A Comparison Between Major Artificial Intelligence Models for Crop Yield Prediction: Case Study of the Midwestern United States, 2006–2015
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Study Area
2.2. Satellite Products
2.3. Meteorological and Hydrological Data
2.4. Cropland Data Layer
2.5. Crop Yield Statistics
2.6. Data Processing
3. Methods
3.1. Major Artificial Intelligence Models
3.2. Prediction and Validation
3.3. Spatial Analysis of Errors
4. Results and Discussion
4.1. Phenology Effect
4.2. Development of the Optimized Prediction Model for Corn Yield
4.3. Development of Optimized Prediction Model for Soybean Yield
4.4. Spatial Characteristics of the Optimized DNN Models
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Prasad, A.K.; Chai, L.; Singh, R.P.; Kafatos, M. Crop yield estimation model for Iowa using remote sensing and surface parameters. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 26–33. [Google Scholar] [CrossRef]
- Ren, J.; Chen, Z.; Zhou, Q.; Tang, H. Regional yield estimation for winter wheat with MODIS-NDVI data in Shandong, China. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 403–413. [Google Scholar] [CrossRef]
- Allen, J.D. A look at the remote sensing applications program of the National Agricultural Statistics Service. J. Off. Stat. 1990, 6, 393–409. [Google Scholar]
- Labus, M.P.; Jielsen, G.A.; Lawrence, R.L.; Engel, R.; Long, D.S. Wheat yield estimates using multi-temporal NDVI satellite imagery. Int. J. Remote Sens. 2002, 23, 4169–4180. [Google Scholar] [CrossRef]
- Ferencz, C.; Bognár, P.; Lichtenberger, J.; Hamar, D.; Tarcsai, G.; Timár, G.; Molnár, G.; Pásztor, S.; Steinbach, P.; Székely, B.; et al. Crop yield estimation by satellite remote sensing. Int. J. Remote Sens. 2004, 25, 4113–4149. [Google Scholar] [CrossRef]
- Doraiswamy, P.C.; Sinclair, T.R.; Hollinger, S.; Akhmedov, B.; Stern, A.; Prueger, J. Application of MODIS derived parameters for regional crop yield assessment. Remote Sens. Environ. 2005, 97, 192–202. [Google Scholar] [CrossRef]
- Bolton, D.K.; Friedl, M.A. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agric. For. Meteorol. 2013, 173, 74–84. [Google Scholar] [CrossRef]
- Nguu, N.V. Effect of nitrogen, phosphorus and soil and crop residues management practices on maize (Zea mays L.) yield in ultisol of eastern Cameroon. Fertil. Res. 1987, 14, 135–142. [Google Scholar] [CrossRef]
- Garcia-Paredes, J.D.; Olson, K.R.; Lang, J.M. Predicting corn and soybean productivity for Illinois soils. Agric. Syst. 2000, 64, 151–170. [Google Scholar]
- Awad, M.M. Toward Precision in Crop Yield Estimation Using Remote Sensing and Optimization Techniques. Agriculture 2019, 9, 54. [Google Scholar] [CrossRef]
- Awad, M.M. An Innovative Intelligent System Based on Remote Sensing and Mathematical Models for Improving Crop Yield Estimation. Available online: https://www.sciencedirect.com/science/article/pii/S2214317318302981 (accessed on 9 May 2019).
- Russell, S.J.; Norvig, P. Artificial Intelligence: A modern Approach; Pearson Education Limited: Petaling jaya, SEL, Malaysia, 2016. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Vapnik, V. Statistical Learning Theory; Wiley: New York, NY, USA, 1998. [Google Scholar]
- Simpson, G. Crop yield prediction using a CMAC neural network. Proc. Soc. Photo-Opt. Instrum. Eng. 1994, 2315, 160–171. [Google Scholar]
- Baret, F.; Clevera, J.G.; Steven, M.D. The robustness of canopy gap fraction estimates from red and near-infrared reflectance: A comparison of approaches. Remote Sens. Environ. 1995, 54, 141–151. [Google Scholar] [CrossRef]
- Jiang, D.; Yango, X.; Clinton, N.; Wang, N. An artificial neural network model for estimating crop yields using remotely sensed information. Int. J. Remote Sens. 2004, 25, 1723–1732. [Google Scholar] [CrossRef]
- Jeong, J.H.; Resop, J.P.; Mueller, N.D.; Fleisher, D.H.; Yun, K.; Butler, E.E.; Timlin, D.J.; Shim, K.-M.; Gerber, J.S.; Reddy, V.R.; et al. Random forests for global and regional crop yield predictions. PLoS ONE 2016, 11, e0156571. [Google Scholar] [CrossRef]
- Kuwata, K.; Shibasaki, R. Estimating crop yields with deep learning and remotely sensed data. In Proceedings of the 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Milan, Italy, 26–31 July 2015; pp. 858–861. [Google Scholar]
- Kuwata, K.; Shibasaki, R. Estimating corn yield in the United Sates with MODIS EVI and machine learning methods. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 3, 131–136. [Google Scholar] [CrossRef]
- Ma, J.W.; Nguyen, C.H.; Lee, K.; Heo, J. Convolutional neural networks for rice yield estimation using MODIS and weather data: A case study for South Korea. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 34, 525–534. [Google Scholar] [CrossRef]
- USDA. Census of Agriculture; United States Department of Agriculture: Washington, DC, USA, 2012. Available online: https://www.agcensus.usda.gov/ (accessed on 9 May 2019).
- NASA MODIS Home Page. Available online: https://modis.gsfc.nasa.gov/about/specifications.php (accessed on 9 May 2019).
- NASA EARTHDATA Search Home Page. Available online: https://search.earthdata.nasa.gov/ (accessed on 9 May 2019).
- Townshend, J.R.G.; Justice, C.O.; Li, W.; Gurney, C.; McManus, J. Global land cover classification by remote sensing: Present capabilities and future capabilities. Remote Sens. Environ. 1991, 35, 243–255. [Google Scholar] [CrossRef]
- Huete, A.R.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreria, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Sellers, P.J. Canopy reflectance, photosynthesis and transpiration. Int. J. Remote Sens. 1985, 6, 1335–1372. [Google Scholar] [CrossRef]
- Lee, S.-J.; Cho, J.; Hong, S.; Ha, K.-J.; Lee, H.; Lee, Y.-W. On the relationships between satellite-based drought index and gross primary production in the North Korean croplands, 2000–2012. Remote Sens. Lett. 2016, 7, 790–799. [Google Scholar] [CrossRef]
- PRISM Climate Group Home Page. Available online: http://www.prism.oregonstate.edu/ (accessed on 9 May 2019).
- Daly, C. Descriptions of PRISM Spatial Climate Datasets for the Conterminous United States. PRISM Doc. Available online: http://www.prism.oregonstate.edu/documents/PRISM_datasets_aug2013.pdf (accessed on 20 April 2019).
- GES DISC Home Page. Available online: https://disc.gsfc.nasa.gov/ (accessed on 9 May 2019).
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef]
- De Jeu, R.; Holmes, T.; Dorigo, W.; Wagner, W.; Hahn, S.; Parinussa, R. Evaluation of SMOS soil moisture with other existing satellite products. In Proceedings of the Remote Sensing and Hydrology 2010 Symposium, Jackson Hole, WY, USA, 27–30 September 2010. [Google Scholar]
- NASS USDA Home Page. Available online: https://www.nass.usda.gov/ (accessed on 9 May 2019).
- Boryan, C.; Yang, Z.; Mueller, R.; Craig, M. Monitoring US agriculture: The US department of agriculture, national agricultural statistics service, cropland data layer program. Geocarto Int. 2011, 26, 341–358. [Google Scholar] [CrossRef]
- Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A generalized regression-based model for forecasting winter wheat yields in Kansas and Ukraine using MODIS data. Remote Sens. Environ. 2010, 114, 1312–1323. [Google Scholar] [CrossRef]
- Johnson, D.M. An assessment of pre- and within-season remotely sensed variables for forecasting corn and soybean yields in the United States. Remote Sens. Environ. 2014, 141, 116–128. [Google Scholar] [CrossRef]
- NASS USDA Quick Stats Home Page. Available online: http://quickstats.nass.usda.gov (accessed on 9 May 2019).
- Kutner, M.H.; Nachtsheim, C.J.; Neter, J. Applied Linear Regression Models, 4th ed.; Mc-Graw-Hill/Irwin: Upper Saddle River, NJ, USA, 2004. [Google Scholar]
- Liu, X.; Jin, J.; Wang, G.; Herber, S.J. Soybeans yield physiology and development of high-yielding practices in Northeast China. Filed Crops Res. 2008, 105, 157–171. [Google Scholar] [CrossRef]
- Neild, R.E.; Newman, J.E. Growing Season Characteristics and Requirements in the Corn Belt, Cooperative Extension Service; Iowa State University: Ames, IA, USA, 1987. [Google Scholar]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, 19, 1–67. [Google Scholar] [CrossRef]
- Zhang, W.; Goh, A.T.C. Multivariate adaptive regression splines and neural network models for prediction of pile drivability. Geosci. Front. 2016, 7, 45–52. [Google Scholar] [CrossRef] [Green Version]
- Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning: Data Mining, Inference and Prediction, 2nd ed.; Springer: New York, NY, USA, 2009. [Google Scholar]
- Pal, M.; Mather, P.M. An assessment of the effectiveness of decision tree methods for land cover classification. Remote Sens. Environ. 2003, 86, 554–565. [Google Scholar] [CrossRef]
- Jensen, J.R.; Im, J.; Hardin, P.; Jense, R.R. Chapter 19: Image Classification. In The Sage Handbook of Remote Sensing; Warner, T.A., Nellis, M.D., Foody, G.M., Eds.; SAGE Publications Ltd.: London, UK, 2009; pp. 269–296. [Google Scholar]
- Duro, D.C.; Franklin, S.E.; Dube, M.G. A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 2012, 118, 259–272. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Foody, G.M.; Mathur, A. The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by SVM. Remote Sens. Environ. 2006, 103, 179–189. [Google Scholar] [CrossRef]
- Van der Linder, S.; Hostert, P. The influence of urban structures on impervious surface maps from airborne hyperspectral data. Remote Sens. Environ. 2009, 113, 2298–2305. [Google Scholar] [CrossRef]
- Meyer, D. Support Vector Machines, 2019. Available online: https://cran.r-project.org/web/packages/e1071/e1071.pdf (accessed on 9 May 2019).
- Breiman, L.; Cutler, A. Random Forests, 2014. Available online: http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm (accessed on 9 May 2019).
- Ali, J.; Khan, R.; Ahmad, N.; Maqsood, I. Random forests and decision trees. Int. J. Comput. Sci. Issues 2012, 9, 272–278. [Google Scholar]
- Geurts, P.; Ernst, D.; Wehenkel, L. Extremely randomized trees. Mach. Learn. 2006, 63, 3–42. [Google Scholar] [CrossRef] [Green Version]
- Kaul, M.; Hill, R.L.; Walthall, C. Artificial neural networks for corn and soybean yield prediction. Agric. Syst. 2005, 85, 1–18. [Google Scholar] [CrossRef]
- Brown, M.E.; Lary, D.J.; Vrieling, A.; Stathakis, D.; Mussan, H. Neural networks as a tool for constructing continuous NDVI time series from AVHRR and MODIS. Int. J. Remote Sens. 2008, 29, 7141–7158. [Google Scholar] [CrossRef] [Green Version]
- Hu, X.; Weng, Q. Estimating impervious surfaces from medium spatial resolution imagery using the selforganizing map and multi-layer perceptron neural networks. Remote Sens. Environ. 2009, 113, 2089–2102. [Google Scholar] [CrossRef]
- Ji, B.; Sun, Y.; Yang, S.; Wan, J. Artificial neural networks for rice yield prediction in mountainous regions. J. Agric. Sci. 2007, 145, 249–261. [Google Scholar] [CrossRef]
- Pham, V.; Bluche, T.; Kernorvant, C.; Louradour, J. Drop-out improves recurrent neural networks for handwriting recognition. In Proceedings of the 2014 14th International Conference on Frontiers in Handwriting Recognition (ICFHR), Crete, Greece, 1–4 September 2014. [Google Scholar]
- Erhan, D.; Bengio, Y.; Courville, A.; Manzagol, P.A.; Vincent, P. Why does unsupervised pre-training help deep learning? J. Mach. Learn. Res. 2010, 11, 625–660. [Google Scholar]
- Schut, A.G.T.; Stephen, D.J.; Stovold, R.G.H.; Adams, M.; Craig, R.L. Improved wheat yield and production forecasting with a moisture stress index, AVHRR and MODIS data. Crop Pasture Sci. 2009, 60, 60–70. [Google Scholar] [CrossRef]
- Mkhabela, M.S.; Bullock, P.; Wang, S.; Yang, Y. Crop yield forecasting on the Canadian Prairies using MODIS NDVI data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Kouadio, L.; Newlands, N.K.; Davidson, A.; Zhang, Y.; Chipanshi, A. Assessing the performance of MODIS NDVI and EVI for seasonal crop yield forecasting at the Ecodistrict scale. Remote Sens. 2007, 22, 837–852. [Google Scholar] [CrossRef]
- Chipanshi, A.; Zhang, Y.; Kouadio, L.; Newlands, N.; Davidson, A.; Hill, H.; Warren, R.; Qian, B.; Daneshfar, B.; Bedard, F.; et al. Evaluation of the integrated Canadian crop yield forecaster (ICCYF) model for in-season prediction of crop yield across the Canadian agricultural landscape. Agric. For. Meteorol. 2015, 206, 137–150. [Google Scholar] [CrossRef]
- Govedarica, M.; Jovanović, D.; Sabo, F.; Borisov, M.; Vrtunski, M.; Alargić, I. Comparison of MODIS 250 m products for early corn yield predictions: A case study in Vojvodina, Serbia. Open Geosci. 2016, 8, 747–759. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Kim, N.; Lee, Y.W. Machine learning approaches to corn yield estimation using satellite images and climate data: A case of Iowa State. J. Korean Soc. Surv. Geod. Photogramm. Cartogr. 2016, 34, 383–390. [Google Scholar] [CrossRef]
- Khaki, S.; Wang, L. Crop Yield Prediction Using Deep Neural Networks. arXiv 2019, arXiv:1902.02860. [Google Scholar]
- Wang, A.X.; Tran, C.; Desai, N.; Lobell, D.; Ermon, S. Deep transfer learning for crop yield prediction with remote sensing data. In Proceedings of the 1st ACM SIGCAS Conference on Computing and Sustainable Societies, Menlo Park/San Jose, CA, USA, 20–22 June 2018; ACM: New York, NY, USA, 2018. [Google Scholar]
- Yang, Q.; Shi, L.; Han, J.; Zha, Y.; Zhu, P. Deep convolutional neural networks for rice grain yield estimation at the ripening stage using UAV-based remotely sensed images. Field Crops Res. 2019, 235, 142–153. [Google Scholar] [CrossRef]
Data | Spatial Resolution | Temporal Resolution | Source | |
---|---|---|---|---|
Cropland | CDL(1) | 56 m (2006–2009) 30 m (2010–2015) | Yearly | USDA(12) |
Satellite Images | NDVI(2) | 250 m | 16 days | NASA EOSDIS(13) |
EVI(3) | ||||
LAI(4) | 500 m | 8 days | ||
FPAR(5) | ||||
GPP(6) | ||||
Meteorological Data | PPT(7) | 4 km | Monthly | PRISM(14) Climate Group |
TMAX(8) | ||||
TMIN(9) | ||||
TMEAN(10) | ||||
Hydrological Data | SM(11) | 0.25° | Monthly | NASA GES DISC(15) |
Crop Yield Statistics | Corn | County | Yearly | USDA(12) |
Soybean |
Variables | VIF | |
---|---|---|
Corn | Soybean | |
EVI(1) | 3.357 | 3.173 |
LAI(2) | 2.412 | 1.937 |
GPP(3) | 4.825 | 3.148 |
PPT(4) | 1.900 | 1.935 |
TMAX(5) | 1.489 | - |
TMIN(6) | - | 2.122 |
SM(7) | 1.660 | 1.480 |
Model | Main features | Advantages | Disadvantages | Software used |
---|---|---|---|---|
MARS(1) | A non-parametric regression technique that combines a series of linear models to cope with nonlinearity and interactions between variables. | Generates a flexible model that can handle both linearity and nonlinearity. | Susceptible to overfitting and limited to handling large data. | earth package in R |
SVM(2) | Conducts optimal grouping of data and can be combined with a regression model for the optimal groups. | Supports optimal grouping of data by maximizing the margin between groups using kernel functions. | Susceptible to overfitting issues depending on kernel functions used in optimal grouping. | e1071 package in R |
RF(3) | An ensemble model that uses the bootstrap and bagging process. | Accurate predictions and better generalizations are achieved due to the utilization of ensemble strategies and random sampling. | Susceptible to overfitting issues because it cannot deal with outliers when the model is trained by small number of datasets. | randomForest package in R |
ERT(4) | An ensemble grouping model using unpruned decision trees. | Increases in generalization capability by constructing the unpruned decision trees through the training used the complete learning sample | Susceptible to overfitting issues because it cannot deal with outliers when the model is trained by a small number of datasets. | extraTrees package in R |
ANN(5) | A network model consisting of input, hidden, and output layers to emulate a biological neural system. | Self-adaptive model as compared to traditional linear and simple nonlinear analyses | Local minima problem in which an optimization process often stops at a locally, rather than globally, optimized state. | nnet package in R |
DNN(6) | Accuracy improvement by training complicated, huge input data in a deep and intensive neural network. | Can resolve the problems of overfitting and local minima through an intensive optimization process in a deep network structure with the combination of activation functions and dropout method. | Requires a high-end computer | tensorflow package in Python |
GS(1) | May | Jun | Jul | Aug | Sep | MJ(2) | JJ(3) | JA(4) | AS(5) | MJJ(6) | JJA(7) | JAS(8) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EVI(9) | 0.824 | −0.045 | 0.320 | 0.857 | 0.833 | 0.428 | 0.205 | 0.673 | 0.917 | 0.694 | 0.556 | 0.860 | 0.856 |
LAI(10) | 0.494 | −0.375 | −0.122 | 0.537 | 0.620 | 0.233 | −0.245 | 0.348 | 0.635 | 0.521 | 0.222 | 0.560 | 0.603 |
GPP(11) | 0.654 | −0.214 | 0.032 | 0.699 | 0.675 | 0.514 | −0.092 | 0.594 | 0.719 | 0.660 | 0.452 | 0.694 | 0.718 |
PPT(12) | 0.450 | 0.159 | 0.313 | 0.349 | 0.259 | 0.136 | 0.318 | 0.390 | 0.414 | 0.271 | 0.391 | 0.462 | 0.377 |
TMAX(13) | −0.054 | 0.144 | 0.124 | −0.414 | −0.250 | 0.169 | 0.143 | −0.185 | −0.369 | −0.025 | −0.065 | −0.219 | −0.208 |
SM(14) | 0.472 | 0.395 | 0.489 | 0.540 | 0.479 | 0.365 | 0.561 | 0.596 | 0.583 | 0.485 | 0.509 | 0.535 | 0.503 |
GS(1) | May | Jun | Jul | Aug | Sep | MJ(2) | JJ(3) | JA(4) | AS(5) | MJJ(6) | JJA(7) | JAS(8) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
EVI(9) | 0.768 | 0.103 | 0.352 | 0.697 | 0.816 | 0.421 | 0.269 | 0.608 | 0.852 | 0.682 | 0.526 | 0.800 | 0.832 |
LAI(10) | 0.376 | −0.224 | −0.078 | 0.358 | 0.456 | 0.094 | −0.155 | 0.238 | 0.471 | 0.374 | 0.156 | 0.414 | 0.462 |
GPP(11) | 0.522 | −0.046 | 0.109 | 0.445 | 0.491 | 0.402 | 0.040 | 0.419 | 0.499 | 0.508 | 0.349 | 0.511 | 0.529 |
PPT(12) | 0.453 | 0.155 | 0.300 | 0.263 | 0.323 | 0.153 | 0.307 | 0.339 | 0.408 | 0.327 | 0.346 | 0.453 | 0.383 |
TMIN(13) | 0.429 | 0.415 | 0.461 | 0.193 | 0.358 | 0.385 | 0.459 | 0.363 | 0.316 | 0.427 | 0.395 | 0.380 | 0.388 |
SM(14) | 0.499 | 0.385 | 0.448 | 0.461 | 0.495 | 0.389 | 0.542 | 0.530 | 0.545 | 0.507 | 0.461 | 0.497 | 0.487 |
MBE(1) (ton/ha) | MAE(2) (ton/ha) | RMSE(3) (ton/ha) | MAPE(4) (%) | Corr. (5) | |
---|---|---|---|---|---|
MARS(6) | 0.067 | 0.773 | 1.009 | 11.0 | 0.911 |
SVM(7) | 0.020 | 0.726 | 0.946 | 10.0 | 0.917 |
RF(8) | 0.015 | 0.708 | 0.929 | 9.8 | 0.922 |
ERT(9) | 0.001 | 0.703 | 0.922 | 9.6 | 0.924 |
ANN(10) | 0.024 | 0.705 | 0.928 | 9.8 | 0.926 |
DNN(11) | 0.029 | 0.582 | 0.765 | 7.6 | 0.945 |
MBE(1) (ton/ha) | MAE(2) (ton/ha) | RMSE(3) (ton/ha) | MAPE(4) (%) | Corr. (5) | |
---|---|---|---|---|---|
MARS(6) | −0.018 | 0.269 | 0.336 | 9.6 | 0.860 |
SVM(7) | −0.036 | 0.265 | 0.339 | 9.5 | 0.850 |
RF(8) | −0.027 | 0.261 | 0.332 | 9.4 | 0.854 |
ERT(9) | −0.030 | 0.259 | 0.329 | 9.3 | 0.859 |
ANN(10) | −0.016 | 0.270 | 0.340 | 9.7 | 0.853 |
DNN(11) | −0.072 | 0.222 | 0.285 | 7.8 | 0.901 |
Source | Crop | Study area | Method | Correlation coefficient |
---|---|---|---|---|
Kuwata and Shibasaki [20] | corn | United States | Support vector machine Deep neural network | 0.853 to 0.890 0.879 to 0.883 |
Kim and Lee [67] | corn | Iowa, United States | Deep neural network | 0.800 |
Khaki and Wang [68] | corn | 2247 locations in the world | Deep neural network | 0.819 |
Wang et al. [69] | soybean | Argentina, Brazil | Long short-term memory | 0.755 |
Yang et al. [70] | rice | Guangxi province, China | Convolutional neural network | 0.765 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, N.; Ha, K.-J.; Park, N.-W.; Cho, J.; Hong, S.; Lee, Y.-W. A Comparison Between Major Artificial Intelligence Models for Crop Yield Prediction: Case Study of the Midwestern United States, 2006–2015. ISPRS Int. J. Geo-Inf. 2019, 8, 240. https://doi.org/10.3390/ijgi8050240
Kim N, Ha K-J, Park N-W, Cho J, Hong S, Lee Y-W. A Comparison Between Major Artificial Intelligence Models for Crop Yield Prediction: Case Study of the Midwestern United States, 2006–2015. ISPRS International Journal of Geo-Information. 2019; 8(5):240. https://doi.org/10.3390/ijgi8050240
Chicago/Turabian StyleKim, Nari, Kyung-Ja Ha, No-Wook Park, Jaeil Cho, Sungwook Hong, and Yang-Won Lee. 2019. "A Comparison Between Major Artificial Intelligence Models for Crop Yield Prediction: Case Study of the Midwestern United States, 2006–2015" ISPRS International Journal of Geo-Information 8, no. 5: 240. https://doi.org/10.3390/ijgi8050240
APA StyleKim, N., Ha, K.-J., Park, N.-W., Cho, J., Hong, S., & Lee, Y.-W. (2019). A Comparison Between Major Artificial Intelligence Models for Crop Yield Prediction: Case Study of the Midwestern United States, 2006–2015. ISPRS International Journal of Geo-Information, 8(5), 240. https://doi.org/10.3390/ijgi8050240