Geospatial Analysis of the Building Heat Demand and Distribution Losses in a District Heating Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data: Sources and Pre-Processing
2.2. Building Heat Demand
2.3. District Heating Network: Routing and Losses
2.4. Scenario
3. Results and Discussion
3.1. Building Statistics
3.2. Spatial Analysis of Heat Demand and Distribution Losses
3.3. Scenario Outcome
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Lund, H.; Möller, B.; Mathiesen, B.V.; Dyrelund, A. The role of district heating in future renewable energy systems. Energy 2010, 35, 1381–1390. [Google Scholar] [CrossRef]
- Lundström, L.; Wallin, F. Heat demand profiles of energy conservation measures in buildings and their impact on a district heating system. Appl. Energy 2016, 161, 290–299. [Google Scholar] [CrossRef]
- Münster, M.; Morthorst, P.E.; Larsen, H.V.; Bregnbæk, L.; Werling, J.; Lindboe, H.H.; Ravn, H. The role of district heating in the future Danish energy system. Energy 2012, 48, 47–55. [Google Scholar] [CrossRef]
- Resch, B.; Sagl, G.; Törnros, T.; Bachmaier, A.; Eggers, J.B.; Herkel, S.; Narmsara, S.; Gündra, H. GIS-based planning and modeling for renewable energy: Challenges and future research avenues. ISPRS Int. J. Geo-Inf. 2014, 3, 662–692. [Google Scholar] [CrossRef]
- Nielsen, S.; Möller, B. GIS-Based analysis of future district heating potential in Denmark. Energy 2013, 57, 458–468. [Google Scholar] [CrossRef]
- Gils, H.C.; Cofala, J.; Wagner, F.; Schöpp, W. GIS-based assessment of the district heating potential in the USA. Energy 2013, 58, 318–329. [Google Scholar] [CrossRef]
- Finney, K.N.; Sharifi, V.N.; Swithenbank, J.; Nolan, A.; White, S.; Ogden, S. Developments to an existing city-wide district energy network—Part I: Identification of potential expansions using heat mapping. Energ. Conv. Manag. 2012, 62, 165–175. [Google Scholar] [CrossRef]
- Kaden, R.; Kolbe, T. City-wide total energy demand estimation of buildings using semantic 3D city models and statistical data. In Proceedings of the ISPRS 8th 3DGeoInfo Conference & WG II/2 Workshop, Istanbul, Turkey, 27–29 November 2013.
- Bale, C.S.E.; Bush, R.E.; Taylor, P. Spatial Mapping Tools for District Heating (DH): Helping Local Authorities Tackle Fuel Poverty; Project Report; Centre for Intergarated Energy Research, University of Leeds: Leeds, UK, 2014. [Google Scholar]
- Greater London Authority. District Heating Manual for London; Greater London Authority: London, UK, 2013. [Google Scholar]
- Herrmann, J. Optimierung der Städtischen Energieversorgung am Beispiel der Stadt Augsburg unter Besonderer Berücksichtigung von Wärmetransportmechanismen. Ph.D. Thesis, University of Augsburg, Augsburg, Germany, 2013. [Google Scholar]
- Baños, R.; Manzano-Agugliaro, F.; Montoya, F.G.; Gil, C.; Alcayde, A.; Gómez, J. Optimization methods applied to renewable and sustainable energy: A review. Renew. Sustain. Energy Rev. 2011, 15, 1753–1766. [Google Scholar] [CrossRef]
- Jamsek, M.; Dobersek, D.; Goricanec, D.; Krope, J. Determination of optimal district heating pipe network configuration. WSEAS Trans. Fluid Mech. 2010, 5, 165–174. [Google Scholar]
- Vesterlund, M.; Sandberg, J.; Lindblom, B.; Dahl, J. Evaluation of losses in district heating system, a case study. In Proceedings of the 26th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, Guilin, China, 16–19 July 2013.
- Gnüchtel, S. Netz-Optimierung für die Ausbauplanung (STEFaN—Software zur Trassen-Erschließung Fernwärme für Allgemeine Freie Nutzung) Computer Software. Available online: https://tu-dresden.de/ing/maschinenwesen/iet/gewv/forschung/forschungsprojekte/mldh/download_mldh (accessed on 15 November 2016).
- KEA (Energy Agency of the State of Baden-Württemberg, Germany). Wärmenetz-Analyst (WNA) (Heat Net Analyzer). Available online: http://www.kea-bw.de/shop/startseite/ (accessed on 15 November 2016).
- Miksche, M. Prototypische Umsetzung einer GIS-gestützten Nahwärmenetzkonzeption mit Netzwerkerstellung und—Analyse. Ph.D. Thesis, Karlsruhe University of Applied Sciences, Karlsruhe, Germany, 2011. [Google Scholar]
- Benonysson, A.; Bohm, B.; Ravn, H. Operational optimization in a district heating system. Energy Converns. Manag. 2011, 36, 297–314. [Google Scholar] [CrossRef]
- Dalla Rosa, A.; Li, H.; Svendsen, S. Method for optimal design of pipes for low-energy district heating, with focus on heat losses. Energy 2011, 36, 2407–2418. [Google Scholar] [CrossRef]
- Çomaklı, K.; Yüksel, B.; Çomaklı, Ö. Evaluation of energy and exergy losses in district heating network. Appl. Therm. Eng. 2004, 24, 1009–1017. [Google Scholar] [CrossRef]
- Yildirim, N.; Toksoy, M.; Gokcen, G. Piping network design of geothermal district heating systems: Case study for a University Campus. Energy 2010, 35, 3256–3262. [Google Scholar] [CrossRef]
- Tol, H.İ.; Svendsen, S. Effects of boosting the supply temperature on pipe dimensions of low-energy district heating networks: A case study in Gladsaxe, Denmark. Energy Build. 2015, 88, 324–334. [Google Scholar] [CrossRef]
- Nahwärmenetze und Bioenergieanlagen: Ein Beitrag zur effizienten Wärmenutzung und zum Klimaschutz. Available online: https://www.carmen-ev.de/files/festbrennstoffe/merkblatt_Nahwaermenetz_carmen_ev.pdf (accessed on 18 August 2016).
- Ivner, J.; Broberg Viklund, S. Effect of the use of industrial excess heat in district heating on greenhouse gas emissions: A systems perspective. Resour. Con. Recy. 2015, 100, 81–87. [Google Scholar] [CrossRef]
- AdV (Working Committee of the Surveying Authorities of the States of the Federal Republic of Germany). Documentation on the Modelling of Geoinformation of Official Surveying and Mapping (GeoInfoDok). Available online: www.adv-online.de/Publications/AFIS-ALKIS-ATKIS-Project/ (accessed on 15 November 2016).
- Loga, T.; Diefenbach, N.; Stein, B. Typology Approach for Building Stock Energy Assessment. Main Results of the TABULA Project. Final Project Report; Institute for Housing and Environment: Darmstadt, Germany, 2012. [Google Scholar]
- Loga, T.; Diefenbach, N.; Born, R. Deutsche Gebäudetypologie. Beispielhafte Maßnahmen zur Verbesserung der Energieeffizienz von typischen Wohngebäuden; Institute Wohnen und Umwelt: Darmstadt, Germany, 2011. [Google Scholar]
- Dorn, H.; Törnros, T.; Zipf, A. Quality evaluation of VGI using authoritative data—A comparison with land use data in Southern Germany. ISPRS Int. J. Geo-Inf. 2015, 4, 1657–1671. [Google Scholar] [CrossRef]
Data | Data type | Attributes | Source |
---|---|---|---|
Building footprints | Polygon | Number of stories, building type etc. | LGL |
Building address | Address data | Detailed building types | NEXIGA |
Demographic data | Address data | Nr. persons and flats per building | casaGeo |
Address points | Point | Geocoding of NEXIGA and casaGeo addresses | Here |
TABULA typology | Buildings typology | Total primary energy demand for heating and domestic hot water | IWU |
Land use | Polygon | 14 land use classes | LGL |
District heating network | Lines (digitalized) | DH network and DH supply area | AVR Energie GmbH |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Törnros, T.; Resch, B.; Rupp, M.; Gündra, H. Geospatial Analysis of the Building Heat Demand and Distribution Losses in a District Heating Network. ISPRS Int. J. Geo-Inf. 2016, 5, 219. https://doi.org/10.3390/ijgi5120219
Törnros T, Resch B, Rupp M, Gündra H. Geospatial Analysis of the Building Heat Demand and Distribution Losses in a District Heating Network. ISPRS International Journal of Geo-Information. 2016; 5(12):219. https://doi.org/10.3390/ijgi5120219
Chicago/Turabian StyleTörnros, Tobias, Bernd Resch, Matthias Rupp, and Hartmut Gündra. 2016. "Geospatial Analysis of the Building Heat Demand and Distribution Losses in a District Heating Network" ISPRS International Journal of Geo-Information 5, no. 12: 219. https://doi.org/10.3390/ijgi5120219