Spatiotemporal Imbalances in Dockless Bike-Sharing Usage: Evidence from Shanghai
Abstract
1. Introduction
2. Related Works
2.1. Mobility Patterns of Bike-Sharing Users
2.2. Effects of the BE on Bike-Sharing Usage
3. Study Area, Data, and Methodology
3.1. Study Area
3.2. Data Collection and Processing
3.3. Identification of Bike-Sharing Usage Patterns
3.4. Determinants of DLBS Usage Patterns
4. Results
4.1. Distributional Characteristics of DLBS Net Flow
4.2. NMF-Based Identification of DLBS Net Flow Patterns
4.3. MNL-Based Associations Between DLBS Net Flow Patterns and BE Factors
5. Discussions
5.1. Imbalanced Spatiotemporal Patterns of DLBS Net Flow
5.2. BE Influences on Spatiotemporal Patterns of DLBS Net Flows
5.3. Policy Implications
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Diao, M.; Su, H. Electric vehicle ownership and the built environment: Evidence from China. Transp. Res. Part D Transp. Environ. 2025, 146, 104854. [Google Scholar] [CrossRef]
- Saltykova, K.; Ma, X.; Yao, L.; Kong, H. Environmental impact assessment of bike-sharing considering the modal shift from public transit. Transp. Res. Part D Transp. Environ. 2022, 105, 103238. [Google Scholar] [CrossRef]
- Zhu, Y. Can bicycle sharing mitigate vehicle emission in Chinese large cities? Estimation based on mode shift analysis. Transportation 2022, 49, 1627–1648. [Google Scholar] [CrossRef]
- Xu, Y.; Chen, D.; Zhang, X.; Tu, W.; Chen, Y.; Shen, Y.; Ratti, C. Unravel the landscape and pulses of cycling activities from a dockless bike-sharing system. Comput. Environ. Urban Syst. 2019, 75, 184–203. [Google Scholar] [CrossRef]
- Fishman, E.; Washington, S.; Haworth, N.; Mazzei, A. Barriers to bikesharing: An analysis from Melbourne and Brisbane. J. Transp. Geogr. 2014, 41, 325–337. [Google Scholar] [CrossRef]
- Zhang, Y.; Mi, Z. Environmental benefits of bike sharing: A big data-based analysis. Appl. Energy 2018, 220, 296–301. [Google Scholar] [CrossRef]
- Kong, H.; Jin, S.T.; Sui, D.Z. Deciphering the relationship between bikesharing and public transit: Modal substitution, integration, and complementation. Transp. Res. Part D Transp. Environ. 2020, 85, 102392. [Google Scholar] [CrossRef]
- Diao, M.; Song, K.; Shi, S.; Zhu, Y.; Liu, B. The environmental benefits of dockless bike sharing systems for commuting trips. Transp. Res. Part D Transp. Environ. 2023, 124, 103959. [Google Scholar] [CrossRef]
- Xie, X.-F.; Wang, Z.J. Examining travel patterns and characteristics in a bikesharing network and implications for data-driven decision supports: Case study in the Washington DC area. J. Transp. Geogr. 2018, 71, 84–102. [Google Scholar] [CrossRef]
- Hua, M.; Yu, X.; Chen, X.; Chen, J.; Cheng, L. Can bike sharing achieve self-balancing distribution? Evidence from dockless and station-based cases. Travel Behav. Soc. 2025, 38, 100879. [Google Scholar] [CrossRef]
- Zhu, Y.; Diao, M. Understanding the spatiotemporal patterns of public bicycle usage: A case study of Hangzhou, China. Int. J. Sustain. Transp. 2020, 14, 163–176. [Google Scholar] [CrossRef]
- Diao, M.; Kong, H.; Zhao, J. Impacts of transportation network companies on urban mobility. Nat. Sustain. 2021, 4, 494–500. [Google Scholar] [CrossRef]
- Diao, M. Towards sustainable urban transport in Singapore: Policy instruments and mobility trends. Transp. Policy 2019, 81, 320–330. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, X.; Zhao, J. Understanding the usage of dockless bike sharing in Singapore. Int. J. Sustain. Transp. 2018, 12, 686–700. [Google Scholar] [CrossRef]
- Du, Y.; Deng, F.; Liao, F. A model framework for discovering the spatio-temporal usage patterns of public free-floating bike-sharing system. Transp. Res. Part C Emerg. Technol. 2019, 103, 39–55. [Google Scholar] [CrossRef]
- O’Brien, O.; Cheshire, J.; Batty, M. Mining bicycle sharing data for generating insights into sustainable transport systems. J. Transp. Geogr. 2014, 34, 262–273. [Google Scholar] [CrossRef]
- Zhang, X.; Shen, Y.; Zhao, J. The mobility pattern of dockless bike sharing: A four-month study in Singapore. Transp. Res. Part D Transp. Environ. 2021, 98, 102961. [Google Scholar] [CrossRef]
- Chen, Z.; van Lierop, D.; Ettema, D. Dockless bike-sharing systems: What are the implications? Transp. Rev. 2020, 40, 333–353. [Google Scholar] [CrossRef]
- Li, A.; Zhao, P.; Huang, Y.; Gao, K.; Axhausen, K.W. An empirical analysis of dockless bike-sharing utilization and its explanatory factors: Case study from Shanghai, China. J. Transp. Geogr. 2020, 88, 102828. [Google Scholar] [CrossRef]
- Zheng, L.; Meng, F.; Ding, T.; Yang, Q.; Xie, Z.; Jiang, Z. The effect of traffic status on dockless bicycle-sharing: Evidence from Shanghai, China. J. Clean. Prod. 2022, 381, 135207. [Google Scholar] [CrossRef]
- Xing, Y.; Wang, K.; Lu, J.J. Exploring travel patterns and trip purposes of dockless bike-sharing by analyzing massive bike-sharing data in Shanghai, China. J. Transp. Geogr. 2020, 87, 102787. [Google Scholar] [CrossRef]
- Morton, C.; Kelley, S.; Monsuur, F.; Hui, T. A spatial analysis of demand patterns on a bicycle sharing scheme: Evidence from London. J. Transp. Geogr. 2021, 94, 103125. [Google Scholar] [CrossRef]
- He, M.; Ma, X.; Wang, J.; Zhu, M. Geographically weighted multinomial logit models for modelling the spatial heterogeneity in the bike-sharing renting-returning imbalance: A case study on Nanjing, China. Sustain. Cities Soc. 2022, 83, 103967. [Google Scholar] [CrossRef]
- Lu, K.F.; Liu, Y.; Peng, Z.R. Unraveling urban bike-sharing dynamics: Spatiotemporal imbalances in bike rentals and returns in Washington DC. Cities 2025, 162, 105967. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Hampshire, R.; Marla, L.; Eluru, N. An empirical analysis of bike sharing usage and rebalancing: Evidence from Barcelona and Seville. Transp. Res. Part A Policy Pract. 2017, 97, 177–191. [Google Scholar] [CrossRef]
- Jiménez, P.; Nogal, M.; Caulfield, B.; Pilla, F. Perceptually important points of mobility patterns to characterise bike sharing systems: The Dublin case. J. Transp. Geogr. 2016, 54, 228–239. [Google Scholar] [CrossRef]
- Cazabet, R.; Jensen, P.; Borgnat, P. Tracking the evolution of temporal patterns of usage in bicycle-Sharing systems using nonnegative matrix factorization on multiple sliding windows. Int. J. Urban Sci. 2018, 22, 147–161. [Google Scholar] [CrossRef]
- Yang, Y.; Heppenstall, A.; Turner, A.; Comber, A. A spatiotemporal and graph-based analysis of dockless bike sharing patterns to understand urban flows over the last mile. Comput. Environ. Urban Syst. 2019, 77, 101361. [Google Scholar] [CrossRef]
- Nair, R.; Miller-Hooks, E.; Hampshire, R.C.; Bušić, A. Large-scale vehicle sharing systems: Analysis of Vélib’. Int. J. Sustain. Transp. 2013, 7, 85–106. [Google Scholar] [CrossRef]
- Meng, F.; Zheng, L.; Ding, T.; Wang, Z.; Zhang, Y.; Li, W. Understanding dockless bike-sharing spatiotemporal travel patterns: Evidence from ten cities in China. Comput. Environ. Urban Syst. 2023, 104, 102006. [Google Scholar] [CrossRef]
- Xin, R.; Yang, J.; Ai, B.; Ding, L.; Li, T.; Zhu, R. Spatiotemporal analysis of bike mobility chain: A new perspective on mobility pattern discovery in urban bike-sharing system. J. Transp. Geogr. 2023, 109, 103606. [Google Scholar] [CrossRef]
- Song, Y.; Zhang, L.; Luo, K.; Wang, C.; Yu, C.; Shen, Y.; Yu, Q. Self-loop analysis based on dockless bike-sharing system via bike mobility chain: Empirical evidence from Shanghai. Transportation 2024, 1–25. [Google Scholar] [CrossRef]
- Shaheen, S.A.; Zhang, H.; Martin, E.; Guzman, S. China’s Hangzhou public bicycle: Understanding early adoption and behavioral response to bikesharing. Transp. Res. Rec. 2011, 2247, 33–41. [Google Scholar] [CrossRef]
- Fishman, E.; Washington, S.; Haworth, N.; Watson, A. Factors influencing bike share membership: An analysis of Melbourne and Brisbane. Transp. Res. Part A Policy Pract. 2015, 71, 17–30. [Google Scholar] [CrossRef]
- El-Assi, W.; Mahmoud, M.S.; Habib, K.N. Effects of built environment and weather on bike sharing demand: A station level analysis of commercial bike sharing in Toronto. Transportation 2017, 44, 589–613. [Google Scholar] [CrossRef]
- Song, K.; Diao, M. Nonlinear and Spatially-Varying effects of the built environment on dockless Bike-Sharing usage. Transp. Res. Part D Transp. Environ. 2025, 145, 104807. [Google Scholar] [CrossRef]
- Cervero, R.; Kockelman, K. Travel demand and the 3Ds: Density, diversity, and design. Transp. Res. Part D Transp. Environ. 1997, 2, 199–219. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment: A synthesis. Transp. Res. Rec. 2001, 1780, 87–114. [Google Scholar] [CrossRef]
- Ewing, R.; Cervero, R. Travel and the built environment: A meta-analysis. J. Am. Plan. Assoc. 2010, 76, 265–294. [Google Scholar] [CrossRef]
- Bi, H.; Li, A.; Hua, M.; Zhu, H.; Ye, Z. Examining the varying influences of built environment on bike-sharing commuting: Empirical evidence from Shanghai. Transp. Policy 2022, 129, 51–65. [Google Scholar] [CrossRef]
- Faghih-Imani, A.; Eluru, N. Incorporating the impact of spatio-temporal interactions on bicycle sharing system demand: A case study of New York CitiBike system. J. Transp. Geogr. 2016, 54, 218–227. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, W.; Song, Y. Ridership and effectiveness of bikesharing: The effects of urban features and system characteristics on daily use and turnover rate of public bikes in China. Transp. Policy 2014, 35, 253–264. [Google Scholar] [CrossRef]
- Kabak, M.; Erbaş, M.; Cetinkaya, C.; Özceylan, E. A GIS-based MCDM approach for the evaluation of bike-share stations. J. Clean. Prod. 2018, 201, 49–60. [Google Scholar] [CrossRef]
- Mateo-Babiano, I.; Bean, R.; Corcoran, J.; Pojani, D. How does our natural and built environment affect the use of bicycle sharing? Transp. Res. Part A Policy Pract. 2016, 94, 295–307. [Google Scholar] [CrossRef]
- Wang, K.; Akar, G.; Chen, Y.J. Bike sharing differences among millennials, Gen Xers, and baby boomers: Lessons learnt from New York City’s bike share. Transp. Res. Part A Policy Pract. 2018, 116, 1–14. [Google Scholar] [CrossRef]
- Chahine, R.; Duarte, J.; Gkritza, K. Effect of protected bike lanes on bike-sharing ridership: A New York City case study. J. Transp. Geogr. 2025, 123, 104147. [Google Scholar] [CrossRef]
- Zhang, T.; Tang, F.; Hu, Y.; Zhang, L.; Guo, Y. Shaping greener mobility: Impact of urban greening structure on time-dependent bike-sharing usage. Transp. Res. Part D Transp. Environ. 2025, 141, 104657. [Google Scholar] [CrossRef]
- Ji, S.; Heinen, E.; Wang, Y. Non-linear effects of street patterns and land use on the bike-share usage. Transp. Res. Part D Transp. Environ. 2023, 116, 103630. [Google Scholar] [CrossRef]
- Liu, H.-C.; Lin, J.-J. Associations of built environments with spatiotemporal patterns of public bicycle use. J. Transp. Geogr. 2019, 74, 299–312. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, B.; Wang, Z. Impact of land use on bike-sharing travel patterns: Evidence from large scale data analysis in China. Land Use Policy 2023, 133, 106852. [Google Scholar] [CrossRef]
- van Waes, A.; Farla, J.; Raven, R. Why do companies’ institutional strategies differ across cities? A cross-case analysis of bike sharing in Shanghai & Amsterdam. Environ. Innov. Soc. Transit. 2020, 36, 151–163. [Google Scholar]
- Zhou, M.; Wang, D.; Li, Q.; Yue, Y.; Tu, W.; Cao, R. Impacts of weather on public transport ridership: Results from mining data from different sources. Transp. Res. Part C Emerg. Technol. 2017, 75, 17–29. [Google Scholar] [CrossRef]
- Lee, D.; Seung, H.S. Algorithms for non-negative matrix factorization. Adv. Neural Inf. Process. Syst. 2000, 13, 535–541. [Google Scholar]
- Kang, C.; Qin, K. Understanding operation behaviors of taxicabs in cities by matrix factorization. Comput. Environ. Urban Syst. 2016, 60, 79–88. [Google Scholar] [CrossRef]
- Urria, I.; Petrovic, A.; van Ham, M.; Manley, D. The spatio-temporal evolution of social inequalities in cities: A multidimensional, multiscalar and longitudinal approach for neighbourhood classification. Cities 2025, 165, 106089. [Google Scholar] [CrossRef]
- Stier, J.; Navarro, P.; Valle, M.A. A novel methodological approach for analyzing the multifaceted phenomenon of residential segregation: The case of Berlin. Cities 2023, 141, 104465. [Google Scholar] [CrossRef]
- Tu, W.; Cao, R.; Yue, Y.; Zhou, B.; Li, Q.; Li, Q. Spatial variations in urban public ridership derived from GPS trajectories and smart card data. J. Transp. Geogr. 2018, 69, 45–57. [Google Scholar] [CrossRef]
- Diao, M.; Leonard, D.; Sing, T.F. Spatial-difference-in-differences models for impact of new mass rapid transit line on private housing values. Reg. Sci. Urban Econ. 2017, 67, 64–77. [Google Scholar] [CrossRef]









| Description | Mean | Std. Dev. | Min | Max | |
|---|---|---|---|---|---|
| Density | |||||
| Floor area ratio (FAR) | Total building area/grid area | 1.5 | 0.67 | 0.07 | 8.53 |
| Population density (1000 persons/km2) | Total population/grid area | 12.94 | 11.80 | 0.42 | 78.05 |
| Diversity | |||||
| POI mix (entropy index) a | Diversity of land uses | 0.68 | 0.05 | 0.09 | 0.78 |
| Design | |||||
| Road density (km/km2) | Total length of roads/grid area | 10.83 | 4.64 | 0.07 | 28.29 |
| Distance to transit | |||||
| Density of metro stations (number/km2) | Number of metro stations/grid area | 0.27 | 0.47 | 0 | 2 |
| Destination accessibility | |||||
| Distance to CBD b (km) | Distance from the centroid of grid to CBD | 11.99 | 5.27 | 0.27 | 26.74 |
| Density of residential communities (number/km2) | Number of residential communities/grid area | 16.21 | 13.49 | 0 | 67 |
| Density of firms (number/km2) | Number of firms/grid area | 113.28 | 138.33 | 0 | 894 |
| Variables | MNL (Patterns of Net Flow on Weekdays) | |||||||
|---|---|---|---|---|---|---|---|---|
| Pattern A (Self-Sustain) | Pattern B (AM Peak Inflow) | Pattern C (AM Peak Outflow) | Pattern D (Metro-Driven Usage) | |||||
| AME | Std. Err | AME | Std. Err. | AME | Std. Err. | AME | Std. Err. | |
| Density | ||||||||
| FAR | −0.007 | 0.032 | 0.047 | 0.031 | −0.006 | 0.032 | −0.035 | 0.031 |
| Population density | 0.004 | 0.001 *** | −0.005 | 0.002 *** | 0.002 | 0.001 | −0.001 | 0.002 |
| Diversity | ||||||||
| POI mix | 0.165 | 0.123 | −0.046 | 0.127 | 0.164 | 0.111 | −0.284 | 0.121 *** |
| Design | ||||||||
| Density of road networks | −0.007 | 0.004 ** | 0.009 | 0.004 ** | −0.013 | 0.004 *** | 0.011 | 0.004 *** |
| Distance to transit | ||||||||
| Density of metro stations | −0.129 | 0.036 *** | −0.021 | 0.037 | −0.021 | 0.033 | 0.171 | 0.032 *** |
| Destination accessibility | ||||||||
| Distance to CBD | −0.007 | 0.004 ** | 0.001 | 0.004 | −0.004 | 0.003 | 0.009 | 0.004 *** |
| Density of residential communities | −0.002 | 0.001 | −0.003 | 0.002 ** | 0.005 | 0.001 *** | 0.001 | 0.002 |
| Density of firms | 0.001 | 0.001 *** | 0.001 | 0.001 *** | −0.001 | 0.001 *** | −0.001 | 0.001 |
| No. of Observations | 794 | |||||||
| Log-Likelihood | −1025.8 | |||||||
| Pseudo R-square | 0.053 | |||||||
| Pattern | Total Imbalance | Peak Hourly Imbalance (Dominant Direction, Time) | Std. Dev. of Hourly Imbalance | Characteristics |
|---|---|---|---|---|
| Pattern A: Self-sustained balance | 0.68 | 0.12 (outflow, 7:00)/ 0.11 (inflow, 8:00) | 0.03 | Low total imbalance, two mild morning peaks occurring one hour apart, low hourly fluctuation |
| Pattern B: Morning peak inflow | 1.32 | 0.21 (inflow, 8:00)/ 0.18 (outflow, 17:00) | 0.05 | Medium total imbalance, pronounced inflow peak at 8:00 and outflow peak at 17:00, moderate hourly fluctuation |
| Pattern C: Morning peak outflow | 1.78 | 0.41 (outflow, 8:00)/ 0.23 (inflow, 17:00) | 0.10 | High total imbalance, strong outflow peak at 8:00 and inflow at 17:00, high hourly fluctuation |
| Pattern D: Metro-driven imbalance | 1.28 | 0.28 (inflow, 7:00)/ 0.10 (outflow, 18:00) | 0.05 | Medium total imbalance, significant inflow peak at 7:00, peak time shifted by one hour from Patterns B and C, moderate hourly fluctuation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Published by MDPI on behalf of the International Society for Photogrammetry and Remote Sensing. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Song, K.; Lin, K.; Diao, M. Spatiotemporal Imbalances in Dockless Bike-Sharing Usage: Evidence from Shanghai. ISPRS Int. J. Geo-Inf. 2026, 15, 41. https://doi.org/10.3390/ijgi15010041
Song K, Lin K, Diao M. Spatiotemporal Imbalances in Dockless Bike-Sharing Usage: Evidence from Shanghai. ISPRS International Journal of Geo-Information. 2026; 15(1):41. https://doi.org/10.3390/ijgi15010041
Chicago/Turabian StyleSong, Ke, Keyu Lin, and Mi Diao. 2026. "Spatiotemporal Imbalances in Dockless Bike-Sharing Usage: Evidence from Shanghai" ISPRS International Journal of Geo-Information 15, no. 1: 41. https://doi.org/10.3390/ijgi15010041
APA StyleSong, K., Lin, K., & Diao, M. (2026). Spatiotemporal Imbalances in Dockless Bike-Sharing Usage: Evidence from Shanghai. ISPRS International Journal of Geo-Information, 15(1), 41. https://doi.org/10.3390/ijgi15010041
