Global Research on Artificial Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis
Abstract
:1. Introduction
2. Data and Methodology
2.1. Data Sources
2.2. Methodology
2.2.1. Kernel Density Analysis
2.2.2. Social Network Analysis
3. Results and Discussion
3.1. Publication Outputs
3.2. Subject Categories and Major Journals
3.3. Author Productivity and Geographic Distribution
3.4. International Productivity and Collaboration
3.5. Key Words, Hot Issues, and Research Trend Analysis
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
Abbreviations
SCI-Expanded | Science Citation Index Expanded |
CPCI-S | Conference Proceedings Citation Index-Science |
IF | impact factor |
KDE | Kernel Density Estimation |
JCR | Journal Citation Report |
R&D | Research and Development |
References
- Shi, Z.; Zheng, N. Progress and challenge of artificial intelligence. J. Comput. Sci. Technol. 2006, 21, 810–822. [Google Scholar] [CrossRef]
- Pham, D.T.; Pham, P.T.N. Artificial intelligence in engineering. Int. J. Mach. Tools Manuf. 1999, 39, 937–949. [Google Scholar] [CrossRef]
- Mohd Ali, J.; Hussain, M.A.; Tade, M.O.; Zhang, J. Artificial intelligence techniques applied as estimator in chemical process systems—A literature survey. Exp. Syst. Appl. 2015, 42, 5915–5931. [Google Scholar] [CrossRef]
- Russell, S.J.; Norvig, P. Artificial Intelligence: A Modern Approach; Upper Saddle River: New Jersey, NJ, USA, 2003. [Google Scholar]
- Kalogirou, S.A. Artificial intelligence for the modeling and control of combustion processes: A review. Progr. Energy Combust. Sci. 2003, 29, 515–566. [Google Scholar] [CrossRef]
- Wei, C.; Qiang, S.; Gao, X.Z.; IEEE. Artificial endocrine system and applications. In Proceedings of the 2006 Chinese Control Conference, Harbin, China, 7–11 August 2006.
- Mellit, A.; Kalogirou, S.A. Artificial intelligence techniques for photovoltaic applications: A review. Progr. Energy Combust. Sci. 2008, 34, 574–632. [Google Scholar] [CrossRef]
- Corchado, E.; Grana, M.; Wozniak, M. New trends and applications on hybrid artificial intelligence systems. Neurocomputing 2012, 75, 61–63. [Google Scholar] [CrossRef]
- Pritchard, A. Statistical bibliography or bibliometrics? J. Doc. 1969, 348–349. [Google Scholar]
- Hood, W.W.; Wilson, C.S. The Literature of Bibliometrics, Scientometrics, and Informetrics. Scientometrics 2001, 52, 291–314. [Google Scholar] [CrossRef]
- Hsieh, W.-H.; Chiu, W.-T.; Lee, Y.-S.; Ho, Y.-S. Bibliometric analysis of patent ductus arteriosus treatments. Scientometrics 2004, 60, 105–215. [Google Scholar] [CrossRef]
- Ho, Y.-S. Bibliometric analysis of adsorption technology in environmental science. J. Environ. Prot. Sci. 2007, 1, 1–11. [Google Scholar]
- Glänzel, W.; Schubert, A.; Czerwon, H.-J. A bibliometric analysis of international scientific cooperation of the European Union (1985–1995). Scientometrics 1999, 45, 185–202. [Google Scholar] [CrossRef]
- Chiu, W.-T.; Ho, Y.-S. Bibliometric analysis of tsunami research. Scientometrics 2007, 73, 3–17. [Google Scholar] [CrossRef]
- Niu, B.; Hong, S.; Yuan, J.; Peng, S.; Wang, Z.; Zhang, X. Global trends in sediment-related research in earth science during 1992–2011: A bibliometric analysis. Scientometrics 2013, 98, 511–529. [Google Scholar] [CrossRef]
- Callon, M.; Courtial, J.-P.; Laville, F. Co-word analysis as a tool for describing the network of interactions between basic and technological research: The case of polymer chemsitry. Scientometrics 1991, 22, 155–205. [Google Scholar] [CrossRef]
- Ding, Y.; Chowdhury, G.G.; Foo, S. Bibliometric cartography of information retrieval research by using co-word analysis. Inf. Process. Manag. 2001, 37, 817–842. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Zhang, L.; Hong, S. Global biodiversity research during 1900–2009: A bibliometric analysis. Biodivers. Conserv. 2011, 20, 807–826. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, X.; Nguyen, T.; He, Q.; Hong, S. Global remote sensing research trends during 1991–2010: A bibliometric analysis. Scientometrics 2012, 96, 203–219. [Google Scholar] [CrossRef]
- Goodchild, M.F. Geographic information systems and science: Today and tomorrow. Ann. GIS 2009, 15, 3–9. [Google Scholar] [CrossRef]
- Kostoff, R.N. The underpublishing of science and technology results. Scientist 2000, 14, 6. [Google Scholar]
- Gu, Y.N. Global knowledge management research: A bibliometric analysis. Scientometrics 2004, 61, 171–190. [Google Scholar] [CrossRef]
- Qiu, J.; Lv, H. An overview of knowledge management research viewed through the web of science (1993–2012). Aslib J. Inf. Manag. 2014, 66, 424–442. [Google Scholar] [CrossRef]
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; CRC Press: Boca Raton, FL, USA, 1986. [Google Scholar]
- Reuters, T. Journals in the 2014 Release of JCR. Available online: http://scientific.thomsonreuters.com/imgblast/JCRFullCovlist-2014.pdf (accessed on 20 July 2015).
- Chen, C. Searching for intellectual turning points: Progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004, 101, 5303–5310. [Google Scholar] [CrossRef] [PubMed]
- Campanario, M. Consolation for the scientist: Sometimes it is hard to publish papers that are later highly-cited. Soc. Stud. Sci. 1993, 23, 342–362. [Google Scholar] [CrossRef]
- Judge, T.A.; Cable, D.M.; Colbert, A.E.; Rynes, S.L. What causes a management article to be cited—article, author, or journal? Acad. Manag. J. 2007, 50, 491–506. [Google Scholar] [CrossRef]
- Cortez, P.; Rocha, M.; Neves, J. Evolving time series forecasting ARMA models. J. Heuristics 2004, 10, 415–429. [Google Scholar] [CrossRef]
- Klopman, G. Artificial-intelligence approach to structure activity studies—Computer automated structure evaluation of biological-activity of organic-molecules. J. Am. Chem. Soc. 1984, 106, 7315–7321. [Google Scholar] [CrossRef]
- Klopman, G.; Rosenkranz, H.S. Testing by artificial-intelligence—Computational alternatives to the determination of mutagenicity. Mutat. Res. 1992, 272, 59–71. [Google Scholar] [CrossRef]
- Guo, K.; Liu, Y.F.; Zeng, C.; Chen, Y.Y.; Wei, X.J. Global research on soil contamination from 1999 to 2012: A bibliometric analysis. Acta Agric. Scand. Section B—Soil Plant Sci. 2014, 64, 377–391. [Google Scholar] [CrossRef]
- Wang, M.; Liu, D.; Jia, J.; Zhang, X. Global trends in soil monitoring research from 1999–2013: A bibliometric analysis. Acta Agric. Scand. Section B—Soil Plant Sci. 2015, 65, 483–495. [Google Scholar]
- Chuang, K.-Y.; Huang, Y.-L.; Ho, Y.-S. A bibliometric and citation analysis of stroke-related research in Taiwan. Scientometrics 2007, 72, 201–212. [Google Scholar] [CrossRef]
- Bishop, C.M. Neural networks and their applications. Rev. Sci. Instruments 1994, 65, 1803–1832. [Google Scholar] [CrossRef]
- Mas, J.F.; Flores, J.J. The application of artificial neural networks to the analysis of remotely sensed data. Int. J. Remote Sens. 2008, 29, 617–663. [Google Scholar] [CrossRef]
- Momeni, E.; Nazir, R.; Armaghani, D.J.; Maizir, H. Application of artificial neural network for predicting shaft and tip resistances of concrete piles. Earth Sci. Res. J. 2015, 19, 85–93. [Google Scholar] [CrossRef]
- Jalal, M.; Ramezanianpour, A.A. Strength enhancement modeling of concrete cylinders confined with cfrp composites using artificial neural networks. Compos. Part B: Eng. 2012, 43, 2990–3000. [Google Scholar] [CrossRef]
- Oh, K.S.; Jung, K. GPU implementation of neural networks. Pattern Recognit. 2004, 37, 1311–1314. [Google Scholar] [CrossRef]
- Martinez-Zarzuela, M.; Diaz Pernas, F.J.; Diez Higuera, J.F.; Rodriguez, M.A. Fuzzy art neural network parallel computing on the gpu. In Computational and Ambient Intelligence; Sandoval, F., Prieto, A., Cabestany, J., Grana, M., Eds.; Springer-Verlag: Berlin, Germany, 2007; Volume 4507, pp. 463–470. [Google Scholar]
- Anifowose, F.; Adeniye, S.; Abdulraheem, A. Recent advances in the application of computational intelligence techniques in oil and gas reservoir characterisation: A comparative study. J. Exp. Theor. Artif. Intell. 2014, 26, 551–570. [Google Scholar] [CrossRef]
- Cao, N.T.; Ton-That, A.H.; Choi, H.I. Facial expression recognition based on local binary pattern features and support vector machine. Int. J. Pattern Recognit. Artif. Intell. 2014. [Google Scholar] [CrossRef]
- Khokhar, S.; Mohd Zin, A.A.B.; Mokhtar, A.S.B.; Pesaran, M. A comprehensive overview on signal processing and artificial intelligence techniques applications in classification of power quality disturbances. Renew. Sustain. Energy Rev. 2015, 51, 1650–1663. [Google Scholar] [CrossRef]
- Zhang, S.; Lee, C.K.M.; Chan, H.K.; Choy, K.L.; Wu, Z. Swarm intelligence applied in green logistics: A literature review. Eng. Appl. Artif. Intell. 2015, 37, 154–169. [Google Scholar] [CrossRef]
- Browne, M.; Castelle, B.; Strauss, D.; Tomlinson, R.; Blumenstein, M.; Lane, C. Near-shore swell estimation from a global wind-wave model: Spectral process, linear, and artificial neural network models. Coast. Eng. 2007, 54, 445–460. [Google Scholar] [CrossRef]
- Zhang, J.; Chau, K.W. Multilayer ensemble pruning via novel multi-sub-swarm particle swarm optimization. J. Univers. Comput. Sci. 2009, 15, 840–858. [Google Scholar]
- Taormina, R.; Chau, K.W. Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization and extreme learning machines. J. Hydrol. 2015, 529, 1617–1632. [Google Scholar] [CrossRef]
- Zhang, S.W.; Chau, K.W. Dimension reduction using semi-supervised locally linear embedding for plant leaf classification. In Emerging Intelligent Computing Technology and Applications, Proceedings; Huang, D.S., Jo, K.H., Lee, H.H., Kang, H.J., Bevilacqua, V., Eds.; Springer-Verlag: Berlin, Germany, 2009; Volume 5754, pp. 948–955. [Google Scholar]
- Wu, C.L.; Chau, K.W.; Li, Y.S. Methods to improve neural network performance in daily flows prediction. J. Hydrol. 2009, 372, 80–93. [Google Scholar] [CrossRef]
- Chau, K.W.; Wu, C.L. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J. Hydroinform. 2010, 12, 458–473. [Google Scholar] [CrossRef]
- Wang, W.C.; Chau, K.W.; Xu, D.M.; Chen, X.Y. Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour. Manag. 2015, 29, 2655–2675. [Google Scholar] [CrossRef]
- Hwang, G.-H.; Chen, J.-M.; Hwang, G.-J.; Chu, H.-C. A time scale-oriented approach for building medical expert systems. Expert Syst. Appl. 2006, 31, 299–308. [Google Scholar] [CrossRef]
- Bi, C. Memetic algorithms for de novo motif-finding in biomedical sequences. Artif. Intell. Med. 2012, 56, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-B. Fusion of neural networks with fuzzy logic and genetic algorithm. Integrated Comput.-Aided Eng. 2002, 9, 363. [Google Scholar]
- Tsai, C.-F. Financial decision support using neural networks and support vector machines. Exp. Syst. 2008, 25, 380–393. [Google Scholar] [CrossRef]
- Gossard, D.; Lartigue, B.; Thellier, F. Multi-objective optimization of a building envelope for thermal performance using genetic algorithms and artificial neural network. Energy Build. 2013, 67, 253–260. [Google Scholar] [CrossRef]
- Martínez-Martínez, V.; Gomez-Gil, F.J.; Gomez-Gil, J.; Ruiz-Gonzalez, R. An artificial neural network based expert system fitted with genetic algorithms for detecting the status of several rotary components in agro-industrial machines using a single vibration signal. Exp. Syst. Appl. 2015, 42, 6433–6441. [Google Scholar] [CrossRef]
- González, B.; Valdez, F.; Melin, P.; Prado-Arechiga, G. Fuzzy logic in the gravitational search algorithm for the optimization of modular neural networks in pattern recognition. Exp. Syst. Appl. 2015, 42, 5839–5847. [Google Scholar] [CrossRef]
- Farfani, H.A.; Behnamfar, F.; Fathollahi, A. Dynamic analysis of soil-structure interaction using the neural networks and the support vector machines. Exp. Syst. Appl. 2015, 42, 8971–8981. [Google Scholar] [CrossRef]
- Rahmani, R.; Yusof, R.; Seyedmahmoudian, M.; Mekhilef, S. Hybrid technique of ant colony and particle swarm optimization for short term wind energy forecasting. J. Wind Eng. Ind. Aerodyn. 2013, 123, 163–170. [Google Scholar] [CrossRef]
- Nazari, A.; Sanjayan, J.G. Modelling of compressive strength of geopolymer paste, mortar and concrete by optimized support vector machine. Ceram. Int. 2015, 41, 12164–12177. [Google Scholar] [CrossRef]
- Laurentys, C.A.; Palhares, R.M.; Caminhas, W.M. A novel artificial immune system for fault behavior detection. Exp. Syst. Appl. 2011, 38, 6957–6966. [Google Scholar] [CrossRef]
- Bansal, J.C.; Sharma, H.; Arya, K.V.; Nagar, A. Memetic search in artificial bee colony algorithm. Soft Comput.—Fusion Found. Methodol. Appl. 2013, 17, 1911–1928. [Google Scholar] [CrossRef]
- Song, X.; Gu, H.; Tang, L.; Zhao, S.; Zhang, X.; Li, L.; Huang, J. Application of artificial bee colony algorithm on surface wave data. Comput. Geosci. 2015, 83, 219–230. [Google Scholar] [CrossRef]
- Kryszkiewicz, M. Rough set approach to incomplete information systems. Inf. Sci. 1998, 112, 39–49. [Google Scholar] [CrossRef]
- Liu, G.; Zhu, W. The algebraic structures of generalized rough set theory. Inf. Sci. 2008, 178, 4105–4113. [Google Scholar] [CrossRef]
- Kahramanli, H.; Allahverdi, N. Rule extraction from trained adaptive neural networks using artificial immune systems. Exp. Syst. Appl. 2009, 36, 1513–1522. [Google Scholar] [CrossRef]
- Sauze, C.; Neal, M. Artificial endocrine controller for power management in robotic systems. IEEE Trans. Neural Netw. Learn. Syst. 2013, 24, 1973–1985. [Google Scholar] [CrossRef] [PubMed]
- Kuo, R.J.; Chiang, N.J.; Chen, Z.Y. Integration of artificial immune system and k-means algorithm for customer clustering. Appl. Artif. Intell. 2014, 28, 577–596. [Google Scholar]
- Shiue Kee, C.; Mohamad, M.S.; Salleh, A.H.M.; Yee Wen, C.; Chuii Khim, C.; Deris, S. A hybrid of ant colony optimization and minimization of metabolic adjustment to improve the production of succinic acid in escherichia coli. Comput. Biol. Med. 2014, 49, 74–82. [Google Scholar]
- Li, Z.; Wang, W.; Yan, Y.; Li, Z. PS–ABC: A hybrid algorithm based on particle swarm and artificial bee colony for high-dimensional optimization problems. Exp. Syst. Appl. 2015, 42, 8881–8895. [Google Scholar] [CrossRef]
- Nahato, K.B.; Harichandran, K.N.; Arputharaj, K. Knowledge mining from clinical datasets using rough sets and backpropagation neural network. Comput. Math. Methods Med. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Armstrong, M.P. Geography and computational science. Ann. Assoc. Am. Geogr. 2000, 90, 146–156. [Google Scholar] [CrossRef]
- Openshaw, S.; Abrahart, R.J. Geocomptuation; Taylor & Francis: London, UK, 2000. [Google Scholar]
- Openshaw, S.; Openshaw, C. Artificial Intelligence in Geography; John Wiley & Sons: New York, NY, USA, 1997. [Google Scholar]
- Manyika, J.; Institute, M.G.; Chui, M.; Brown, B.; Bughin, J.; Dobbs, R.; Roxburgh, C.; Byers, A.H. Big Data: The Next Frontier for Innovation, Competition, and Productivity; McKinsey Global Institute: Washington, DC, USA, 2011. [Google Scholar]
Year | TA | AU | AU/TA | NR | NR/TA | PG | PG/TA | TC | CPA |
---|---|---|---|---|---|---|---|---|---|
1990 | 212 | 437 | 2.1 | 1948 | 9.2 | 2017 | 9.5 | 706 | 3.3 |
1991 | 477 | 1002 | 2.1 | 8166 | 17.1 | 5477 | 11.5 | 7029 | 14.7 |
1992 | 576 | 1357 | 2.4 | 8226 | 14.3 | 6062 | 10.5 | 5403 | 9.4 |
1993 | 492 | 1231 | 2.5 | 7985 | 16.2 | 5217 | 10.6 | 4332 | 8.8 |
1994 | 576 | 1407 | 2.4 | 12,576 | 21.8 | 12,082 | 21.0 | 4667 | 8.1 |
1995 | 489 | 1161 | 2.4 | 10,344 | 21.2 | 6257 | 12.8 | 7015 | 14.3 |
1996 | 534 | 1335 | 2.5 | 9482 | 17.8 | 5691 | 10.7 | 3868 | 7.2 |
1997 | 667 | 1676 | 2.5 | 10,833 | 16.2 | 8653 | 13.0 | 7946 | 11.9 |
1998 | 693 | 1808 | 2.6 | 12,930 | 18.7 | 7337 | 10.6 | 7868 | 11.4 |
1999 | 541 | 1371 | 2.5 | 11,742 | 21.7 | 6378 | 11.8 | 5619 | 10.4 |
2000 | 616 | 1713 | 2.8 | 12,514 | 20.3 | 6722 | 10.9 | 6932 | 11.3 |
2001 | 672 | 1869 | 2.8 | 14,530 | 21.6 | 7359 | 11.0 | 10,498 | 15.6 |
2002 | 698 | 1828 | 2.6 | 14,199 | 20.3 | 7040 | 10.1 | 5991 | 8.6 |
2003 | 834 | 2354 | 2.8 | 16,697 | 20.0 | 8491 | 10.2 | 6830 | 8.2 |
2004 | 936 | 2719 | 2.9 | 19,442 | 20.8 | 9497 | 10.1 | 8267 | 8.8 |
2005 | 1009 | 2826 | 2.8 | 18,833 | 18.7 | 9573 | 9.5 | 5839 | 5.8 |
2006 | 1102 | 3248 | 2.9 | 23,748 | 21.5 | 10,788 | 9.8 | 6276 | 5.7 |
2007 | 1107 | 3163 | 2.9 | 23,692 | 21.4 | 10,926 | 9.9 | 7360 | 6.6 |
2008 | 1234 | 3543 | 2.9 | 26,857 | 21.8 | 11,344 | 9.2 | 6412 | 5.2 |
2009 | 1388 | 4104 | 3 | 30,768 | 22.2 | 12,685 | 9.1 | 6906 | 5.0 |
2010 | 1073 | 3338 | 3.1 | 26,878 | 25.0 | 11,111 | 10.4 | 4928 | 4.6 |
2011 | 1090 | 3445 | 3.2 | 28,424 | 26.1 | 11,498 | 10.5 | 4391 | 4.0 |
2012 | 1222 | 3959 | 3.2 | 35,036 | 28.7 | 12,476 | 10.2 | 3376 | 2.8 |
2013 | 1324 | 4437 | 3.4 | 38,571 | 29.1 | 13,241 | 10.0 | 1824 | 1.4 |
2014 | 1153 | 3971 | 3.4 | 39,783 | 34.5 | 13,623 | 11.8 | 767 | 0.7 |
Total | 20,715 | 59,302 | / | 464,204 | / | 221,545 | / | 141,050 | / |
Average | / | 2965 | 3.4 | 23,210 | 26.3 | 11,077 | 13.7 | 7053 | 9.7 |
Journal | TA (R; %) | TC (R; %) | CPA (R) | IF (R) |
---|---|---|---|---|
Expert Systems with Applications | 344(1;1.7) | 3643(2;2.6) | 10.6(9) | 2.24(7) |
Engineering Applications of Artificial Intelligence | 161(2;0.8) | 1650(4;1.2) | 10.2(11) | 2.207(9) |
AI Magazine | 161(3;0.8) | 1220(7;0.9) | 7.6(15) | 0.595(17) |
Artificial Intelligence | 126(4;0.6) | 7341(1;5.2) | 58.3(1) | 3.371(2) |
Knowledge-based Systems | 103(5;0.5) | 1218(8;0.9) | 11.8(8) | 2.947(3) |
Kybernetes | 96(6; 0.5) | 150(20;0.1) | 1.6(20) | 0.429(20) |
Applied Artificial Intelligence | 89(7;0.4) | 562(15;0.4) | 6.3(18) | 0.527(19) |
European Journal of Operational Research | 84(8; 0.4) | 1499(5;1.1) | 17.8(5) | 2.358(5) |
Minds and Machines | 81(9; 0.4) | 375(19;0.3) | 4.6(19) | 0.568(18) |
Artificial Intelligence Review | 77(10; 0.4) | 677(12;0.5) | 8.8(13) | 2.111(10) |
Artificial Intelligence in Medicine | 72(11; 0.3) | 1318(6;0.9) | 18.3(4) | 2.019(12) |
Journal of Intelligent Manufacturing | 71(12; 0.3) | 639(14;0.5) | 9(12) | 1.731(14) |
Journal of Materials Processing Technology | 68(13; 0.3) | 833(11;0.6) | 12.3(7) | 2.236(8) |
Information Sciences | 68(14; 0.3) | 965(10;0.7) | 14.2(6) | 4.038(1) |
Applied Soft Computing | 68(15; 0.3) | 1693(3;1.2) | 24.9(2) | 2.81(4) |
Computers in Industry | 64(16; 0.3) | 663(13;0.5) | 10.4(10) | 1.287(16) |
Decision Support Systems | 62(17; 0.3) | 1151(9;0.8) | 18.6(3) | 2.313(6) |
Computers & industrial Engineering | 62(18; 0.3) | 412(17;0.3) | 6.6(17) | 1.783(13) |
Neurocomputing | 60(19; 0.3) | 404(18;0.3) | 6.7(16) | 2.083(11) |
International Journal of Advanced Manufacturing Technology | 59(20;0.3) | 463(16;0.3) | 7.8(14) | 1.458(15) |
Author name | Institute | Total Outputs | First Author | Corresponding Author | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TA | TC | CPA (R) | FAP | TC | TC/FAP (R) | CP | TC | CPA (R) | ||
J. Neves | Univ Minho | 35 | 63 | 1.3(17) | 3 | 0 | 0.0(19) | 3 | 0 | 0(16) |
G. Klopman | Case Western Reserv Univ | 30 | 1,068 | 35.6(1) | 12 | 664 | 55.3(1) | 14 | 697 | 49.8(1) |
C. Chen | Natl Pingtung Univ Educ | 28 | 321 | 13.5(7) | 11 | 114 | 10.4(8) | 22 | 295 | 13.4(5) |
K. Chau | Hong Kong Polytech Univ | 28 | 633 | 18.6(6) | 26 | 601 | 23.1(4) | 28 | 633 | 22.6(3) |
R. Tadeusiewicz | AGH Univ Sci & Technol | 26 | 172 | 6.6(11) | 4 | 26 | 6.5(12) | 4 | 32 | 8(9) |
M. Cheng | Natl Taiwan Univ Sci & Technol | 25 | 114 | 4.6(14) | 15 | 71 | 4.7(13) | 1 | 0 | 0(16) |
M. Ogiela | AGH Univ Sci & Technol | 22 | 163 | 7.4(10) | 15 | 131 | 8.7(10) | 16 | 137 | 8.6(8) |
H. Rosenkranz | Univ Pittsburgh | 21 | 702 | 33.4(2) | 4 | 56 | 14.0(7) | 6 | 78 | 13(6) |
L. Lai | City Univ London | 18 | 437 | 24.3(4) | 10 | 359 | 35.9(2) | 11 | 359 | 32.6(2) |
S. Chien | Caltech,Jet Propuls Lab | 18 | 20 | 1.1(18) | 5 | 19 | 3.8(15) | 5 | 19 | 3.8(12) |
P. Novais | Univ Minho | 18 | 20 | 1.1(18) | 1 | 3 | 3.0(17) | 6 | 8 | 1.3(14) |
Y. Xu | Shanghai Jiao Tong Univ | 17 | 92 | 5.4(12) | 3 | 48 | 16.0(6) | 5 | 48 | 9.6(7) |
M. Juhola | Univ Tampere | 17 | 65 | 3.8(15) | 2 | 0 | 0.0(19) | 2 | 0 | 0(16) |
U. Cortes | Tech Univ Catalonia | 17 | 396 | 23.3(5) | 4 | 16 | 4.0(14) | 4 | 16 | 4(11) |
O. Kisi | Canik Basari | 17 | 208 | 12.7(9) | 2 | 19 | 9.5(9) | 0 | 0 | 0(16) |
B. Shih | Natl Pingtung Univ Educ | 16 | 211 | 13.2(8) | 10 | 166 | 16.6(5) | 0 | 0 | 0(16) |
M. Majewski | Koszalin Univ Technol | 16 | 23 | 1.4(16) | 3 | 11 | 3.7(16) | 3 | 11 | 3.7(13) |
B. Goertzel | Novamente LLC | 14 | 14 | 1.0(20) | 5 | 3 | 0.6(18) | 11 | 9 | 0.8(15) |
E. Corchado | Univ Salamanca | 14 | 66 | 4.7(13) | 6 | 47 | 7.8(11) | 6 | 47 | 7.8(10) |
Y. Hsu | Chung Hua Univ | 14 | 368 | 26.3(3) | 7 | 188 | 26.9(3) | 9 | 195 | 21.7(4) |
TA | Single-country | Internationally Collaborated | R&D | TA/I(1 million) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
SA | TC | CPA (R) | SA (%) | CA | TC | CPA(R) | CA(%) | ||||
USA | 4144 | 3432 | 42,233 | 12.3(2) | 82.8 | 712 | 15,032 | 21.1(2) | 17.2 | 405.3 | 13.2 |
China | 2392 | 2157 | 4432 | 2.1(19) | 90.2 | 235 | 2282 | 9.7(13) | 9.8 | 337.5 | 1.8 |
UK | 1718 | 1312 | 11,996 | 9.1(3) | 76.4 | 406 | 5939 | 14.6(5) | 23.6 | 38.4 | 27.4 |
Spain | 1073 | 888 | 4215 | 4.7(12) | 82.8 | 185 | 1315 | 7.1(18) | 17.2 | 17.2 | 22.9 |
France | 869 | 650 | 3068 | 4.7(12) | 74.8 | 219 | 3205 | 14.6(6) | 25.2 | 42.2 | 13.3 |
Germany | 830 | 655 | 3978 | 6.1(6) | 78.9 | 175 | 1718 | 9.8(12) | 21.1 | 69.5 | 10.2 |
Canada | 823 | 565 | 3237 | 5.7(9) | 68.7 | 258 | 6790 | 26.3(1) | 31.3 | 24.3 | 24.2 |
Italy | 797 | 615 | 3339 | 5.4(10) | 77.2 | 182 | 3109 | 17.1(3) | 22.8 | 19 | 13.1 |
India | 643 | 575 | 2175 | 3.8(15) | 89.4 | 68 | 675 | 9.9(10) | 10.6 | 36.1 | 0.5 |
Japan | 613 | 510 | 1890 | 3.7(16) | 83.2 | 103 | 1200 | 11.7(8) | 16.8 | 160.3 | 4.8 |
Brazil | 593 | 521 | 1384 | 2.7(18) | 87.9 | 72 | 759 | 10.5(9) | 12.1 | 19.4 | 2.9 |
Australia | 590 | 432 | 2181 | 5.0(11) | 73.2 | 158 | 1130 | 7.2(17) | 26.8 | 15.9 | 27.1 |
Taiwan | 506 | 461 | 3740 | 8.1(4) | 91.1 | 45 | 646 | 14.4(7) | 8.9 | 19 | 21.5 |
Poland | 470 | 423 | 1383 | 3.3(17) | 90.0 | 47 | 370 | 7.9(16) | 10.0 | 6.9 | 12.2 |
Iran | 412 | 326 | 1260 | 3.9(14) | 79.1 | 86 | 479 | 5.6(20) | 20.9 | 0.7 | 5.3 |
Turkey | 359 | 288 | 4206 | 14.6(1) | 80.2 | 71 | 673 | 9.5(14) | 19.8 | 7.3 | 4.6 |
South Korea | 317 | 276 | 1642 | 5.9(7) | 87.1 | 41 | 390 | 9.5(15) | 12.9 | 65.4 | 6.5 |
Greece | 307 | 258 | 1485 | 5.8(8) | 84.0 | 49 | 485 | 9.9(11) | 16.0 | 1.7 | 28.4 |
Netherlands | 304 | 196 | 1401 | 7.1(5) | 64.5 | 108 | 1696 | 15.7(4) | 35.5 | 10.8 | 18.1 |
Romania | 270 | 251 | 491 | 2.0(20) | 93.0 | 19 | 116 | 6.1(19) | 7.0 | 1.3 | 12.3 |
Institution | TA | TC | Single-institution | Inter-institution | ||||||
---|---|---|---|---|---|---|---|---|---|---|
SI | TC | CPA (R) | SI (%) | CI | TC | CPA (R) | CI (%) | |||
Chinese Acad Sci, China | 123 | 769 | 45 | 92 | 2(17) | 36.6 | 78 | 677 | 8.7(13) | 63.4 |
MIT, USA | 118 | 5684 | 69 | 4,359 | 63.2(1) | 58.5 | 49 | 1,325 | 27(4) | 41.5 |
Hong Kong Polytech Univ, Hongkong | 118 | 1302 | 67 | 526 | 7.9(10) | 56.8 | 51 | 776 | 15.2(7) | 43.2 |
Nanyang Technol Univ, Singapore | 111 | 1039 | 70 | 586 | 8.4(9) | 63.1 | 41 | 453 | 11(10) | 36.9 |
Islamic Azad Univ, Iran | 104 | 361 | 31 | 75 | 2.4(16) | 29.8 | 73 | 286 | 3.9(19) | 70.2 |
Carnegie Mellon Univ, USA | 102 | 1547 | 57 | 1,044 | 18.3(3) | 55.9 | 45 | 503 | 11.2(9) | 44.1 |
Univ Sao Paulo, Brazil | 100 | 346 | 55 | 75 | 1.4(20) | 55.0 | 45 | 271 | 6(17) | 45.0 |
Stanford Univ, USA | 95 | 2526 | 48 | 795 | 16.6(4) | 50.5 | 47 | 1731 | 36.8(2) | 49.5 |
Indian Inst Technol, India | 94 | 600 | 54 | 290 | 5.4(13) | 57.4 | 40 | 310 | 7.8(16) | 42.6 |
Natl Univ Singapore, Singapore | 92 | 790 | 51 | 352 | 6.9(12) | 55.4 | 41 | 438 | 10.7(11) | 44.6 |
Univ Pittsburgh, USA | 88 | 2436 | 24 | 496 | 20.7(2) | 27.3 | 64 | 1940 | 30.3(3) | 72.7 |
Univ Toronto, Canada | 77 | 5187 | 34 | 419 | 12.3(7) | 44.2 | 43 | 4768 | 110.9(1) | 55.8 |
Univ SO Calif, USA | 77 | 1100 | 42 | 545 | 13(6) | 54.5 | 35 | 555 | 15.9(5) | 45.5 |
Univ Politecn Valencia, Spain | 76 | 320 | 46 | 81 | 1.8(18) | 60.5 | 30 | 239 | 8(15) | 39.5 |
Natl Tech Univ Athens, Greece | 76 | 763 | 49 | 497 | 10.1(8) | 64.5 | 27 | 266 | 9.9(12) | 35.5 |
Univ Genoa, Italy | 75 | 393 | 44 | 128 | 2.9(15) | 58.7 | 31 | 265 | 8.5(14) | 41.3 |
Univ Poliecn Madrid, Spain | 74 | 184 | 33 | 57 | 1.7(19) | 44.6 | 41 | 127 | 3.1(20) | 55.4 |
Univ Arizona, USA | 72 | 875 | 32 | 246 | 7.7(11) | 44.4 | 40 | 629 | 15.7(6) | 55.6 |
Univ Alberta, Canada | 66 | 688 | 34 | 507 | 14.9(5) | 51.5 | 32 | 181 | 5.7(18) | 48.5 |
Georgia Inst Technol, USA | 66 | 605 | 25 | 114 | 4.6(14) | 37.9 | 41 | 491 | 12(8) | 62.1 |
keyword | TA(R) | CPA(R) | |||||
---|---|---|---|---|---|---|---|
1990–1994 | 1995–1999 | 2000–2004 | 2005–2009 | 2010–2014 | 1990–2014 | ||
Artificial Intelligence(AI) | 915(1) | 879(1) | 950(1) | 1487(1) | 1,610(1) | 5,841(1) | 6.8(25) |
Artificial Neural network(ANN) | 114(3) | 310(2) | 472(2) | 966(2) | 1,419(2) | 3,281(2) | 8.3(17) |
Genetic algorithm(GA) | 16(18) | 82(5) | 178(4) | 315(3) | 493(3) | 1,084(3) | 9.2(11) |
Expert System (ES) | 399(2) | 196(3) | 181(3) | 170(5) | 132(14) | 1,078(4) | 6.9(23) |
Optimization | 19(15) | 57(8) | 92(6) | 168(6) | 366(4) | 702(5) | 7.9(19) |
Prediction | 13(22) | 22(20) | 57(12) | 132(9) | 300(5) | 524(6) | 9.2(11) |
Classification | 18(16) | 43(15) | 60(11) | 179(4) | 223(8) | 523(7) | 10.6(6) |
Design | 42(10) | 45(14) | 79(8) | 120(11) | 223(8) | 509(8) | 9.9(8) |
Fuzzy Logic (FL) | 20(13) | 52(12) | 101(5) | 138(8) | 185(11) | 496(9) | 8(18) |
Multi-agent system(MAS) | 9(23) | 42(17) | 84(7) | 158(7) | 141(12) | 434(10) | 10.6(6) |
Simulation | 52(6) | 43(15) | 69(9) | 104(12) | 120(15) | 388(11) | 7.2(20) |
Support Vector Machine(SVM) | 0(27) | 0(29) | 15(28) | 86(15) | 264(6) | 365(12) | 7.2(20) |
Machine Learning(ML) | 22(12) | 48(13) | 56(13) | 92(13) | 138(13) | 356(13) | 6.6(26) |
Diagnosis | 46(8) | 61(7) | 63(10) | 72(19) | 90(18) | 332(14) | 13.1(3) |
Data mining | 1(25) | 11(25) | 52(14) | 131(10) | 118(16) | 313(15) | 6.5(27) |
Swarm intelligence(SI) | 0(27) | 1(28) | 16(26) | 73(17) | 215(10) | 305(16) | 15.4(1) |
Particle swarm optimization (PSO) | 0(27) | 0(29) | 3(30) | 52(25) | 238(7) | 293(17) | 11.6(5) |
Decision support system(DSS) | 34(11) | 53(11) | 52(14) | 80(16) | 65(26) | 284(18) | 8.8(14) |
Pattern recognition | 46(8) | 56(9) | 36(22) | 73(17) | 64(27) | 275(19) | 9.4(10) |
Knowledge-based system(KBS) | 68(4) | 78(6) | 49(17) | 41(29) | 26(30) | 262(20) | 6.4(28) |
Case-based reasoning(CBR) | 8(24) | 39(18) | 50(16) | 91(14) | 74(21) | 262(20) | 9(13) |
Distributed artificial Intelligence(DAI) | 57(5) | 93(4) | 43(19) | 37(30) | 29(29) | 259(22) | 7(22) |
Knowledge representation(KR) | 50(7) | 54(10) | 49(17) | 66(20) | 37(28) | 256(23) | 5.6(30) |
Management | 15(20) | 20(22) | 38(21) | 54(23) | 78(20) | 205(24) | 14.7(2) |
Identification | 15(20) | 17(24) | 33(23) | 59(22) | 80(19) | 204(25) | 9.7(9) |
Decision making | 16(18) | 30(19) | 23(25) | 52(25) | 72(22) | 193(26) | 6.9(23) |
Fault Diagnosis | 20(13) | 21(21) | 39(20) | 43(28) | 66(25) | 189(27) | 8.4(16) |
Computational intelligence(CI) | 0(27) | 11(25) | 16(26) | 53(24) | 103(17) | 183(28) | 8.6(15) |
Recognition | 18(16) | 20(22) | 15(28) | 49(27) | 72(22) | 174(29) | 12.1(4) |
Ontology | 1(25) | 10(27) | 24(24) | 62(21) | 69(24) | 166(30) | 6.3(29) |
Keyword | Type | TA(R) | CPA (R) | ||||
---|---|---|---|---|---|---|---|
1995–1999 | 2000–2004 | 2005–2009 | 2010–2014 | 1995–2014 | |||
Artificial Bee Colony (ABC) | Method and model | 0(5) | 0(6) | 5(6) | 156(1) | 161(1) | 14.2(2) |
Ant Colony Optimization (ACO) | Method and model | 1(4) | 5(4) | 31(4) | 62(2) | 99(4) | 15.5(1) |
Artificial Immune System (AIS) | Method and model | 0(5) | 4(5) | 37(3) | 53(3) | 94(6) | 9.0(4) |
Artificial endocrine system (AES) | Method and model | 0(5) | 0(6) | 0(7) | 4(7) | 4(7) | 3.3(7) |
Rough set | Method and model | 5(3) | 17(2) | 49(1) | 32(6) | 103(3) | 7.3(6) |
Mobile robot | Application | 9(1) | 25(1) | 30(5) | 33(5) | 97(5) | 12.7(3) |
Reinforcement learning | Application | 7(2) | 14(3) | 48(2) | 54(4) | 123(2) | 8.95(5) |
Keyword | TA(R) | CPA(R) | |||||
---|---|---|---|---|---|---|---|
1990–1994 | 1995–1999 | 2000–2004 | 2005–2009 | 2010–2014 | 1990–2014 | ||
River | 0(5) | 0(2) | 2(4) | 13(2) | 16(1) | 31(1) | 20.8(4) |
GIS | 0(5) | 0(2) | 2(4) | 14(1) | 12(2) | 28(2) | 4.9(9) |
Remote sensing | 1(4) | 0(2) | 6(2) | 9(3) | 8(3) | 24(3) | 14.2(5) |
Wastewater treatment | 2(3) | 0(2) | 7(1) | 9(3) | 2(7) | 20(4) | 28.8(1) |
Water quality | 0(5) | 3(1) | 0(7) | 6(7) | 8(3) | 17(5) | 7.2(7) |
Hydrology | 4(1) | 0(2) | 0(7) | 1(8) | 6(5) | 11(6) | 5.4(8) |
Risk assessment | 3(2) | 0(2) | 3(3) | 0(9) | 4(6) | 10(7) | 12(6) |
Rainfall runoff models | 0(5) | 0(2) | 0(7) | 8(5) | 2(7) | 10(7) | 27.2(2) |
Flood forecasting | 0(5) | 0(2) | 1(6) | 8(5) | 1(9) | 10(7) | 24.1(3) |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Niu, J.; Tang, W.; Xu, F.; Zhou, X.; Song, Y. Global Research on Artificial Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis. ISPRS Int. J. Geo-Inf. 2016, 5, 66. https://doi.org/10.3390/ijgi5050066
Niu J, Tang W, Xu F, Zhou X, Song Y. Global Research on Artificial Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis. ISPRS International Journal of Geo-Information. 2016; 5(5):66. https://doi.org/10.3390/ijgi5050066
Chicago/Turabian StyleNiu, Jiqiang, Wenwu Tang, Feng Xu, Xiaoyan Zhou, and Yanan Song. 2016. "Global Research on Artificial Intelligence from 1990–2014: Spatially-Explicit Bibliometric Analysis" ISPRS International Journal of Geo-Information 5, no. 5: 66. https://doi.org/10.3390/ijgi5050066