An Occupancy Simulator for a Smart Parking System: Developmental Design and Experimental Considerations
Abstract
:1. Introduction
- The methodology we employed to increase re-usability of software development efforts for a parking simulator, applied to a related SPS development;
- how to explore the reservation guarantee concept for an SPS without physical reservation enforcement; and
- how to use the total driving distance metric for making credible comparisons when evaluating an SPS usage benefits.
2. Background
2.1. Smart Parking Systems and Parking Simulations
- building or adapting parking simulator software and not just defining a model to run in available modelers,
- working alongside the SPS development team, and
- applying software design techniques that assure robust re-usability.
2.2. Agent-Based Parking Models And Gis
2.3. SPS Evaluation Metrics
3. The SPS and the Parking Simulator
4. Parking Simulator Details
4.1. The Model
4.1.1. Agent Profiles
4.1.2. Search Behavior
Explorer
Algorithm 1: Explorer agents decision rules |
Input:
|
Guided
4.2. The Simulator
4.3. Parking Reservation Component
4.4. Final Development Considerations
- GIS data and services hosted in a GIS server,
- software artifacts for remote GIS data read/write operations,
- reservation component, and
- visualization components created for simulation testing.
5. Case Study: Exploration of SPS Expected Usage
Single Building Analysis
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Inci, E. A review of the economics of parking. Econ. Transp. 2015, 4, 50–63. [Google Scholar] [CrossRef]
- Kotb, A.O.; Shen, Y.C.; Huang, Y. Smart Parking Guidance, Monitoring and Reservations: A Review. IEEE Intell. Transp. Syst. Mag. 2017, 9, 6–16. [Google Scholar] [CrossRef]
- Małecki, K. A computer simulation of traffic flow with on-street parking and drivers’ behaviour based on cellular automata and a multi-agent system. J. Comput. Sci. 2018, 28, 32–42. [Google Scholar] [CrossRef]
- Waraich, R.A.; Axhausen, K.W. Agent-based parking choice model. Transp. Res. Rec. 2012, 2319, 39–46. [Google Scholar] [CrossRef]
- Geng, Y.; Cassandras, C.G. New ’smart parking’ system based on resource allocation and reservations. IEEE Trans. Intell. Transp. Syst. 2013, 14, 1129–1139. [Google Scholar] [CrossRef]
- Shin, J.H.; Jun, H.B. A study on smart parking guidance algorithm. Transp. Res. Part C Emerg. Technol. 2014, 44, 299–317. [Google Scholar] [CrossRef]
- Bazzan, A.L.C.; Klügl, F. A review on agent-based technology for traffic and transportation. Knowl. Eng. Rev. 2014, 29, 375–403. [Google Scholar] [CrossRef]
- Maggi, E.; Vallino, E. Understanding urban mobility and the impact of public policies: The role of the agent-based models. Res. Transp. Econ. 2016, 55, 50–59. [Google Scholar] [CrossRef]
- Crooks, A.T.; Castle, C.J.E. The integration of agent-based modelling and geographical information for geospatial simulation. In Agent-Based Models of Geographical Systems; Springer: Dordrecht, The Netherlands, 2012; pp. 219–251. [Google Scholar]
- Dangermond, J. Geospatial Technology and the Future of the City. 2015. Available online: http://www.esri.com/esri-news/arcnews/winter1415articles/geospatial-technology-and-the-future-of-the-city (accessed on 23 April 2019).
- Frost&Sullivan. Smart Parking to Enable Intelligent Mobility in Global Mega Cities. 2015. Available online: http://ww2.frost.com/news/press-releases/smart-parking-enable-intelligent-mobility-global-mega-cities/ (accessed on 23 April 2019).
- Rhodes, C.; Blewitt, W.; Sharp, C.; Ushaw, G.; Morgan, G. Smart Routing: A Novel Application of Collaborative Path-Finding to Smart Parking Systems. In Proceedings of the 2014 IEEE 16th Conference on Business Informatics, Geneva, Switzerland, 4–17 July 2014; pp. 119–126. [Google Scholar]
- Levy, N.; Render, M.; Benenson, I. Spatially explicit modeling of parking search as a tool for urban parking facilities and policy assessment. Transp. Policy 2015, 39, 9–20. [Google Scholar] [CrossRef]
- Mei, Z.; Feng, C.; Ding, W.; Zhang, L.; Wang, D. Better lucky than rich? Comparative analysis of parking reservation and parking charge. Transp. Policy 2019, 75, 47–56. [Google Scholar] [CrossRef]
- Leclercq, L.; Sénécat, A.; Mariotte, G. Dynamic macroscopic simulation of on-street parking search: A trip-based approach. Transp. Res. Part B Methodol. 2017, 101, 268–282. [Google Scholar] [CrossRef]
- Leephakpreeda, T. Car-parking guidance with fuzzy knowledge-based decision making. Build. Environ. 2007, 42, 803–809. [Google Scholar] [CrossRef]
- Kravari, K.; Bassiliades, N. A survey of agent platforms. J. Artif. Soc. Soc. Simul. 2015, 18, 11. [Google Scholar] [CrossRef]
- Boudali, I.; Ouada, M.B. Smart Parking Reservation System Based on Distributed Multicriteria Approach. Appl. Artif. Intell. 2017, 31, 518–537. [Google Scholar] [CrossRef]
- Ni, X.Y.; Sun, D.J. Agent-Based Modelling and Simulation to Assess the Impact of Parking Reservation System. J. Adv. Transp. 2017, 2017, 2576094. [Google Scholar] [CrossRef]
- Chen, Z.; Spana, S.; Yin, Y.; Du, Y. An Advanced Parking Navigation System for Downtown Parking. Netw. Spat. Econ. 2019. [Google Scholar] [CrossRef]
- Lin, T.; Rivano, H.; Le Mouël, F. A survey of smart parking solutions. IEEE Trans. Intell. Transp. Syst. 2017, 18, 3229–3253. [Google Scholar] [CrossRef]
- Crooks, A.; Malleson, N.; Manley, E.; Heppenstall, A. Agent-Based Modelling and Geographical Information Systems: A Practical Primer; SAGE Publications Limited: London, UK, 2018. [Google Scholar]
- Taillandier, P.; Gaudou, B.; Grignard, A.; Huynh, Q.N.; Marilleau, N.; Caillou, P.; Philippon, D.; Drogoul, A. Building, composing and experimenting complex spatial models with the GAMA platform. GeoInformatica 2018. [Google Scholar] [CrossRef]
- Dieussaert, K.; Aerts, K.; Steenberghen, T.; Maerivoet, S.; Spitaels, K. SUSTAPARK: An agent-based model for simulating parking search. In Proceedings of the AGILE International Conference on Geographic Information Science, Hannover, Germany, 2–5 June 2009. [Google Scholar]
- Lee, K.S.; Eom, J.K.; seop Moon, D. Applications of TRANSIMS in Transportation: A Literature Review. Procedia Comput. Sci. 2014, 32, 769–773. [Google Scholar] [CrossRef] [Green Version]
- Horni, A.; Nagel, K.; Axhausen, K.W. The Multi-Agent Transport Simulation MATSim; Ubiquity Press: London, UK, 2016. [Google Scholar]
- Fulman, N.; Benenson, I. Agent-Based Modeling for Transportation Planning: A Method for Estimating Parking Search Time Based on Demand and Supply. arXiv 2018, arXiv:1806.10874. [Google Scholar]
- Benenson, I.; Martens, K.; Birfir, S. PARKAGENT: An agent-based model of parking in the city. Comput. Environ. Urban Syst. 2008, 32, 431–439. [Google Scholar] [CrossRef]
- Levy, N.; Martens, K.; Benenson, I. Exploring cruising using agent-based and analytical models of parking. Transp. A Transp. Sci. 2013, 9, 773–797. [Google Scholar] [CrossRef]
- Surpris, G.; Liu, D.; Vincenzi, D. How Much Can a Smart Parking System Save You? Ergon. Des. Q. Hum. Factors Appl. 2014, 22, 15–20. [Google Scholar] [CrossRef]
- Wang, H.; He, W. A Reservation-based Smart Parking System. In Proceedings of the 2011 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Shanghai, China, 10–15 April 2011; pp. 690–695. [Google Scholar]
- Tasseron, G.; Martens, K. Urban parking space reservation through bottom-up information provision: An agent-based analysis. Comput. Environ. Urban Syst. 2017, 64, 30–41. [Google Scholar] [CrossRef]
- Cao, J.; Menendez, M. System dynamics of urban traffic based on its parking-related-states. Transp. Res. Part B Methodol. 2015, 81, 718–736. [Google Scholar] [CrossRef]
- Fowler, M. Patterns of Enterprise Application Architecture; Addison-Wesley Longman Publishing Co., Inc.: Reading, MA, USA, 2002. [Google Scholar]
- Torres-Sospedra, J.; Avariento, J.; Rambla, D.; Montoliu, R.; Casteleyn, S.; Benedito-Bordonau, M.; Gould, M.; Huerta, J. Enhancing integrated indoor/outdoor mobility in a smart campus. Int. J. Geogr. Inf. Sci. 2015, 29, 1955–1968. [Google Scholar] [CrossRef]
- Baqueri, S.F.A.; Adnan, M.; Kochan, B.; Bellemans, T. Activity-based model for medium-sized cities considering external activity–travel: Enhancing FEATHERS framework. Future Gener. Comput. Syst. 2019, 96, 51–63. [Google Scholar] [CrossRef]
- Chaniotakis, E.; Pel, A.J. Drivers’ parking location choice under uncertain parking availability and search times: A stated preference experiment. Transp. Res. Part A Policy Pract. 2015, 82, 228–239. [Google Scholar] [CrossRef]
- Zhao, C.; Li, S.; Wang, W.; Li, X.; Du, Y. Advanced Parking Space Management Strategy Design: An Agent-Based Simulation Optimization Approach. Transp. Res. Rec. 2018. [Google Scholar] [CrossRef]
- Antolín, G.; Ibeas, Á.; Alonso, B.; dell’Olio, L. Modelling parking behaviour considering users heterogeneities. Transp. Policy 2018, 67, 23–30. [Google Scholar] [CrossRef]
- Bischoff, J.; Maciejewski, M.; Schlenther, T.; Nagel, K. Autonomous vehicles and their impact on parking search. IEEE Intell. Transp. Syst. Mag. 2018. [Google Scholar] [CrossRef]
- Khaliq, A.; van der Waerden, P.; Janssens, D.; Wets, G. A Conceptual Framework for Forecasting Car Driver’s On-Street Parking Decisions. Transp. Res. Procedia 2019, 37, 131–138. [Google Scholar] [CrossRef]
- Meng, F.; Du, Y.; Li, Y.C.; Wong, S.C. Modeling heterogeneous parking choice behavior on university campuses. Transp. Plan. Technol. 2018, 41, 154–169. [Google Scholar] [CrossRef]
- Martens, K.; Benenson, I.; Levy, N. The dilemma of on-street parking policy: Exploring cruising for parking using an agent-based model. In Geospatial Analysis and Modelling of Urban Structure and Dynamics; Springer: Berlin, Germany, 2010; pp. 121–138. [Google Scholar]
- Luke, S. Multiagent simulation and the MASON library. 2015. Available online: https://cs.gmu.edu/~eclab/projects/mason/manual.pdf (accessed on 23 April 2019).
- Coletti, M. The GeoMason Cookbook. 2013. Available online: https://cs.gmu.edu/~eclab/projects/mason/extensions/geomason/geomason.pdf (accessed on 23 April 2019).
- Kastanakis, B. Mapbox Cookbook; Packt Publishing Ltd.: Birmingham, UK, 2016. [Google Scholar]
- GeoTools: The Open Source Java GIS Toolkit. 2019. Available online: https://geotools.org/ (accessed on 23 April 2019).
- Arnott, R.; Williams, P. Cruising for parking around a circle. Transp. Res. Part B Methodol. 2017, 104, 357–375. [Google Scholar] [CrossRef]
maxWalkDist (m) | [50 to 100] |
criticalRatio | 0.25 |
criticalReduc | 0.15 |
visDistance (m) | 40 |
carSpeed (km/h) | 30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendoza-Silva, G.M.; Gould, M.; Montoliu, R.; Torres-Sospedra, J.; Huerta, J. An Occupancy Simulator for a Smart Parking System: Developmental Design and Experimental Considerations. ISPRS Int. J. Geo-Inf. 2019, 8, 212. https://doi.org/10.3390/ijgi8050212
Mendoza-Silva GM, Gould M, Montoliu R, Torres-Sospedra J, Huerta J. An Occupancy Simulator for a Smart Parking System: Developmental Design and Experimental Considerations. ISPRS International Journal of Geo-Information. 2019; 8(5):212. https://doi.org/10.3390/ijgi8050212
Chicago/Turabian StyleMendoza-Silva, Germán Martín, Michael Gould, Raul Montoliu, Joaquín Torres-Sospedra, and Joaquín Huerta. 2019. "An Occupancy Simulator for a Smart Parking System: Developmental Design and Experimental Considerations" ISPRS International Journal of Geo-Information 8, no. 5: 212. https://doi.org/10.3390/ijgi8050212
APA StyleMendoza-Silva, G. M., Gould, M., Montoliu, R., Torres-Sospedra, J., & Huerta, J. (2019). An Occupancy Simulator for a Smart Parking System: Developmental Design and Experimental Considerations. ISPRS International Journal of Geo-Information, 8(5), 212. https://doi.org/10.3390/ijgi8050212