The Immunoglobulin Superfamily Members syg-2 and syg-1 Regulate Neurite Development in C. elegans
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Genetics
2.2. EMS Mutagenesis and Genome Resequencing
2.3. Imaging and Analysis
2.4. Data Availability
3. Results
3.1. syg-2 Mutations Cause Pdns
3.2. syg-2 and syg-1 Function in a Common Pathway in Parallel to Wnt Signaling
3.3. syg-2 and syg-1 Mutations are Additive with fmi-1
3.4. syg-1 and syg-2 Primarily Affect DD Neurons, While fmi-1 Affects VD Neurons
3.5. syg-2 and Wnt Signaling Mutations Result in Bipolar DD Neurons
3.6. syg-2 Mutations Result in Fewer DD Synapses
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Najarro, E.H.; Ackley, B.D.C. Elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons. Dev. Biol. 2013, 377, 224–235. [Google Scholar] [CrossRef] [Green Version]
- Usui, T.; Shima, Y.; Shimada, Y.; Hirano, S.; Burgess, R.W.; Schwarz, T.L.; Takeichi, M.; Uemura, T. Flamingo, a seven-pass transmembrane cadherin, regulates planar cell polarity under the control of Frizzled. Cell 1999, 98, 585–595. [Google Scholar] [CrossRef] [Green Version]
- Liebscher, I.; Cevheroglu, O.; Hsiao, C.C.; Maia, A.F.; Schihada, H.; Scholz, N.; Soave, M.; Spiess, K.; Trajkovic, K.; Kosloff, M.; et al. A guide to adhesion GPCR research. FEBS J. 2021. [Google Scholar] [CrossRef]
- Zhou, L.; Bar, I.; Achouri, Y.; Campbell, K.; De Backer, O.; Hebert, J.M.; Jones, K.; Kessaris, N.; de Rouvroit, C.L.; O’Leary, D.; et al. Early forebrain wiring: Genetic dissection using conditional Celsr3 mutant mice. Science 2008, 320, 946–949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, B.; Usui, T.; Uemura, T.; Jan, L.; Jan, Y.N. Flamingo controls the planar polarity of sensory bristles and asymmetric division of sensory organ precursors in Drosophila. Curr. Biol. 1999, 9, 1247–1250. [Google Scholar] [CrossRef] [Green Version]
- Das, G.; Reynolds-Kenneally, J.; Mlodzik, M. The atypical cadherin Flamingo links Frizzled and Notch signaling in planar polarity establishment in the Drosophila eye. Dev. Cell 2002, 2, 655–666. [Google Scholar] [CrossRef] [Green Version]
- Chen, W.S.; Antic, D.; Matis, M.; Logan, C.Y.; Povelones, M.; Anderson, G.A.; Nusse, R.; Axelrod, J.D. Asymmetric homotypic interactions of the atypical cadherin flamingo mediate intercellular polarity signaling. Cell 2008, 133, 1093–1105. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mouri, K.; Horiuchi, S.Y.; Uemura, T. Cohesin controls planar cell polarity by regulating the level of the seven-pass transmembrane cadherin Flamingo. Genes Cells 2012, 17, 509–524. [Google Scholar] [CrossRef]
- Bao, H.; Berlanga, M.L.; Xue, M.; Hapip, S.M.; Daniels, R.W.; Mendenhall, J.M.; Alcantara, A.A.; Zhang, B. The atypical cadherin flamingo regulates synaptogenesis and helps prevent axonal and synaptic degeneration in Drosophila. Mol. Cell Neurosci. 2007, 34, 662–678. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hakeda-Suzuki, S.; Berger-Muller, S.; Tomasi, T.; Usui, T.; Horiuchi, S.Y.; Uemura, T.; Suzuki, T. Golden Goal collaborates with Flamingo in conferring synaptic-layer specificity in the visual system. Nat. Neurosci. 2011, 14, 314–323. [Google Scholar] [CrossRef] [Green Version]
- Najarro, E.H.; Wong, L.; Zhen, M.; Carpio, E.P.; Goncharov, A.; Garriga, G.; Lundquist, E.A.; Jin, Y.; Ackley, B.D. Caenorhabditis elegans flamingo cadherin fmi-1 regulates GABAergic neuronal development. J. Neurosci. 2012, 32, 4196–4211. [Google Scholar] [CrossRef] [PubMed]
- Qu, Y.; Huang, Y.; Feng, J.; Alvarez-Bolado, G.; Grove, E.A.; Yang, Y.; Tissir, F.; Zhou, L.; Goffinet, A.M. Genetic evidence that Celsr3 and Celsr2, together with Fzd3, regulate forebrain wiring in a Vangl-independent manner. Proc. Natl. Acad. Sci. USA 2014, 111, E2996–E3004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, F.; Wang, Q.; Li, C.; Yu, P.; Qu, Y.; Zhou, L. The role of Celsr3 in the development of central somatosensory projections from dorsal root ganglia. Neuroscience 2017, 359, 267–276. [Google Scholar] [CrossRef]
- Thakar, S.; Wang, L.; Yu, T.; Ye, M.; Onishi, K.; Scott, J.; Qi, J.; Fernandes, C.; Han, X.; Yates, J.R., 3rd; et al. Evidence for opposing roles of Celsr3 and Vangl2 in glutamatergic synapse formation. Proc. Natl. Acad. Sci. USA 2017, 114, E610–E618. [Google Scholar] [CrossRef] [Green Version]
- Chai, G.; Goffinet, A.M.; Tissir, F. Celsr3 and Fzd3 in axon guidance. Int. J. Biochem. Cell Biol. 2015, 64, 11–14. [Google Scholar] [CrossRef]
- Formstone, C.J.; Mason, I. Combinatorial activity of Flamingo proteins directs convergence and extension within the early zebrafish embryo via the planar cell polarity pathway. Dev. Biol. 2005, 282, 320–335. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.; Fetter, R.D.; Bargmann, C.I. Synaptic specificity is generated by the synaptic guidepost protein SYG-2 and its receptor, SYG-1. Cell 2004, 116, 869–881. [Google Scholar] [CrossRef] [Green Version]
- Shen, K.; Bargmann, C.I. The immunoglobulin superfamily protein SYG-1 determines the location of specific synapses in C. elegans. Cell 2003, 112, 619–630. [Google Scholar] [CrossRef] [Green Version]
- Chao, D.L.; Shen, K. Functional dissection of SYG-1 and SYG-2, cell adhesion molecules required for selective synaptogenesis in C. elegans. Mol. Cell Neurosci. 2008, 39, 248–257. [Google Scholar] [CrossRef] [Green Version]
- Brenner, S. The genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef]
- Afgan, E.; Baker, D.; Batut, B.; van den Beek, M.; Bouvier, D.; Cech, M.; Chilton, J.; Clements, D.; Coraor, N.; Gruning, B.A.; et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 2018, 46, W537–W544. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minevich, G.; Park, D.S.; Blankenberg, D.; Poole, R.J.; Hobert, O. CloudMap: A cloud-based pipeline for analysis of mutant genome sequences. Genetics 2012, 192, 1249–1269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ackley, B.D.; Kang, S.H.; Crew, J.R.; Suh, C.; Jin, Y.; Kramer, J.M. The basement membrane components nidogen and type XVIII collagen regulate organization of neuromuscular junctions in Caenorhabditis elegans. J. Neurosci 2003, 23, 3577–3587. [Google Scholar] [CrossRef] [Green Version]
- Team, R.C. R: A language and environment for statistical computing. In R Foundation for Statistical Computing; R Foundation: Vienna, Austria, 2013. [Google Scholar]
- Jorgensen, E.M. Gaba. WormBook 2005, 1–13. [Google Scholar] [CrossRef]
- Eastman, C.; Horvitz, H.R.; Jin, Y. Coordinated transcriptional regulation of the unc-25 glutamic acid decarboxylase and the unc-47 GABA vesicular transporter by the Caenorhabditis elegans UNC-30 homeodomain protein. J. Neurosci. 1999, 19, 6225–6234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, Y.; Hoskins, R.; Horvitz, H.R. Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein. Nature 1994, 372, 780–783. [Google Scholar] [CrossRef]
- Huang, X.; Huang, P.; Robinson, M.K.; Stern, M.J.; Jin, Y. UNC-71, a disintegrin and metalloprotease (ADAM) protein, regulates motor axon guidance and sex myoblast migration in C. elegans. Development 2003, 130, 3147–3161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steimel, A.; Wong, L.; Najarro, E.H.; Ackley, B.D.; Garriga, G.; Hutter, H. The Flamingo ortholog FMI-1 controls pioneer-dependent navigation of follower axons in C. elegans. Development 2010, 137, 3663–3673. [Google Scholar] [CrossRef] [Green Version]
- Sawa, H.; Lobel, L.; Horvitz, H.R. The Caenorhabditis elegans gene lin-17, which is required for certain asymmetric cell divisions, encodes a putative seven-transmembrane protein similar to the Drosophila frizzled protein. Genes Dev. 1996, 10, 2189–2197. [Google Scholar] [CrossRef] [Green Version]
- Ackley, B.D.C. Elegans fmi-1/flamingo and Wnt pathway components interact genetically to control the anteroposterior neurite growth of the VD GABAergic neurons. Worm 2013, 2, e25715. [Google Scholar] [CrossRef] [Green Version]
- Wanner, N.; Noutsou, F.; Baumeister, R.; Walz, G.; Huber, T.B.; Neumann-Haefelin, E. Functional and spatial analysis of C. elegans SYG-1 and SYG-2, orthologs of the Neph/nephrin cell adhesion module directing selective synaptogenesis. PLoS ONE 2011, 6, e23598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurland, M.; O’Meara, B.; Tucker, D.K.; Ackley, B.D. The Hox Gene egl-5 Acts as a Terminal Selector for VD13 Development via Wnt Signaling. J. Dev. Biol 2020, 8, 5. [Google Scholar] [CrossRef] [Green Version]
- Poon, V.Y.; Klassen, M.P.; Shen, K. UNC-6/netrin and its receptor UNC-5 locally exclude presynaptic components from dendrites. Nature 2008, 455, 669–673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, M.; Shen, K. WNTs in synapse formation and neuronal circuitry. EMBO J. 2012, 31, 2697–2704. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hilliard, M.A.; Bargmann, C.I. Wnt signals and frizzled activity orient anterior-posterior axon outgrowth in C. elegans. Dev. Cell 2006, 10, 379–390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durbin, R.M. Studies on the Development and Organisation of the Nervous System of Caenorhabditis Elegans; Kings College: Cambridge, UK, 1987. [Google Scholar]
Genotype | Pdns | Total | Average | St. Dev. | Additive a | p Value (Comparison) |
---|---|---|---|---|---|---|
wild-type | 0 | 362 | 0.0% | 0.0% | ND | |
mig-5(rh94) | 9 | 323 | 2.9% | 0.7% | ND | 0.011 (wt) |
syg-2(lh6) | 7 | 504 | 1.3% | 0.2% | ND | 0.046 (wt) |
mig-5;syg-2(lh6) | 234 | 814 | 29.5% | 4.2% | 4.1% | <0.001 (additive) |
syg-2(ky673) | 26 | 1094 | 2.1% | 1.2% | ND | 0.001 (wt) |
mig-5;syg-2(ky673) | 106 | 391 | 27.1% | 1.9% | 4.9% | <0.001 (additive) |
syg-1(ky652) | 8 | 735 | 1.0% | 0.8% | ND | |
mig-5;syg-1 | 129 | 451 | 28.7% | 1.3% | 3.9% | <0.001 (additive) |
syg-2(lh6);syg-1 | 8 | 406 | 2% | 1% | 2.3% | 1.00 (additive) |
lin-17(n671) | 63 | 273 | 23.3% | 2.2% | ND | <0.001 (wt) |
syg-2(lh6);lin-17 | 131 | 260 | 49.8% | 3.9% | 24.3% | <0.001 (additive) |
syg-1;lin-17 | 297 | 528 | 56.5% | 2.6% | 24.1% | <0.001 (additive) |
syg-2(lh6)syg-1;lin17 | 302 | 559 | 54.4% | 1.7% | 24.8% | <0.001 (additive) |
fmi-1(tm306) | 9 | 459 | 1.9% | 0.4% | ND | 0.006 (wt) |
mig-5;fmi-1 | 153 | 527 | 28.3% | 4.4% | 4.8% | <0.001 (additive) |
fmi-1;syg-2(lh6) | 33 | 780 | 4.3% | 1.3% | 3.2% | 0.349 (additive) |
fmi-1;syg-1 | 31 | 607 | 4.9% | 1.3% | 2.9% | 0.079 (additive) |
fmi-1;mig-5;syg-2(lh6) | 343 | 866 | 40.0% | 3.5% | 29.2% | <0.001 (additive) |
fmi-1;mig-5;syg-1 | 292 | 570 | 51.4% | 3.7% | 29.0% | <0.001 (additive) |
dsh-1(ok1445) | 8 | 560 | 1.3% | 0.7% | ND | 0.026 (wt) |
dsh-1mig-5 | 234 | 671 | 34.9% | 0.0% | 4.2% | <0.001 (additive) |
dsh-1;lin-17 | 74 | 321 | 24.2% | 6.0% | 24.3% | 0.781 (additive) |
dsh-1;fmi-1 | 30 | 501 | 6.2% | 1.7% | 3.2% | 0.049 (additive) |
lin-17;fmi-1 | 256 | 479 | 54.7% | 3.7% | 24.8% | <0.001 (additive) |
dsh-1;lin-17;fmi-1 | 258 | 450 | 57.9% | 2.0% | 28.9% | <0.001 (additive) |
Genotype | Pdns | Total | Average | St. Dev. | Additive a | p Value (Comparison) |
---|---|---|---|---|---|---|
wild-type | 0 | 416 | 0.0% | 0.0% | ND | |
mig-5(rh94) | 15 | 219 | 7.0% | 0.7% | ND | <0.0001 (wt) |
syg-2(lh6) | 11 | 1055 | 1.1% | 1.1% | ND | 0.041 (wt) |
mig-5;syg-2(lh6) | 148 | 516 | 29.2% | 3.9% | 8.0% | <0.0001 (additive) |
syg-2(ky673) | 19 | 1294 | 1.4% | 0.2% | ND | 0.007 (wt) |
mig-5;syg-2(ky673) | 140 | 409 | 34.2% | 2.0% | 8.3% | <0.0001 (additive) |
syg-1(ky652) | 17 | 1136 | 1.3% | 0.7% | ND | |
mig-5;syg-1 | 228 | 702 | 32.1% | 3.1% | 8.2% | <0.0001 (additive) |
syg-2(lh6);syg-1 | 8 | 464 | 1.9% | 1.3% | 2.4% | 0.644 (additive) |
fmi-1(tm306) | 0 | 585 | 0.0% | 0.0% | ND | 1.000 (wt) |
mig-5;fmi-1 | 51 | 754 | 7.3% | 2.9% | 7.0% | 0.919 (additive) |
fmi-1;syg-2(lh6) | 13 | 729 | 1.9% | 0.6% | 1.1% | 0.380 (additive) |
fmi-1;syg-1 | 12 | 563 | 2.2% | 0.7% | 1.3% | |
fmi-1;mig-5;syg-2(lh6) | 189 | 597 | 31.9% | 3.7% | 8.3% | <0.0001 (additive) |
fmi-1;mig-5;syg-1(ky652) | 264 | 804 | 33.2% | 4.7% | 8.5% | <0.0001 (additive) |
lin-17(n671) | 54 | 1111 | 2.7% | 3.2% | ND | <0.0001 (wt) |
dsh-1(ok1445) | 0 | 188 | 0% | 0.0% | ND | 1.000 (wt) |
dsh-1(ok1445)mig-5(tm2639) | 42 | 157 | 27% | 0.0% | 7.0% | <0.0001 (additive) |
syg-2(lh6);lin-17 | 103 | 207 | 49.1% | 1.7% | 2.4% | <0.0001 (additive) |
syg-1;lin-17 | 172 | 325 | 52.6% | 2.7% | 2.6% | <0.0001 (additive) |
syg-2(lh6)syg-1;lin17 | 383 | 775 | 49.5% | 2.8% | 3.2% | <0.0001 (additive) |
lin-17;fmi-1 | 13 | 401 | 2.6% | 1.3% | 2.7% | 0.997 (additive) |
Genotype | Pdns | Total | Unipolar | Bipolar | Ambiguous | Bipolar (%) |
---|---|---|---|---|---|---|
L1 | ||||||
syg-2(lh6) | 7 | 454 | 0 | 7 | 0 | 100% |
syg-2(lh6);mig-5(rh94) | 110 | 766 | 0 | 110 | 0 | 100% |
lin-17(n671) | 47 | 567 | 0 | 47 | 0 | 100% |
lin-17(n671);syg-2(lh6) | 318 | 913 | 4 | 314 | 0 | 99% |
dsh-1(ok1445)mig-5(tm2639) | 42 | 157 | 0 | 42 | 0 | 100% |
Adult | ||||||
syg-2(lh6) | 3 | 373 | 0 | 2 | 1 | 67% |
syg-2(lh6);mig-5(rh94) | 139 | 558 | 31 | 69 | 39 | 50% |
lin-17(n671) | 60 | 417 | 31 | 29 | 0 | 48% |
lin-17(n671);syg-2(lh6) | 104 | 295 | 13 | 40 | 51 | 38% |
dsh-1(ok1445)mig-5(tm2639) | 234 | 671 | 0 | 234 | 0 | 100% |
Genotype | Area (Avg ± SD) μm2 | N | p (vs. Wild Type) | Puncta (Avg ± SD) #/100 μm | N | p (vs. Wild Type) |
---|---|---|---|---|---|---|
Ventral Cord (VD Neurons) | ||||||
wild type | 1.12 ± 1.17 | 517 | - | 24.0 ± 2.9 | 11 | - |
syg-2(lh6) | 1.53 ± 2.11 | 402 | 4 × 10−4 | 21.9 ± 2.3 | 9 | 0.09 |
Dorsal Cord (DD Neurons) | ||||||
wild type | 0.68 ± 0.41 | 326 | 21.9 ± 4.7 | 9 | ||
syg-2(lh6) | 1.01 ± 1.16 | 214 | 1 × 10−4 | 14.1 ± 3.9 | 8 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tucker, D.K.; Adams, C.S.; Prasad, G.; Ackley, B.D. The Immunoglobulin Superfamily Members syg-2 and syg-1 Regulate Neurite Development in C. elegans. J. Dev. Biol. 2022, 10, 3. https://doi.org/10.3390/jdb10010003
Tucker DK, Adams CS, Prasad G, Ackley BD. The Immunoglobulin Superfamily Members syg-2 and syg-1 Regulate Neurite Development in C. elegans. Journal of Developmental Biology. 2022; 10(1):3. https://doi.org/10.3390/jdb10010003
Chicago/Turabian StyleTucker, Dana K., Chloe S. Adams, Gauri Prasad, and Brian D. Ackley. 2022. "The Immunoglobulin Superfamily Members syg-2 and syg-1 Regulate Neurite Development in C. elegans" Journal of Developmental Biology 10, no. 1: 3. https://doi.org/10.3390/jdb10010003
APA StyleTucker, D. K., Adams, C. S., Prasad, G., & Ackley, B. D. (2022). The Immunoglobulin Superfamily Members syg-2 and syg-1 Regulate Neurite Development in C. elegans. Journal of Developmental Biology, 10(1), 3. https://doi.org/10.3390/jdb10010003