Altered in the Mouse Neural Tube Mutant Loop-Tail. Nat. Genet. 2001, 28, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Murdoch, J.N.; Doudney, K.; Paternotte, C.; Copp, A.J.; Stanier, P. Severe Neural Tube Defects in the Loop-Tail Mouse Result from Mutation of Lpp1, a Novel Gene Involved in Floor Plate Specification. Hum. Mol. Genet. 2001, 10, 2593–2601. [Google Scholar] [CrossRef]
- Song, H.; Hu, J.; Chen, W.; Elliott, G.; Andre, P.; Gao, B.; Yang, Y. Planar Cell Polarity Breaks the Bilateral Symmetry by Controlling Ciliary Positioning. Nature 2010, 466, 378–382. [Google Scholar] [CrossRef] [Green Version]
- Gray, R.S.; Abitua, P.B.; Wlodarczyk, B.J.; Szabo-Rogers, H.L.; Blanchard, O.; Lee, I.; Weiss, G.S.; Liu, K.J.; Marcotte, E.M.; Wallingford, J.B.; et al. The Planar Cell Polarity Effector Fuz Is Essential for Targeted Membrane Trafficking, Ciliogenesis and Mouse Embryonic Development. Nat. Cell Biol. 2009, 11, 1225–1232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torban, E.; Patenaude, A.-M.; Leclerc, S.; Rakowiecki, S.; Gauthier, S.; Andelfinger, G.; Epstein, D.J.; Gros, P. Genetic Interaction between Members of the Vangl Family Causes Neural Tube Defects in Mice. Proc. Natl. Acad. Sci. USA 2008, 105, 3449–3454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Humphries, A.C.; Mlodzik, M. From Instruction to Output: Wnt/PCP Signaling in Development and Cancer. Curr. Opin. Cell Biol. 2018, 51, 110–116. [Google Scholar] [CrossRef] [PubMed]
- Juriloff, D.; Harris, M. A Consideration of the Evidence That Genetic Defects in Planar Cell Polarity Contribute to the Etiology of Human Neural Tube Defects. Birth Defects Res. Part A Clin. Mol. Teratol. 2012, 94, 824–840. [Google Scholar] [CrossRef]
- Humphries, A.C.; Narang, S.; Mlodzik, M. Mutations Associated with Human Neural Tube Defects Display Disrupted Planar Cell Polarity in Drosophila. Elife 2020, 9, e53532. [Google Scholar] [CrossRef] [Green Version]
- Iida, K.; Koseki, H.; Kakinuma, H.; Kato, N.; Mizutani-Koseki, Y.; Ohuchi, H.; Yoshioka, H.; Noji, S.; Kawamura, K.; Kataoka, Y.; et al. Essential Roles of the Winged Helix Transcription Factor MFH-1 in Aortic Arch Patterning and Skeletogenesis. Development 1997, 124, 4627–4638. [Google Scholar] [CrossRef] [PubMed]
- Régnier, C.H.; Masson, R.; Kedinger, V.; Textoris, J.; Stoll, I.; Chenard, M.-P.; Dierich, A.; Tomasetto, C.; Rio, M.-C. Impaired Neural Tube Closure, Axial Skeleton Malformations, and Tracheal Ring Disruption in TRAF4-Deficient Mice. Proc. Natl. Acad. Sci. USA 2002, 99, 5585–5590. [Google Scholar] [CrossRef] [Green Version]
- Kokubu, C.; Heinzmann, U.; Kokubu, T.; Sakai, N.; Kubota, T.; Kawai, M.; Wahl, M.B.; Galceran, J.; Grosschedl, R.; Ozono, K.; et al. Skeletal Defects in Ringelschwanz Mutant Mice Reveal That Lrp6 Is Required for Proper Somitogenesis and Osteogenesis. Development 2004, 131, 5469–5480. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Zhu, H.; Yang, W.; Ross, M.E.; Shaw, G.M.; Finnell, R.H. Identification of Novel CELSR1 Mutations in Spina Bifida. PLoS ONE 2014, 9, e92207. [Google Scholar] [CrossRef] [Green Version]
- Rocha, P.P.; Bleiss, W.; Schrewe, H. Mosaic Expression of Med12 in Female Mice Leads to Exencephaly, Spina Bifida, and Craniorachischisis. Birth Defects Res. Part Clin. Mol. Teratol. 2010, 88, 626–632. [Google Scholar] [CrossRef] [Green Version]
- Tian, T.; Cao, X.; Chen, Y.; Jin, L.; Li, Z.; Han, X.; Lin, Y.; Wlodarczyk, B.J.; Finnell, R.H.; Yuan, Z.; et al. Somatic and de Novo Germline Variants of MEDs in Human Neural Tube Defects. Front. Cell Dev. Biol. 2021, 9, 641831. [Google Scholar] [CrossRef] [PubMed]
- Sudiwala, S.; Palmer, A.; Massa, V.; Burns, A.J.; Dunlevy, L.P.E.; de Castro, S.C.P.; Savery, D.; Leung, K.-Y.; Copp, A.J.; Greene, N.D.E. Cellular Mechanisms Underlying Pax3-Related Neural Tube Defects and Their Prevention by Folic Acid. Dis. Model Mech. 2019, 12, dmm042234. [Google Scholar] [CrossRef] [Green Version]
- Palmer, A.J.; Savery, D.; Massa, V.; Copp, A.J.; Greene, N.D.E. Genetic Interaction of Pax3 Mutation and Canonical Wnt Signaling Modulates Neural Tube Defects and Neural Crest Abnormalities. Genesis 2021, 59, e23445. [Google Scholar] [CrossRef]
- Kibar, Z.; Torban, E.; McDearmid, J.R.; Reynolds, A.; Berghout, J.; Mathieu, M.; Kirillova, I.; Marco, P.D.; Merello, E.; Hayes, J.M.; et al. Mutations in VANGL1 Associated with Neural-Tube Defects. N. Engl. J. Med. 2007, 356, 1432–1437. [Google Scholar] [CrossRef] [PubMed]
- Morrison, K.; Papapetrou, C.; Attwood, J.; Hol, F.; Lynch, S.A.; Sampath, A.; Hamel, B.; Burn, J.; Sowden, J.; Stott, D.; et al. Genetic Mapping of the Human Homologue (T) of Mouse T (Brachyury) and a Search for Allele Association between Human T and Spina Bifida. Hum. Mol. Genet. 1996, 5, 669–674. [Google Scholar] [CrossRef] [Green Version]
- Bartsch, O.; Kirmes, I.; Thiede, A.; Lechno, S.; Gocan, H.; Florian, I.S.; Haaf, T.; Zechner, U.; Sabova, L.; Horn, F. Novel VANGL1 Gene Mutations in 144 Slovakian, Romanian and German Patients with Neural Tube Defects. Mol. Syndromol. 2012, 3, 76–81. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Lei, Y.; Zheng, Y.; Aguiar-Pulido, V.; Ross, M.E.; Peng, R.; Jin, L.; Zhang, T.; Finnell, R.H.; Wang, H. Threshold for Neural Tube Defect Risk by Accumulated Singleton Loss-of-Function Variants. Cell Res. 2018, 28, 1039–1041. [Google Scholar] [CrossRef]
- Boyle, E.A.; Li, Y.I.; Pritchard, J.K. An Expanded View of Complex Traits: From Polygenic to Omnigenic. Cell 2017, 169, 1177–1186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, J.H.; Zilber, Y.; Babayeva, S.; Liu, J.; Kyriakopoulos, P.; Marco, P.D.; Merello, E.; Capra, V.; Gros, P.; Torban, E. Mutations in the Planar Cell Polarity Gene, Fuzzy, Are Associated with Neural Tube Defects in Humans. Hum. Mol. Genet. 2011, 20, 4324–4333. [Google Scholar] [CrossRef] [Green Version]
- Rovin, B.H.; Lu, L.; Saxena, R. A Novel Polymorphism in the MCP-1 Gene Regulatory Region That Influences MCP-1 Expression. Biochem. Biophys. Res. Commun. 1999, 259, 344–348. [Google Scholar] [CrossRef]
- Chambers, C.D.; Johnson, K.A.; Dick, L.M.; Felix, R.J.; Jones, K.L. Maternal Fever and Birth Outcome: A Prospective Study. Teratology 1998, 58, 251–257. [Google Scholar] [CrossRef]
- Jensen, L.E.; Etheredge, A.J.; Brown, K.S.; Mitchell, L.E.; Whitehead, A.S. Maternal Genotype for the Monocyte Chemoattractant Protein 1 A(-2518)G Promoter Polymorphism Is Associated with the Risk of Spina Bifida in Offspring. Am. J. Med. Genet. A 2006, 140A, 1114–1118. [Google Scholar] [CrossRef]
- Shields, D.C.; Ramsbottom, D.; Donoghue, C.; Pinjon, E.; Kirke, P.N.; Molloy, A.M.; Edwards, Y.H.; Mills, J.L.; Mynett-Johnson, L.; Weir, D.G.; et al. Association between Historically High Frequencies of Neural Tube Defects and the Human T Homologue of Mouse T (Brachyury). Am. J. Med. Genet. 2000, 92, 206–211. [Google Scholar] [CrossRef]
- Jensen, L.E.; Barbaux, S.; Hoess, K.; Fraterman, S.; Whitehead, A.S.; Mitchell, L.E. The Human T Locus and Spina Bifida Risk. Hum. Genet. 2004, 115, 475–482. [Google Scholar] [CrossRef]
- Blencowe, H.; Cousens, S.; Modell, B.; Lawn, J. Folic Acid to Reduce Neonatal Mortality from Neural Tube Disorders. Int. J. Epidemiol. 2010, 39, i110–i121. [Google Scholar] [CrossRef] [PubMed]
- Rosenthal, J.; Casas, J.; Taren, D.; Alverson, C.J.; Flores, A.; Frias, J. Neural Tube Defects in Latin America and the Impact of Fortification: A Literature Review. Public Health Nutr. 2014, 17, 537–550. [Google Scholar] [CrossRef] [Green Version]
- Brody, L.C.; Conley, M.; Cox, C.; Kirke, P.N.; McKeever, M.P.; Mills, J.L.; Molloy, A.M.; O’Leary, V.B.; Parle-McDermott, A.; Scott, J.M.; et al. A Polymorphism, R653Q, in the Trifunctional Enzyme Methylenetetrahydrofolate Dehydrogenase/Methenyltetrahydrofolate Cyclohydrolase/Formyltetrahydrofolate Synthetase Is a Maternal Genetic Risk Factor for Neural Tube Defects: Report of the Birth Defects Research Group. Am. J. Hum. Genet. 2002, 71, 1207–1215. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Marco, P.; Merello, E.; Calevo, M.G.; Mascelli, S.; Raso, A.; Cama, A.; Capra, V. Evaluation of a Methylenetetrahydrofolate-Dehydrogenase 1958G>A Polymorphism for Neural Tube Defect Risk. J. Hum. Genet. 2006, 51, 98–103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parle-McDermott, A.; Kirke, P.N.; Mills, J.L.; Molloy, A.M.; Cox, C.; O’Leary, V.B.; Pangilinan, F.; Conley, M.; Cleary, L.; Brody, L.C.; et al. Confirmation of the R653Q Polymorphism of the Trifunctional C1-Synthase Enzyme as a Maternal Risk for Neural Tube Defects in the Irish Population. Eur. J. Hum. Genet. 2006, 14, 768–772. [Google Scholar] [CrossRef] [Green Version]
- Akar, N.; Akar, E.; Deda, G.; Arsan, S. Spina Bifida and Common Mutations at the Homocysteine Metabolism Pathway. Clin. Genet. 2000, 57, 230–231. [Google Scholar] [CrossRef]
- Doolin, M.-T.; Barbaux, S.; McDonnell, M.; Hoess, K.; Whitehead, A.S.; Mitchell, L.E. Maternal Genetic Effects, Exerted by Genes Involved in Homocysteine Remethylation, Influence the Risk of Spina Bifida. Am. J. Hum. Genet. 2002, 71, 1222–1226. [Google Scholar] [CrossRef] [Green Version]
- Christensen, B.; Arbour, L.; Tran, P.; Leclerc, D.; Sabbaghian, N.; Platt, R.; Gilfix, B.M.; Rosenblatt, D.S.; Gravel, R.A.; Forbes, P.; et al. Genetic Polymorphisms in Methylenetetrahydrofolate Reductase and Methionine Synthase, Folate Levels in Red Blood Cells, and Risk of Neural Tube Defects. Am. J. Med. Genet. 1999, 84, 151–157. [Google Scholar] [CrossRef]
- Wilson, A.; Platt, R.; Wu, Q.; Leclerc, D.; Christensen, B.; Yang, H.; Gravel, R.A.; Rozen, R. A Common Variant in Methionine Synthase Reductase Combined with Low Cobalamin (Vitamin B12) Increases Risk for Spina Bifida. Mol. Genet. Metab. 1999, 67, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Lemay, P.; Marco, P.D.; Traverso, M.; Merello, E.; Dionne-Laporte, A.; Spiegelman, D.; Henrion, É.; Diallo, O.; Audibert, F.; Michaud, J.L.; et al. Whole Exome Sequencing Identifies Novel Predisposing Genes in Neural Tube Defects. Mol. Genet. Genom. Med. 2018, 7, e00467. [Google Scholar] [CrossRef]
- Lemay, P.; Marco, P.D.; Emond, A.; Spiegelman, D.; Dionne-Laporte, A.; Laurent, S.; Merello, E.; Accogli, A.; Rouleau, G.A.; Capra, V.; et al. Rare Deleterious Variants in GRHL3 Are Associated with Human Spina Bifida. Hum. Mutat. 2017, 38, 716–724. [Google Scholar] [CrossRef] [PubMed]
- Lemay, P.; Guyot, M.-C.; Tremblay, É.; Dionne-Laporte, A.; Spiegelman, D.; Henrion, É.; Diallo, O.; Marco, P.D.; Merello, E.; Massicotte, C.; et al. Loss-of-Function de Novo Mutations Play an Important Role in Severe Human Neural Tube Defects. J. Med. Genet. 2015, 52, 493. [Google Scholar] [CrossRef] [Green Version]
- Azzarà, A.; Rendeli, C.; Crivello, A.M.; Brugnoletti, F.; Rumore, R.; Ausili, E.; Sangiorgi, E.; Gurrieri, F. Identification of New Candidate Genes for Spina Bifida through Exome Sequencing. Child’s Nerv. Syst. 2021, 37, 2589–2596. [Google Scholar] [CrossRef] [PubMed]
- Lei, Y.; Zhu, H.; Duhon, C.; Yang, W.; Ross, M.E.; Shaw, G.M.; Finnell, R.H. Mutations in Planar Cell Polarity Gene SCRIB Are Associated with Spina Bifida. PLoS ONE 2013, 8, e69262. [Google Scholar] [CrossRef]
- Lei, Y.; Finnell, R.H. New Techniques for the Study of Neural Tube Defects. Adv. Tech. Biol. Med. 2016, 4, 157. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Kim, S.; Chen, Z.; Cao, X.; Zhu, H.; Yang, W.; Shaw, G.M.; Zheng, Y.; Zhang, T.; Wang, H.; et al. Variants Identified in PTK7 Associated with Neural Tube Defects. Mol. Genet. Genom. Med. 2019, 7, e00584. [Google Scholar] [CrossRef] [Green Version]
- Robinson, A.; Escuin, S.; Doudney, K.; Vekemans, M.; Stevenson, R.E.; Greene, N.D.E.; Copp, A.J.; Stanier, P. Mutations in the Planar Cell Polarity Genes CELSR1 and SCRIB Are Associated with the Severe Neural Tube Defect Craniorachischisis. Hum. Mutat. 2012, 33, 440–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beaumont, M.; Akloul, L.; Carré, W.; Quélin, C.; Journel, H.; Pasquier, L.; Fradin, M.; Odent, S.; Hamdi-Rozé, H.; Watrin, E.; et al. Targeted Panel Sequencing Establishes the Implication of Planar Cell Polarity Pathway and Involves New Candidate Genes in Neural Tube Defect Disorders. Hum. Genet. 2019, 138, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Hendricks, K.A.; Nuno, O.M.; Suarez, L.; Larsen, R. Effects of Hyperinsulinemia and Obesity on Risk of Neural Tube Defects among Mexican Americans. Epidemiology 2001, 12, 630–635. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.L.; Waller, D.K.; Canfield, M.A.; Shaw, G.M.; Watkins, M.L.; Werler, M.M. Maternal Obesity, Gestational Diabetes, and Central Nervous System Birth Defects. Epidemiology 2005, 16, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Yazdy, M.M.; Mitchell, A.A.; Liu, S.; Werler, M.M. Maternal Dietary Glycaemic Intake during Pregnancy and the Risk of Birth Defects. Paediatr. Perinat. Epidemiol. 2011, 25, 340–346. [Google Scholar] [CrossRef] [Green Version]
- Taylor, R.; Davison, J.M. Type 1 Diabetes and Pregnancy. BMJ 2007, 334, 742. [Google Scholar] [CrossRef] [Green Version]
- Evers, I.M.; de Valk, H.W.; Visser, G.H.A. Risk of Complications of Pregnancy in Women with Type 1 Diabetes: Nationwide Prospective Study in The Netherlands. BMJ 2004, 328, 915. [Google Scholar] [CrossRef] [Green Version]
- Suarez, L.; Hendricks, K.; Felkner, M.; Gunter, E. Maternal Serum B12 Levels and Risk for Neural Tube Defects in a Texas-Mexico Border Population. Ann. Epidemiol. 2003, 13, 81–88. [Google Scholar] [CrossRef]
- Ray, J.G.; Blom, H.J. Vitamin B12 Insufficiency and the Risk of Fetal Neural Tube Defects. QJM Int. J. Med. 2003, 96, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Velie, E.M.; Block, G.; Shaw, G.M.; Samuels, S.J.; Schaffer, D.M.; Kulldorff, M. Maternal Supplemental and Dietary Zinc Intake and the Occurrence of Neural Tube Defects in California. Am. J. Epidemiol. 1999, 150, 605–616. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GROUP, M.V.S.R. Prevention of Neural Tube Defects: Results of the Medical Research Council Vitamin Study. Lancet 1991, 338, 131–137. [Google Scholar] [CrossRef]
- Schmidt, R.J.; Romitti, P.A.; Burns, T.L.; Browne, M.L.; Druschel, C.M.; Olney, R.S.; Study, N.B.D.P. Maternal Caffeine Consumption and Risk of Neural Tube Defects. Birth Defects Res. Part Clin. Mol. Teratol. 2009, 85, 879–889. [Google Scholar] [CrossRef]
- Grewal, J.; Carmichael, S.L.; Ma, C.; Lammer, E.J.; Shaw, G.M. Maternal Periconceptional Smoking and Alcohol Consumption and Risk for Select Congenital Anomalies. Birth Defects Res. Part Clin. Mol. Teratol. 2008, 82, 519–526. [Google Scholar] [CrossRef] [Green Version]
- Moretti, M.E.; Bar-Oz, B.; Fried, S.; Koren, G. Maternal Hyperthermia and the Risk for Neural Tube Defects in Offspring. Epidemiology 2005, 16, 216–219. [Google Scholar] [CrossRef]
- Robert, E.; Guibaud, P. Maternal Valproic Acid and Congenital Neural Tube Defects. Lancet 1982, 320, 937. [Google Scholar] [CrossRef]
- Jeanette, W. Mode of Action: Inhibition of Histone Deacetylase, Altering WNT-Dependent Gene Expression, and Regulation of Beta-Catenin—Developmental Effects of Valproic Acid. Crit. Rev. Toxicol. 2005, 35, 727–738. [Google Scholar] [CrossRef]
- Meador, K.J.; Baker, G.A.; Finnell, R.H.; Kalayjian, L.A.; Liporace, J.D.; Loring, D.W.; Mawer, G.; Pennell, P.B.; Smith, J.C.; Wolff, M.C. In Utero Antiepileptic Drug Exposure. Neurology 2006, 67, 407–412. [Google Scholar] [CrossRef] [Green Version]
- Weston, J.; Bromley, R.; Jackson, C.F.; Adab, N.; Clayton-Smith, J.; Greenhalgh, J.; Hounsome, J.; McKay, A.J.; Smith, C.T.; Marson, A.G. Monotherapy Treatment of Epilepsy in Pregnancy: Congenital Malformation Outcomes in the Child. Cochrane Database Syst. Rev. 2016, 11, CD010224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, K. Why Is Folate Effective in Preventing Neural Tube Closure Defects? Med. Hypothes. 2020, 134, 109429. [Google Scholar] [CrossRef] [PubMed]
- Ichinohe, A.; Kure, S.; Mikawa, S.; Ueki, T.; Kojima, K.; Fujiwara, K.; Iinuma, K.; Matsubara, Y.; Sato, K. Glycine Cleavage System in Neurogenic Regions. Eur. J. Neurosci. 2004, 19, 2365–2370. [Google Scholar] [CrossRef]
- Naderi, N.; House, J.D. Recent Developments in Folate Nutrition. Adv. Food Nutr. Res. 2018, 83, 195–213. [Google Scholar] [CrossRef] [PubMed]
- Beaudin, A.E.; Stover, P.J. Insights into Metabolic Mechanisms Underlying Folate-responsive Neural Tube Defects: A Minireview. Birth Defects Res. Part Clin. Mol. Teratol. 2009, 85, 274–284. [Google Scholar] [CrossRef] [Green Version]
- Lan, X.; Field, M.S.; Stover, P.J. Cell Cycle Regulation of Folate-mediated One-carbon Metabolism. Wiley Interdiscip. Rev. Syst. Biol. Med. 2018, 10, e1426. [Google Scholar] [CrossRef]
- Piedrahita, J.A.; Oetama, B.; Bennett, G.D.; van Waes, J.; Kamen, B.A.; Richardson, J.; Lacey, S.W.; Anderson, R.G.W.; Finnell, R.H. Mice Lacking the Folic Acid-Binding Protein Folbp1 Are Defective in Early Embryonic Development. Nat. Genet. 1999, 23, 228–232. [Google Scholar] [CrossRef]
- Taparia, S.; Waes, J.G.; Rosenquist, T.H.; Finnell, R.H. Importance of Folate-Homocysteine Homeostasis during Early Embryonic Development. Clin. Chem Lab. Med. 2007, 45, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Russell, R.G.; Wang, Y.; Liu, L.; Gao, F.; Kneitz, B.; Edelmann, W.; Goldman, I.D. Rescue of Embryonic Lethality in Reduced Folate Carrier-Deficient Mice by Maternal Folic Acid Supplementation Reveals Early Neonatal Failure of Hematopoietic Organs. J. Biol. Chem. 2001, 276, 10224–10228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Copp, A.J.; Stanier, P.; Greene, N.D. Neural Tube Defects: Recent Advances, Unsolved Questions, and Controversies. Lancet Neurol. 2013, 12, 799–810. [Google Scholar] [CrossRef] [Green Version]
- Greene, N.D.E.; Stanier, P.; Moore, G.E. The Emerging Role of Epigenetic Mechanisms in the Etiology of Neural Tube Defects. Epigenetics 2011, 6, 875–883. [Google Scholar] [CrossRef] [Green Version]
- Borgel, J.; Guibert, S.; Li, Y.; Chiba, H.; Schübeler, D.; Sasaki, H.; Forné, T.; Weber, M. Targets and Dynamics of Promoter DNA Methylation during Early Mouse Development. Nat. Genet. 2010, 42, 1093–1100. [Google Scholar] [CrossRef]
- Dunlevy, L.P.E.; Burren, K.A.; Chitty, L.S.; Copp, A.J.; Greene, N.D.E. Excess Methionine Suppresses the Methylation Cycle and Inhibits Neural Tube Closure in Mouse Embryos. FEBS Lett. 2006, 580, 2803–2807. [Google Scholar] [CrossRef] [Green Version]
- Afman, L.A.; Blom, H.J.; Drittij, M.-J.; Brouns, M.R.; Straaten, H.W.M. van Inhibition of Transmethylation Disturbs Neurulation in Chick Embryos. Dev. Brain Res. 2005, 158, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Dunlevy, L.P.E.; Burren, K.A.; Mills, K.; Chitty, L.S.; Copp, A.J.; Greene, N.D.E. Integrity of the Methylation Cycle Is Essential for Mammalian Neural Tube Closure. Birth Defects Res. Part Clin. Mol. Teratol. 2006, 76, 544–552. [Google Scholar] [CrossRef]
- Clarke, S.; Banfield, K. S-Adenosylmethionine-Dependent Methyltransferases; Cambridge University Press: Cambridge, UK, 2001; pp. i–xvii. [Google Scholar]
- Jacob, S. Homocysteine Metabolism. Annu. Rev. Nutr. 1999, 19, 217–246. [Google Scholar]
- van der Linden, I.J.M.; Heil, S.G.; van Egmont Petersen, M.; van Straaten, H.W.; den Heijer, M.; Blom, H.J. Inhibition of Methylation and Changes in Gene Expression in Relation to Neural Tube Defects. Birth Defects Res. Part Clin. Mol. Teratol. 2008, 82, 676–683. [Google Scholar] [CrossRef]
- Toriyama, M.; Toriyama, M.; Wallingford, J.B.; Finnell, R.H. Folate-dependent Methylation of Septins Governs Ciliogenesis during Neural Tube Closure. FASEB J. 2017, 31, 3622–3635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brouwer, I.A.; van Dusseldorp, M.; Thomas, C.M.G.; van der Put, N.M.J.; Gaytant, M.A.; Eskes, T.K.A.B.; Hautvast, J.G.A.J.; Steegers-Theunissen, R.P.M. Homocysteine Metabolism and Effects of Folic Acid Supplementation in Patients Affected with Spina Bifida. Neuropediatrics 2000, 31, 298–302. [Google Scholar] [CrossRef] [PubMed]
- Kirke, P.N.; Mills, J.L.; Molloy, A.M.; Brody, L.C.; O’Leary, V.B.; Daly, L.; Murray, S.; Conley, M.; Mayne, P.D.; Smith, O.; et al. Impact of the MTHFR C677T Polymorphism on Risk of Neural Tube Defects: Case-Control Study. BMJ 2004, 328, 1535. [Google Scholar] [CrossRef] [Green Version]
- Bennett, G.D.; VanWaes, J.; Moser, K.; Chaudoin, T.; Starr, L.; Rosenquist, T.H. Failure of Homocysteine to Induce Neural Tube Defects in a Mouse Model. Birth Defects Res. Part B Dev. Reprod. Toxicol. 2006, 77, 89–94. [Google Scholar] [CrossRef]
- Greene, N.D.; Dunlevy, L.P.; Copp, A.J. Homocysteine Is Embryotoxic but Does Not Cause Neural Tube Defects in Mouse Embryos. Anat. Embryol. 2003, 206, 185–191. [Google Scholar] [CrossRef]
- Yang, M.; Li, W.; Wan, Z.; Du, Y. Elevated Homocysteine Levels in Mothers with Neural Tube Defects: A Systematic Review and Meta-Analysis. J. Matern. Fetal Neonatal Med. 2016, 30, 2051–2057. [Google Scholar] [CrossRef] [PubMed]
- Crider, K.S.; Bailey, L.B.; Berry, R.J. Folic Acid Food Fortification—Its History, Effect, Concerns, and Future Directions. Nutrients 2011, 3, 370–384. [Google Scholar] [CrossRef] [Green Version]
- Schorah, C. Dick Smithells, Folic Acid, and the Prevention of Neural Tube Defects. Birth Defects Res. Part Clin. Mol. Teratol. 2009, 85, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Berry, R.J.; Li, Z.; Erickson, J.D.; Li, S.; Moore, C.A.; Wang, H.; Mulinare, J.; Zhao, P.; Wong, L.Y.; Gindler, J.; et al. Prevention of Neural-Tube Defects with Folic Acid in China. China-U.S. Collaborative Project for Neural Tube Defect Prevention. N. Engl. J. Med. 1999, 341, 1485–1490. [Google Scholar] [CrossRef]
- Czeizel, A.E.; Dudás, I.; Paput, L.; Bánhidy, F. Prevention of Neural-Tube Defects with Periconceptional Folic Acid, Methylfolate, or Multivitamins? Ann. Nutr. Metab. 2011, 58, 263–271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smithells, R.W.; Sheppard, S.; Schorah, C.J.; Seller, M.J.; Nevin, N.C.; Harris, R.; Read, A.P.; Fielding, D.W. Apparent Prevention of Neural Tube Defects by Periconceptional Vitamin Supplementation. Arch. Dis. Child. 1981, 56, 911. [Google Scholar] [CrossRef] [Green Version]
- Wals, P.D.; Tairou, F.; Allen, M.I.V.; Uh, S.-H.; Lowry, R.B.; Sibbald, B.; Evans, J.A.; den Hof, M.C.V.; Zimmer, P.; Crowley, M.; et al. Reduction in Neural-Tube Defects after Folic Acid Fortification in Canada. N. Engl. J. Med. 2007, 357, 135–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Williams, L.J.; Mai, C.T.; Edmonds, L.D.; Shaw, G.M.; Kirby, R.S.; Hobbs, C.A.; Sever, L.E.; Miller, L.A.; Meaney, F.J.; Levitt, M. Prevalence of Spina Bifida and Anencephaly during the Transition to Mandatory Folic Acid Fortification in the United States. Teratology 2002, 66, 33–39. [Google Scholar] [CrossRef]
- Administration, F.D. Food Standards: Amendment of Standards of Identity for Enriched Grain Products to Require Addition of Folic Acid. 1996; pp. 8781–8797. Available online: https://www.govinfo.gov/app/details/FR-1996-08-05/96-19803 (accessed on 16 December 2021).
- Morris, J.K.; Addor, M.-C.; Ballardini, E.; Barisic, I.; Barrachina-Bonet, L.; Braz, P.; Cavero-Carbonell, C.; Hond, E.D.; Garne, E.; Gatt, M.; et al. Prevention of Neural Tube Defects in Europe: A Public Health Failure. Front. Pediatr. 2021, 9, 647038. [Google Scholar] [CrossRef]
- Copp, A.J.; Adzick, N.S.; Chitty, L.S.; Fletcher, J.M.; Holmbeck, G.N.; Shaw, G.M. Spina Bifida. Nat. Rev. Dis. Primers 2015, 1, 15007. [Google Scholar] [CrossRef]
- Heffez, D.S.; Aryanpur, J.; Hutchins, G.M.; Freeman, J.M. The Paralysis Associated with Myelomeningocele: Clinical and Experimental Data Implicating a Preventable Spinal Cord Injury. Neurosurgery 1990, 26, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Heffez, D.S.; Aryanpur, J.; Rotellini, N.A.; Hutchins, G.M.; Freeman, J.M. Intrauterine Repair of Experimental Surgically Created Dysraphism. Neurosurgery 1993, 32, 1005–1010. [Google Scholar] [CrossRef]
- Stiefel, D.; Copp, A.J.; Meuli, M. Fetal Spina Bifida in a Mouse Model: Loss of Neural Function in Utero. J. Neurosurg. Pediatr. 2007, 106, 213–221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sival, D.A.; van Weerden, T.W.; Vles, J.S.H.; Timmer, A.; den Dunnen, W.F.A.; Staal-Schreinemachers, A.L.; Hoving, E.W.; Sollie, K.M.; Kranen-Mastenbroek, V.J.M.; Sauer, P.J.J.; et al. Neonatal Loss of Motor Function in Human Spina Bifida Aperta. Pediatrics 2004, 114, 427–434. [Google Scholar] [CrossRef]
- Sival, D.A.; Begeer, J.H.; Staal-Schreinemachers, A.L.; Vos-Niël, J.M.E.; Beekhuis, J.R.; Prechtl, H.F.R. Perinatal Motor Behaviour and Neurological Outcome in Spina Bifida Aperta. Early Hum. Dev. 1997, 50, 27–37. [Google Scholar] [CrossRef]
- Paek, B.W.; Farmer, D.L.; Wilkinson, C.C.; Albanese, C.T.; Peacock, W.; Harrison, M.R.; Jennings, R.W. Hindbrain Herniation Develops in Surgically Created Myelomeningocele but Is Absent after Repair in Fetal Lambs. Am. J. Obstet. Gynecol. 2000, 183, 1119–1123. [Google Scholar] [CrossRef]
- Perlman, J.M.; Wyllie, J.; Kattwinkel, J.; Wyckoff, M.H.; Aziz, K.; Guinsburg, R.; Kim, H.-S.; Liley, H.G.; Mildenhall, L.; Simon, W.M.; et al. Part 7: Neonatal Resuscitation. Circulation 2015, 132, S204–S241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wyckoff, M.H.; Aziz, K.; Escobedo, M.B.; Kapadia, V.S.; Kattwinkel, J.; Perlman, J.M.; Simon, W.M.; Weiner, G.M.; Zaichkin, J.G. Part 13: Neonatal Resuscitation. Circulation 2015, 132, S543–S560. [Google Scholar] [CrossRef]
- Rintoul, N.E.; Sutton, L.N.; Hubbard, A.M.; Cohen, B.; Melchionni, J.; Pasquariello, P.S.; Adzick, N.S. A New Look at Myelomeningoceles: Functional Level, Vertebral Level, Shunting, and the Implications for Fetal Intervention. Pediatrics 2002, 109, 409–413. [Google Scholar] [CrossRef]
- Bauer, S.B. The Management of the Myelodysplastic Child: A Paradigm Shift. BJU Int. 2003, 92, 23–28. [Google Scholar] [CrossRef]
- Streur, C.S.; Corona, L.; Smith, J.E.; Lin, M.; Wiener, J.S.; Wittmann, D.A. Sexual Function of Men and Women with Spina Bifida: A Scoping Literature Review. Sex. Med. Rev. 2021, 9, 244–266. [Google Scholar] [CrossRef]
- Hughes, T.L.; Simmons, K.L.; Tejwani, R.; Barton, K.D.; Wiener, J.S.; Purves, J.T.; Routh, J.C. Sexual Function and Dysfunction in Individuals with Spina Bifida: A Systematic Review. Urology 2021, 156, 308–319. [Google Scholar] [CrossRef] [PubMed]
- Choi, E.K.; Kim, S.W.; Ji, Y.; Lim, S.; Han, S.W. Sexual Function and Qualify of Life in Women with Spina Bifida: Are the Women with Spina Bifida Satisfied with Their Sexual Activity? Neurourol. Urodynam. 2018, 37, 1785–1793. [Google Scholar] [CrossRef]
- Choi, E.K.; Ji, Y.; Han, S.W. Sexual Function and Quality of Life in Young Men with Spina Bifida: Could It Be Neglected Aspects in Clinical Practice? Urology 2017, 108, 225–232. [Google Scholar] [CrossRef] [PubMed]
- Hirose, S.; Farmer, D.L.; Albanese, C.T. Fetal Surgery for Myelomeningocele. Curr. Opin. Obstet. Gynecol. 2001, 13, 215–222. [Google Scholar] [CrossRef]
- Coniglio, S.J.; Anderson, S.M.; Ferguson, J.E., II. Functional Motor Outcome in Children with Myelomeningocele: Correlation with Anatomic Level on Prenatal Ultrasound. Dev. Med. Child. Neurol. 1996, 38, 675–680. [Google Scholar] [CrossRef] [PubMed]
- Bowman, R.M.; McLone, D.G.; Grant, J.A.; Tomita, T.; Ito, J.A. Spina Bifida Outcome: A 25-Year Prospective. Pediatr. Neurosurg. 2001, 34, 114–120. [Google Scholar] [CrossRef]
- Dicianno, B.E.; Karmarkar, A.; Houtrow, A.; Crytzer, T.M.; Cushanick, K.M.; McCoy, A.; Wilson, P.; Chinarian, J.; Neufeld, J.; Smith, K.; et al. Factors Associated with Mobility Outcomes in a National Spina Bifida Patient Registry. Am. J. Phys. Med. Rehab. 2015, 94, 1015–1025. [Google Scholar] [CrossRef] [Green Version]
- Sharrard, W.J.W.; Zachary, R.B.; Lorber, J. 18 The Long-Term Evaluation of a Trial of Immediate and Delayed Closure of Spina Bifida Cystica. Clin. Orthop. Relat. Res. (1976–2007) 1967, 50, 197–202. [Google Scholar] [CrossRef]
- Adzick, N.S.; Thom, E.A.; Spong, C.Y.; Brock, J.W.; Burrows, P.K.; Johnson, M.P.; Howell, L.J.; Farrell, J.A.; Dabrowiak, M.E.; Sutton, L.N.; et al. A Randomized Trial of Prenatal versus Postnatal Repair of Myelomeningocele. N. Engl. J. Med. 2011, 364, 993–1004. [Google Scholar] [CrossRef] [Green Version]
- Sutton, L.N.; Adzick, N.S.; Bilaniuk, L.T.; Johnson, M.P.; Crombleholme, T.M.; Flake, A.W. Improvement in Hindbrain Herniation Demonstrated by Serial Fetal Magnetic Resonance Imaging Following Fetal Surgery for Myelomeningocele. JAMA 1999, 282, 1826–1831. [Google Scholar] [CrossRef] [Green Version]
- Adzick, N.S.; Sutton, L.N.; Crombleholme, T.M.; Flake, A.W. Successful Fetal Surgery for Spina Bifida. Lancet 1998, 352, 1675–1676. [Google Scholar] [CrossRef]
- Bruner, J.P.; Tulipan, N.; Paschall, R.L.; Boehm, F.H.; Walsh, W.F.; Silva, S.R.; Hernanz-Schulman, M.; Lowe, L.H.; Reed, G.W. Fetal Surgery for Myelomeningocele and the Incidence of Shunt-Dependent Hydrocephalus. JAMA 1999, 282, 1819–1825. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farmer, D.L.; Thom, E.A.; Brock, J.W.; Burrows, P.K.; Johnson, M.P.; Howell, L.J.; Farrell, J.A.; Gupta, N.; Adzick, N.S.; Management of Myelomeningocele Study Investigators. The Management of Myelomeningocele Study: Full Cohort 30-Month Pediatric Outcomes. Am. J. Obstet. Gynecol. 2018, 218, 256.e1–256.e13. [Google Scholar] [CrossRef] [Green Version]
- Houtrow, A.J.; MacPherson, C.; Jackson-Coty, J.; Rivera, M.; Flynn, L.; Burrows, P.K.; Adzick, N.S.; Fletcher, J.; Gupta, N.; Howell, L.J.; et al. Prenatal Repair and Physical Functioning Among Children with Myelomeningocele. JAMA Pediatr. 2021, 175, e205674. [Google Scholar] [CrossRef]
- Lee, D.-H.; Park, S.; Kim, E.Y.; Kim, S.-K.; Chung, Y.-N.; Cho, B.-K.; Lee, Y.J.; Lim, J.; Wang, K.-C. Enhancement of Re-Closure Capacity by the Intra-Amniotic Injection of Human Embryonic Stem Cells in Surgically Induced Spinal Open Neural Tube Defects in Chick Embryos. Neurosci. Lett. 2004, 364, 98–100. [Google Scholar] [CrossRef]
- Lee, D.-H.; Kim, E.Y.; Park, S.; Phi, J.H.; Kim, S.-K.; Cho, B.-K.; Lim, J.; Wang, K.-C. Reclosure of Surgically Induced Spinal Open Neural Tube Defects by the Intraamniotic Injection of Human Embryonic Stem Cells in Chick Embryos 24 Hours after Lesion Induction. J. Neurosurg. Pediatr. 2006, 105, 127–133. [Google Scholar] [CrossRef]
- Lee, D.-H.; Phi, J.H.; Kim, S.-K.; Cho, B.-K.; Kim, S.U.; Wang, K.-C. Enhanced Reclosure of Surgically Induced Spinal Open Neural Tube Defects in Chick Embryos by Injecting Human Bone Marrow Stem Cells into the Amniotic Cavity. Neurosurgery 2010, 67, 129–135. [Google Scholar] [CrossRef] [PubMed]
- Fauza, D.O.; Jennings, R.W.; Teng, Y.D.; Snyder, E.Y. Neural Stem Cell Delivery to the Spinal Cord in an Ovine Model of Fetal Surgery for Spina Bifida. Surgery 2008, 144, 367–373. [Google Scholar] [CrossRef] [PubMed]
- Saadai, P.; Wang, A.; Nout, Y.S.; Downing, T.L.; Lofberg, K.; Beattie, M.S.; Bresnahan, J.C.; Li, S.; Farmer, D.L. Human Induced Pluripotent Stem Cell-Derived Neural Crest Stem Cells Integrate into the Injured Spinal Cord in the Fetal Lamb Model of Myelomeningocele. J. Pediatr. Surg. 2013, 48, 158–163. [Google Scholar] [CrossRef]
- Kajiwara, K.; Tanemoto, T.; Wada, S.; Karibe, J.; Ihara, N.; Ikemoto, Y.; Kawasaki, T.; Oishi, Y.; Samura, O.; Okamura, K.; et al. Fetal Therapy Model of Myelomeningocele with Three-Dimensional Skin Using Amniotic Fluid Cell-Derived Induced Pluripotent Stem Cells. Stem. Cell Rep. 2017, 8, 1701–1713. [Google Scholar] [CrossRef] [PubMed]
- Abe, Y.; Ochiai, D.; Masuda, H.; Sato, Y.; Otani, T.; Fukutake, M.; Ikenoue, S.; Miyakoshi, K.; Okano, H.; Tanaka, M. In Utero Amniotic Fluid Stem Cell Therapy Protects Against Myelomeningocele via Spinal Cord Coverage and Hepatocyte Growth Factor Secretion. Stem. Cell Transl. Med. 2019, 8, 1170–1179. [Google Scholar] [CrossRef] [Green Version]
- Shieh, H.F.; Tracy, S.A.; Hong, C.R.; Chalphin, A.V.; Ahmed, A.; Rohrer, L.; Zurakowski, D.; Fauza, D.O. Transamniotic Stem Cell Therapy (TRASCET) in a Rabbit Model of Spina Bifida. J. Pediatr. Surg. 2019, 54, 293–296. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Gao, F.; Ma, L.; Jiang, J.; Miao, J.; Jiang, M.; Fan, Y.; Wang, L.; Wu, D.; Liu, B.; et al. Therapeutic Potential of in Utero Mesenchymal Stem Cell (MSCs) Transplantation in Rat Foetuses with Spina Bifida Aperta. J. Cell Mol. Med. 2012, 16, 1606–1617. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Miao, J.; Zhao, G.; Wu, D.; Liu, B.; Wei, X.; Cao, S.; Gu, H.; Zhang, Y.; Wang, L.; et al. Different Expression Patterns of Growth Factors in Rat Fetuses with Spina Bifida Aperta after in Utero Mesenchymal Stromal Cell Transplantation. Cytotherapy 2014, 16, 319–330. [Google Scholar] [CrossRef]
- Wang, A.; Brown, E.G.; Lankford, L.; Keller, B.A.; Pivetti, C.D.; Sitkin, N.A.; Beattie, M.S.; Bresnahan, J.C.; Farmer, D.L. Placental Mesenchymal Stromal Cells Rescue Ambulation in Ovine Myelomeningocele. Stem. Cell Transl. Med. 2015, 4, 659–669. [Google Scholar] [CrossRef] [PubMed]
- Kabagambe, S.; Keller, B.; Becker, J.; Goodman, L.; Pivetti, C.; Lankford, L.; Chung, K.; Lee, C.; Chen, Y.J.; Kumar, P.; et al. Placental Mesenchymal Stromal Cells Seeded on Clinical Grade Extracellular Matrix Improve Ambulation in Ovine Myelomeningocele. J. Pediatr. Surg. 2017, 53, 178–182. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hassan, A.-E.S.; Du, Y.L.; Lee, S.Y.; Wang, A.; Farmer, D.L. Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies. J. Dev. Biol. 2022, 10, 22. https://doi.org/10.3390/jdb10020022
Hassan A-ES, Du YL, Lee SY, Wang A, Farmer DL. Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies. Journal of Developmental Biology. 2022; 10(2):22. https://doi.org/10.3390/jdb10020022
Chicago/Turabian StyleHassan, Abd-Elrahman Said, Yimeng Lina Du, Su Yeon Lee, Aijun Wang, and Diana Lee Farmer. 2022. "Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies" Journal of Developmental Biology 10, no. 2: 22. https://doi.org/10.3390/jdb10020022
APA StyleHassan, A. -E. S., Du, Y. L., Lee, S. Y., Wang, A., & Farmer, D. L. (2022). Spina Bifida: A Review of the Genetics, Pathophysiology and Emerging Cellular Therapies. Journal of Developmental Biology, 10(2), 22. https://doi.org/10.3390/jdb10020022