Cartographic Metadata for Improving Accessibility and Facilitating Knowledge Extraction and Validation in Planetary Mapping Based on Remote-Sensing Observations
Abstract
:1. Introduction
1.1. Background
- systematic or reconnaissance mapping, i.e., raw data acquisition and basic processing using remote-sensing platforms mainly;
- reference mapping in the form of compiling reference maps, i.e., mostly image and topographic reference maps;
- thematic mapping, i.e., the abstraction of information to build complex-analytical thematic maps. These can be geological maps, landing-site maps, or any other form of thematic information within a consistent spatial context [8].
- digital maps are living assets for the community that can be efficiently located, accessed, and returned by the community;
- digital maps are contextual assets that need to serve as higher-order foundational data on which new research investigations can build and which can be integrated into new mapping investigations;
- digital maps are transparent assets which allow insights into the provenance and lineage of the map as well as its foundational data that were used for the development of the map.
1.2. Objectives
1.3. Structure
2. Methods
3. Results
3.1. Status of Planetary Maps
- Provision of identification is a group of activities that cover the majority of indicators related to the findability (F) and accessibility (A) principles. The core of this group is of a technical nature and is connected to the publisher and dissemination platform to ensure that data and metadata can be found and accessed.
- Provision of transparent information relates to the need to make data, data sources, and data development transparent, in particular, as no validation exists for planetary thematic maps. Transparency in this context refers not only to the map’s development but also to establishing a connection between mapped features and the data that were used. These can be single images from one sensor, multi-temporal observations from one sensor, but also multi-temporal observations from multiple sensors under different observation and illumination geometries. This group covers aspects of all four principles.
- Compliance to standard formats is a group of tasks that refers to how (meta)data are represented emphasizing the use of community standards, representations, and established vocabularies. This group is mainly covered by interoperability (I) and reusability (R) principles.
- Provision of cross-references is an activity group that comprises cross-referencing data and metadata, including internal cross-references, as well as cross-references to external (meta)data. The former is related to the findability (F) principle mainly, while the latter is related to the reusability (R) principle.
- Provision of access channels refers to various protocols and interfaces enabling access to (meta)data. This group is represented exclusively by the accessibility (A) principle.
3.2. Transparency and Data Provenance
3.3. Towards Reuse of Map Data Assets
- The activity group “provision of identification” (Figure 5) refers to adding information to data (maps) and map metadata to make these digital assets findable by computer systems and by standard tools used by the community. The majority of indicators referring to findability fall into this group. Identification is also required for allowing access to data assets and thus partially covers the accessibility principle. These tasks are assigned to the publishing platform due to its technical nature.
- The activity group “compliance with standards” covers interoperability and reusability principles mainly. In particular, when it comes to the provision of information in support of the interoperability principle, both actor groups are required (Figure 5).
- The activity group “provision of cross-references” is entirely covered by interoperability indicators, in particular, for principle I3 which requires such references. For this activity group, both actors are equal contributors as the thematical cross-references need to be provided by mappers, but storage and efficient use must be facilitated by the publisher. These indicators also cover aspects of data provenance which are listed as an additional activity (Figure 5).
- The group “provision of access channels” comprises activities exclusively related to indicators covering the accessibility principle. As such they are in their entirety covered by activities from the publisher’s side as that actor needs to provide the appropriate access channels (Figure 5).
- The group “provision of transparent information” covers aspects related to the storage of information concerning the source and development of the map data product as well as all associated meta-information and data products as summarized in the previous section. This group of activities comprises interoperability indicators that are concerned with cross-referencing data and metadata, as well as reusability and findability indicators. In the following chapter, these elements will be discussed in a wider context (Figure 5).
- Lastly, the group “provision of license information” is related to the reusability of data and is, therefore, equally covered by the mapper who provides the reuse license and the publisher, who facilitates accessing that information and who adds publisher-specific license information (Figure 5).
4. Discussion
4.1. Mapping Phases
4.2. Processing FAIR Map Assets
4.3. Mapping Transparency
5. Conclusions and Recommendations
5.1. Summary
5.2. Recommendations
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EC | European Commission |
ESA | European Space Agency |
EU | European Union |
FDO | Fair Digital Object |
GEMS | Geologic Mapping Subcommittee |
GMAP | Geologic MApping of Planetary bodies |
MAPSIT | Mapping and Planetary Spatial Infrastructure Team |
MOST | Ministry of Science and Technology |
NASA | National Aeronautics and Space Administration |
PCGMWG | Planetary Cartography and Geologic Mapping Working Group |
PLANMAP | PLANetary MAPping project |
NASA | National Aeronautics and Space Administration |
PDS | Planetary Data System |
PSA | Planetary Science Archive |
RDA | Research Data Alliance |
RDM | Research Data Management |
SDI | Spatial Data Infrastructure |
USGS | United States Geological Survey |
Appendix A
ID | Indicator | Priority |
---|---|---|
Findability | ||
F1-01M | Metadata is identified by a persistent identifier | |
F1-01D | Data is identified by a persistent identifier | |
F1-02M | Metadata is identified by a globally unique identifier | |
F1-02D | Data is identified by a globally unique identifier | |
F2-01M | Rich metadata is provided to allow discovery | |
F3-01M | Metadata includes the identifier for the data | |
F4-01M | Metadata is offered in such a way that it can be harvested and indexed | |
Accessibility | ||
A1-01M | Metadata contains information to enable the user to obtain access to the data | |
A1-02M | Metadata can be accessed manually | |
A1-02D | Data can be accessed manually | |
A1-03M | Metadata identifier resolves to a metadata record | |
A1-03D | Data identifier resolves to a digital object | |
A1-04M | Metadata is accessed through standardised protocol | |
A1-04D | Data is accessible through standardised protocol | |
A1-05D | Data can be accessed automatically | |
A1.1-01M | Metadata is accessible through a free access protocol | |
A1.1-01D | Data is accessible through a free access protocol | |
A1.2-02D | Data is accessible through an access protocol that supports authentication and authorisation | • |
A2-01M | Metadata is guaranteed to remain available after data is no longer available | |
Interoperability | ||
I1-01M | Metadata uses knowledge representation expressed in standardised format | |
I1-01D | Data uses knowledge representation expressed in standardised format | |
I1-02M | Metadata uses machine-understandable knowledge representation | |
I1-02D | Data uses machine-understandable knowledge representation | |
I2-01M | Metadata uses FAIR-compliant vocabularies | |
I2-01D | Data uses FAIR-compliant vocabularies | • |
I3-01M | Metadata includes references to other metadata | |
I3-01D | Data includes references to other data | • |
I3-02M | Metadata includes references to other data | • |
I3-02D | Data includes qualified references to other data | • |
I3-03M | Metadata includes qualified references to other metadata | |
I3-04M | Metadata include qualified references to other data | |
Reusability | ||
R1-01M | Plurality of accurate and relevant attributes are provided to allow reuse | |
R1.1-01M | Metadata includes information about the license under which the data can be reused | |
R1.1-02M | Metadata refers to a standard reuse license | |
R1.1-03M | Metadata refers to a machine-understandable reuse license | |
R1.2-01M | Metadata includes provenance information according to community-specific standards | |
R1.2-02M | Metadata includes provenance information according to a cross-community language | • |
R1.3-01M | Metadata complies with a community standard | |
R1.3-01D | Data complies with a community standard | |
R1.3-02M | Metadata is expressed in compliance with a machine-understandable community standard | |
R1.3-02D | Data is expressed in compliance with a machine-understandable community standard |
Activity | ID | Fair | FID | Mapper | Publisher | Link |
---|---|---|---|---|---|---|
Provide Identification | 1 | F1 | RDA-F1-01M | ■ | ||
2 | F1 | RDA-F1-01D | □ | ■ | ||
3 | F1 | RDA-F1-02M | □ | ■ | ||
4 | F1 | RDA-F1-02D | □ | ■ | ||
5 | F3 | RDA-F3-01M | □ | ■ | ||
6 | F4 | RDA-F4-01M | □ | ■ | ||
7 | A1 | RDA-A1-01M | □ | ■ | ||
8 | A1 | RDA-A1-03M | □ | ■ | ||
9 | A1 | RDA-A1-03D | □ | ■ | ||
Achieve Compliance with Standards | 10 | R1.3 | RDA-R1.3-01M | ■ | ■ | |
11 | R1.3 | RDA-R1.3-01D | ■ | ■ | ||
12 | R1.3 | RDA-R1.3-02M | □ | ■ | ||
13 | R1.3 | RDA-R1.3-02D | □ | ■ | ||
14 | R1.1 | RDA-R1.1-02M | □ | ■ | 48 | |
15 | I2 | RDA-I1-01D | ■ | |||
16 | I2 | RDA-I1-01M | ■ | |||
17 | I1 | RDA-I1-02D | □ | ■ | ||
18 | I1 | RDA-I1-02M | □ | ■ | ||
19 | I1 | RDA-I2-01D | ■ | ■ | ||
20 | I1 | RDA-I2-01M | ■ | ■ | ||
21 | A1 | RDA-A1-04M | □ | ■ | ||
22 | A1 | RDA-A1-04D | □ | ■ | ||
Provide Cross-References | 23 | I3 | RDA-I3-01D | ■ | ■ | 41 |
24 | I3 | RDA-I3-01M | ■ | ■ | 42 | |
25 | I3 | RDA-I3-02D | ■ | ■ | 43 | |
26 | I3 | RDA-I3-02M | ■ | ■ | 44 | |
27 | I3 | RDA-I3-03M | ■ | ■ | 45 | |
28 | I3 | RDA-I3-04M | ■ | ■ | 46 | |
Provide Access Channels | 29 | A1.1 | RDA-A1.1-01M | □ | ■ | |
30 | A1.1 | RDA-A1.1-01D | □ | ■ | ||
31 | A1.2 | RDA-A1.2-01M | □ | ■ | ||
32 | A1 | RDA-A1-02D | □ | ■ | ||
33 | A1 | RDA-A1-02M | □ | ■ | ||
34 | A1 | RDA-A1-05D | □ | ■ | ||
35 | A1 | RDA-A1-04M | □ | ■ | ||
36 | A1 | RDA-A1-04D | □ | ■ | ||
Provide Lineage Information | 37 | F2 | RDA-F2-01M | ■ | ||
38 | R1 | RDA-R1-01M | ■ | |||
39 | R1.2 | RDA-R1.2-01M | ■ | |||
40 | R1.2 | RDA-R1.2-02M | ■ | |||
41 | I3 | RDA-I3-01D | ■ | 23 | ||
42 | I3 | RDA-I3-01M | ■ | 24 | ||
43 | I3 | RDA-I3-02D | ■ | 25 | ||
44 | I3 | RDA-I3-02M | ■ | 26 | ||
45 | I3 | RDA-I3-03M | ■ | 27 | ||
46 | I3 | RDA-I3-04M | ■ | 28 | ||
Provide License Information | 47 | R1.1 | RDA-R1.1-01M | ■ | ■ | |
48 | R1.1 | RDA-R1.1-02M | ■ | ■ | 14 | |
49 | R1.1 | RDA-R1.1-03M | ■ | ■ |
References
- Wilhelms, D.E. Geologic Mapping of the Second Planet. In Interagency Report, Astrogeology 55; Technical Report; U.S. Geological Survey (USGS): Reston, VA, USA, 1972. [Google Scholar]
- Greeley, R.; Batson, R.M. Planetary Mapping; Cambridge University Press: New York, NY, USA, 1990; p. 296. [Google Scholar]
- Wilhelms, D. Geologic Mapping. In Planetary Mapping; Greeley, R., Batson, R.M., Eds.; Cambridge Planetary Science Series; Cambridge University Press: Cambridge, UK, 1990; pp. 208–259. [Google Scholar]
- Tanaka, K.L.; Skinner, J.A.; Hare, T.M. Planetary Geologic Mapping Handbook—2010; Technical Report; U.S. Geological Survey, Astrogeology Science Center: Flagstaff, AZ, USA, 2010. [Google Scholar]
- Hargitai, H.; Naß, A. Planetary Mapping: A Historical Overview. In Planetary Cartography and GIS; Hargitai, H., Ed.; Springer: Cham, Switzerland, 2019; pp. 27–64. [Google Scholar] [CrossRef]
- Skinner, J.A.; Huff, A.E.; Fortezzo, C.M.; Gaither, T.; Hare, T.M.; Hunter, M.A.; Buban, H. Planetary Geologic Mapping—Program Status and Future Needs; U.S. Geological Survey Open-File Report 2019–1012; Technical Report; United States Geological Survey: Reston, VA, USA, 2019. [Google Scholar] [CrossRef]
- Skinner, J.A.; Huff, A.; Black, S.; Buban, H.; Fortezzo, C.; Gaither, T.; Hare, T.; Hunter, M. Planetary Geologic Mapping Protocol—2022; U.S. Geological Survey Standards, Techniques and Methods 11–B13; U.S. Geological Survey: Reston, VA, USA, 2022; p. 38. [Google Scholar] [CrossRef]
- van Gasselt, S.; Nass, A. A Semantic View on Planetary Mapping—Investigating Limitations and Knowledge Modeling through Contextualization and Composition. Remote Sens. 2023, 15, 1616. [Google Scholar] [CrossRef]
- Laura, J.; Hare, T.; Gaddis, L.; Fergason, R.; Skinner, J.; Hagerty, J.; Archinal, B. Towards a Planetary Spatial Data Infrastructure. ISPRS Int. J. Geo-Inf. 2017, 6, 181. [Google Scholar] [CrossRef]
- Laura, J.; Arvidson, R.E.; Gaddis, L.R. The Relationship between Planetary Spatial Data Infrastructure and the Planetary Data System. In Proceedings of the Planetary Science Informatics and Data Analytics Conference, St. Louis, MO, USA, 24–26 April 2018; Lunar and Planetary Institute: Houston, TX, USA, 2018; Volume 2082, p. 6005. [Google Scholar]
- Laura, J.R.; Bland, M.T.; Fergason, R.L.; Hare, T.M.; Archinal, B.A. Framework for the Development of Planetary Spatial Data Infrastructures: A Europa Case Study. Earth Space Sci. 2018, 5, 486–502. [Google Scholar] [CrossRef]
- Laura, J.R.; Beyer, R.A. Knowledge Inventory of Foundational Data Products in Planetary Science. Planet. Sci. J. 2021, 2, 18. [Google Scholar] [CrossRef]
- Hackman, R.J. Geologic Map and Sections of the Kepler Region of the Moon. 1:1,000,000, IMAP 355; United States Geological Survey: Reston, VA, USA, 1962. [Google Scholar] [CrossRef]
- Marshall, C.H. (LAC-75) Geologic Map and Sections of the Letronne Region of the Moon. 1:1,000,000, IMAP 385; United States Geological Survey: Reston, VA, USA, 1963. [Google Scholar] [CrossRef]
- Chapman, M.G.; Masursky, H.; Scott, D.H. Geologic Map of Science Study Area 2, North Kasei Valles, Mars (MTM 25072 Quadrangle); Scientific Investigations Map; United States Geological Survey: Reston, VA, USA, 1991. [Google Scholar] [CrossRef]
- Scott, D.H.; Dohm, J.M.; Applebee, D.J. Geologic Map of Science Study Area 8, Apollinaris Patera Region of Mars; Scientific Investigations Map; United States Geological Survey: Reston, VA, USA, 1993. [Google Scholar] [CrossRef]
- Kuzmin, R.O.; Greeley, R.; Landheim, R.; Cabrol, N.A.; Farmer, J.D. Geologic Map of the MTM–15182 and MTM–15187 Quadrangles, Gusev Crater-Ma’adim Vallis Region, Mars; Scientific Investigations Map; United States Geological Survey: Reston, VA, USA, 2000. [Google Scholar] [CrossRef]
- Tanaka, K.L.; Skinner, J.A.; Hare, T.M. Geologic Map of the Northern Plains of Mars; Scientific Investigations Map 2888; Scientific Investigations Map; United States Geological Survey: Reston, VA, USA, 2005. [Google Scholar] [CrossRef]
- Moore, J.M.; Wilhelms, D.E. Geologic Map of Part of the Western Hellas Planitia, Mars; Scientific Investigations Map 2953; United States Geological Survey: Reston, VA, USA, 2007. [Google Scholar] [CrossRef]
- Grant, J.A.; Wilson, S.A.; Fortezzo, C.M.; Clark, D.A. Geologic Map of MTM -20012 and -25012 Quadrangles, Margaritifer Terra Region of Mars; Scientific Investigations Map 3041; United States Geological Survey: Reston, VA, USA, 2009. [Google Scholar] [CrossRef]
- Chuang, F.C.; Crown, D.A. Geologic Map of MTM 35337, 40337, and 45337 Quadrangles, Deuteronilus Mensae Region of Mars; Scientific Investigations Map 3079; United States Geological Survey: Reston, VA, USA, 2009. [Google Scholar] [CrossRef]
- Ivanov, M.A.; Head III, J.W. Geologic Map of the Lakshmi Planum Quadrangle (V-7), Venus; Scientific Investigations Map 3116; United States Geological Survey: Reston, VA, USA, 2010. [Google Scholar] [CrossRef]
- Lang, N.P.; Hansen, V.L. Geologic Map of the Greenaway Quadrangle (V-24), Venus; Scientific Investigations Map 3089; United States Geological Survey: Reston, VA, USA, 2010. [Google Scholar] [CrossRef]
- Bannister, R.A.; Hansen, V.L. Geologic Map of the Artemis Chasma Quadrangle (V-48), Venus; Scientific Investigations Map 3099; United States Geological Survey: Reston, VA, USA, 2010. [Google Scholar] [CrossRef]
- Williams, D.A.; Keszthelyi, L.P.; Crown, D.A.; Yff, J.A.; Jaeger, W.L.; Schenk, P.M.; Geissler, P.E.; Becker, T.L. Geologic Map of Io; Scientific Investigations Map 3168; United States Geological Survey: Reston, VA, USA, 2011. [Google Scholar] [CrossRef]
- Kumar, P.S.; Head, J.W. Geologic Map of the Lada Terra Quadrangle (V-56), Venus; Scientific Investigations Map 3249, pamphlet 11 p., scale 1:5,000,000; United States Geological Survey: Reston, VA, USA, 2013. [Google Scholar] [CrossRef]
- Hansen, V.L.; Tharalson, E.R. Geologic Map of the Agnesi quadrangle (V-45), Venus; Scientific Investigations Map; United States Geological Survey: Reston, VA, USA, 2014. [Google Scholar] [CrossRef]
- Tanaka, K.L.; Skinner, J.A.; Dohm, J.M.; Irwin III, R.P.; Kolb, E.J.; Fortezzo, C.M.; Platz, T.; Michael, G.G.; Hare, T.M. Geologic Map of Mars; Scientific Investigations Map 3292; United States Geological Survey: Reston, VA, USA, 2014; p. 48. [Google Scholar] [CrossRef]
- Mouginis-Mark, P.J. Geologic Map of Olympus Mons Caldera, Mars; Scientific Investigations Map 3470, 1 sheet, scale 1:200,000; U.S. Geological Survey: Reston, VA, USA, 2021. [Google Scholar] [CrossRef]
- Wilson, S.; Grant, J.; Williams, K. Geologic Map of MTM–10022 and –15022 Quadrangles, Morava Valles and Margaritifer Basin, Mars; Scientific Investigations Map 3489, pamphlet 11 p., 1 sheet, scale 1:500,000; U.S. Geological Survey: Reston, VA, USA, 2022. [Google Scholar] [CrossRef]
- Berman, D.; Rodriguez, J.; Weitz, C.; Crown, D. Geologic Map of the Source Region of Shalbatana Vallis, Mars; Scientific Investigations Map 3492, pamphlet 10 p., scale 1:750,000; U.S. Geological Survey: Reston, VA, USA, 2023. [Google Scholar] [CrossRef]
- Herrick, R.R.; Wren, P. JMARS: Collecting and Ingesting Data to Create a Useful Scientific Analysis Tool. In Proceedings of the 15th Meeting of the Venus Exploration and Analysis Group (VEXAG), Laurel, MD, USA, 14–16 November 2017; Volume 15, p. 8021. [Google Scholar]
- Dickenshied, S.; Anwar, S.; Noss, D.; Hagee, W.; Carter, S.; Rios, K.; Wren, P.; Burris, M. JMARS—Remote Sensing Visualization and Analysis for All Planetary Bodies. In Proceedings of the Third Planetary Data Workshop and The Planetary Geologic Mappers Annual Meeting, Flagstaff, AZ, USA, 12–15 June 2017; Volume 1986, p. 7126. [Google Scholar]
- Dickenshied, S.; Anwar, S.; Noss, D.; Hagee, W.; Carter, S.; Rios, K.; Wren, P.; Burris, M.; Anderson, Z. JMARS—Easy Visualization and Analysis of Planetary Remote Sensing Data. In Proceedings of the 4th Planetary Data Workshop, Flagstaff, AZ, USA, 18–20 June 2019; Volume 2151, p. 7108. [Google Scholar]
- Williams, D.A.; Yingst, R.A.; Garry, W.B. Introduction: The geologic mapping of Vesta. Icarus 2014, 244, 1–12. [Google Scholar] [CrossRef]
- Yingst, R.A.; Mest, S.C.; Berman, D.C.; Garry, W.B.; Williams, D.A.; Buczkowski, D.; Jaumann, R.; Pieters, C.M.; De Sanctis, M.C.; Frigeri, A.; et al. Geologic mapping of Vesta. Planet. Scpance Sci. 2014, 103, 2–23. [Google Scholar] [CrossRef]
- Tosi, F.; Frigeri, A.; Combe, J.P.; Zambon, F.; De Sanctis, M.C.; Ammannito, E.; Longobardo, A.; Hoffmann, M.; Nathues, A.; Garry, W.B.; et al. Mineralogical analysis of the Oppia quadrangle of asteroid (4) Vesta: Evidence for occurrence of moderate-reflectance hydrated minerals. Icarus 2015, 259, 129–149. [Google Scholar] [CrossRef]
- Williams, D.A.; Denevi, B.W.; Mittlefehldt, D.W.; Mest, S.C.; Schenk, P.M.; Yingst, R.A.; Buczkowski, D.L.; Scully, J.E.C.; Garry, W.B.; McCord, T.B.; et al. The geology of the Marcia quadrangle of asteroid Vesta: Assessing the effects of large, young craters. Icarus 2014, 244, 74–88. [Google Scholar] [CrossRef]
- Scully, J.E.C.; Yin, A.; Russell, C.T.; Buczkowski, D.L.; Williams, D.A.; Blewett, D.T.; Ruesch, O.; Hiesinger, H.; Le Corre, L.; Mercer, C.; et al. Geomorphology and structural geology of Saturnalia Fossae and adjacent structures in the northern hemisphere of Vesta. Icarus 2014, 244, 23–40. [Google Scholar] [CrossRef]
- Ruesch, O.; Hiesinger, H.; Blewett, D.T.; Williams, D.A.; Buczkowski, D.; Scully, J.; Yingst, R.A.; Roatsch, T.; Preusker, F.; Jaumann, R.; et al. Geologic map of the northern hemisphere of Vesta based on Dawn Framing Camera (FC) images. Icarus 2014, 244, 41–59. [Google Scholar] [CrossRef]
- Crown, D.A.; Sizemore, H.G.; Yingst, R.A.; Mest, S.C.; Platz, T.; Berman, D.C.; Schmedemann, N.; Buczkowski, D.L.; Williams, D.A.; Roatsch, T.; et al. Geologic mapping of the Urvara and Yalode Quadrangles of Ceres. Icarus 2018, 316, 167–190. [Google Scholar] [CrossRef]
- Blewett, D.T.; Buczkowski, D.L.; Ruesch, O.; Scully, J.E.; O’Brien, D.P.; Gaskell, R.; Roatsch, T.; Bowling, T.J.; Ermakov, A.; Hiesinger, H.; et al. Vesta’s north pole quadrangle Av-1 (Albana): Geologic map and the nature of the south polar basin antipodes. Icarus 2014, 244, 13–22. [Google Scholar] [CrossRef]
- Garry, W.B.; Williams, D.A.; Yingst, R.A.; Mest, S.C.; Buczkowski, D.L.; Tosi, F.; Schäfer, M.; Le Corre, L.; Reddy, V.; Jaumann, R.; et al. Geologic mapping of ejecta deposits in Oppia Quadrangle, Asteroid (4) Vesta. Icarus 2014, 244, 104–119. [Google Scholar] [CrossRef]
- Frigeri, A.; De Sanctis, M.C.; Ammannito, E.; Buczkowski, D.; Combe, J.P.; Tosi, F.; Zambon, F.; Rocchini, D.; Jaumann, R.; Raymond, C.A.; et al. Mineralogic mapping of the Av-9 Numisia quadrangle of Vesta. Icarus 2015, 259, 116–128. [Google Scholar] [CrossRef]
- Williams, D.A.; Buczkowski, D.L.; Mest, S.C.; Scully, J.E.C.; Platz, T.; Kneissl, T. Introduction: The geologic mapping of Ceres. Icarus 2018, 316, 1–13. [Google Scholar] [CrossRef]
- Ruesch, O.; McFadden, L.A.; Williams, D.A.; Hughson, K.H.; Pasckert, J.H.; Scully, J.; Kneissl, T.; Roatsch, T.; Naß, A.; Preusker, F.; et al. Geology of Ceres’ North Pole quadrangle with Dawn FC imaging data. Icarus 2018, 316, 14–27. [Google Scholar] [CrossRef]
- Pasckert, J.; Hiesinger, H.; Ruesch, O.; Williams, D.; Nass, A.; Kneissl, T.; Mest, S.; Buczkowski, D.; Scully, J.; Schmedemann, N.; et al. Geologic mapping of the Ac-2 Coniraya quadrangle of Ceres from NASA’s Dawn mission: Implications for a heterogeneously composed crust. Icarus 2018, 316, 28–45. [Google Scholar] [CrossRef]
- Scully, J.E.; Buczkowski, D.; Neesemann, A.; Williams, D.; Mest, S.; Raymond, C.; Nass, A.; Hughson, K.; Kneissl, T.; Pasckert, J.; et al. Ceres’ Ezinu quadrangle: A heavily cratered region with evidence for localized subsurface water ice and the context of Occator crater. Icarus 2018, 316, 46–62. [Google Scholar] [CrossRef]
- Hughson, K.H.; Russell, C.; Williams, D.; Buczkowski, D.; Mest, S.; Pasckert, J.; Scully, J.; Combe, J.P.; Platz, T.; Ruesch, O.; et al. The Ac-5 (Fejokoo) quadrangle of Ceres: Geologic map and geomorphological evidence for ground ice mediated surface processes. Icarus 2018, 316, 63–83. [Google Scholar] [CrossRef]
- Krohn, K.; Jaumann, R.; Otto, K.; Schulzeck, F.; Neesemann, A.; Nass, A.; Stephan, K.; Tosi, F.; Wagner, R.; Zambon, F.; et al. The unique geomorphology and structural geology of the Haulani crater of dwarf planet Ceres as revealed by geological mapping of equatorial quadrangle Ac-6 Haulani. Icarus 2018, 316, 84–98. [Google Scholar] [CrossRef]
- Williams, D.A.; Kneissl, T.; Neesemann, A.; Mest, S.; Palomba, E.; Platz, T.; Nathues, A.; Longobardo, A.; Scully, J.; Ermakov, A.; et al. The geology of the Kerwan quadrangle of dwarf planet Ceres: Investigating Ceres’ oldest, largest impact basin. Icarus 2018, 316, 99–113. [Google Scholar] [CrossRef]
- Frigeri, A.; Schmedemann, N.; Williams, D.; Chemin, Y.; Mirino, M.; Nass, A.; Carrozzo, F.G.; Castillo-Rogez, J.; Buczkowski, D.L.; Scully, J.E.; et al. The geology of the Nawish quadrangle of Ceres: The rim of an ancient basin. Icarus 2018, 316, 114–127. [Google Scholar] [CrossRef]
- Buczkowski, D.; Williams, D.; Scully, J.; Mest, S.; Crown, D.; Schenk, P.; Jaumann, R.; Roatsch, T.; Preusker, F.; Nathues, A.; et al. The geology of the occator quadrangle of dwarf planet Ceres: Floor-fractured craters and other geomorphic evidence of cryomagmatism. Icarus 2018, 316, 128–139. [Google Scholar] [CrossRef]
- Platz, T.; Nathues, A.; Sizemore, H.; Crown, D.; Hoffmann, M.; Schäfer, M.; Schmedemann, N.; Kneissl, T.; Neesemann, A.; Mest, S.; et al. Geological mapping of the Ac-10 Rongo Quadrangle of Ceres. Icarus 2018, 316, 140–153. [Google Scholar] [CrossRef]
- Schulzeck, F.; Krohn, K.; Gathen, I.v.d.; Schmedemann, N.; Stephan, K.; Jaumann, R.; Williams, D.; Wagner, R.; Buczkowski, D.; Mest, S.; et al. Geologic mapping of the Ac-11 Sintana quadrangle: Assessing diverse crater morphologies. Icarus 2018, 316, 154–166. [Google Scholar] [CrossRef]
- Mancinelli, P.; Minelli, F.; Pauselli, C.; Federico, C. Geology of the Raditladi quadrangle, Mercury (H04). J. Maps 2016, 12, 190–202. [Google Scholar] [CrossRef]
- Galluzzi, V.; Guzzetta, L.; Ferranti, L.; Achille, G.D.; Rothery, D.A.; Palumbo, P. Geology of the Victoria quadrangle (H02), Mercury. J. Maps 2016, 12, 227–238. [Google Scholar] [CrossRef]
- Guzzetta, L.; Galluzzi, V.; Ferranti, L.; Palumbo, P. Geology of the Shakespeare quadrangle (H03), Mercury. J. Maps 2017, 13, 227–238. [Google Scholar] [CrossRef]
- Wright, J.; Rothery, D.A.; Balme, M.R.; Conway, S.J. Geology of the Hokusai quadrangle (H05), Mercury. J. Maps 2019, 15, 509–520. [Google Scholar] [CrossRef]
- Pegg, D.L.; Rothery, D.A.; Balme, M.R.; Conway, S.J.; Malliband, C.C.; Man, B. Geology of the Debussy quadrangle (H14), Mercury. J. Maps 2021, 17, 718–729. [Google Scholar] [CrossRef]
- Giacomini, L.; Galluzzi, V.; Massironi, M.; Ferranti, L.; Palumbo, P. Geology of the Kuiper quadrangle (H06), Mercury. J. Maps 2022, 18, 246–257. [Google Scholar] [CrossRef]
- Malliband, C.C.; Rothery, D.A.; Balme, M.R.; Conway, S.J.; Pegg, D.L.; Wright, J. Geology of the Derain quadrangle (H10), Mercury. J. Maps 2023, 19, 2112774. [Google Scholar] [CrossRef]
- Naß, A.; Di, K.; Elgner, S.; van Gasselt, S.; Hare, T.; Hargitai, H.; Karachevtseva, I.; Kersten, E.; Manaud, N.; Roatsch, T.; et al. Planetary Cartography and Mapping: Where we are Today, and where we are Heading For? Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 62W1, 105–112. [Google Scholar] [CrossRef]
- GEMS. Operational Charter, Version 6; Technical Report; The Geologic Mapping Subcommittee (GEMS) of the Mapping and Planetary Spatial Infrastructure Team (MAPSIT): Houston, TX, USA, 2022. [Google Scholar]
- PLANMAP. Available online: https://planmap.eu (accessed on 16 September 2023).
- Massironi, M.; Rossi, A.P.; Wright, J.; Zambon, F.; Poheler, C.; Giacomini, L.; Carli, C.; Ferrari, S.; Semenzato, A.; Luzzi, E.; et al. From Morpho-Stratigraphic to Geo(Spectro)-Stratigraphic Units: The PLANMAP Contribution. In Proceedings of the 2021 Annual Meeting of Planetary Geologic Mappers, Virtual, 14–15 June 2021; Volume 2610, p. 7045. [Google Scholar]
- Iqbal, W.; Hiesinger, H.; van der Bogert, C.H. Geological mapping and chronology of lunar landing sites: Apollo 11. Icarus 2019, 333, 528–547. [Google Scholar] [CrossRef]
- Iqbal, W.; Hiesinger, H.; van der Bogert, C.H. Geological mapping and chronology of lunar landing sites: Apollo 12. Icarus 2020, 352, 113991. [Google Scholar] [CrossRef]
- Iqbal, W.; Hiesinger, H.; Borisov, D.; van der Bogert, C.H.; Head, J.W. Geological mapping and chronology of lunar landing sites: Apollo 14. Icarus 2023, 406, 115732. [Google Scholar] [CrossRef]
- Poehler, C.M.; Ivanov, M.A.; van der Bogert, C.H.; Hiesinger, H.; Iqbal, W.; Pasckert, J.H.; Wright, J.; Head, J.W. A New Geological Map of the Lunar South Pole-Aitken Basin Region. In Proceedings of the 2020 Annual Meeting of Planetary Geologic Mappers, Virtual, 23 July 2020; Volume 2357, p. 7044. [Google Scholar]
- Rothery, D.A.; Galluzzi, V.; Wright, J. European co-ordinated quadrangle mapping of Mercury. In Proceedings of the Lunar and Planetary Science Conference Abstracts, Woodlands, TX, USA, 16–20 March 2020; Lunar and Planetary Institute Contributions 2357. Lunar and Planetary Institute (LPI): Houston, TX, USA, 2020. [Google Scholar]
- Semenzato, A.; Massironi, M.; Ferrari, S.; Galluzzi, V.; Rothery, D.; Pegg, D.; Pozzobon, R.; Marchi, S. An Integrated Geologic Map of the Rembrandt Basin, on Mercury, as a Starting Point for Stratigraphic Analysis. Remote Sens. 2020, 12, 3213. [Google Scholar] [CrossRef]
- Wright, J.; Balme, M.R.; Davis, J.M.; Fawdon, P.; Rothery, D.A. Geologic Mapping of Mawrth Vallis, Mars. In Proceedings of the 2020 Annual Meeting of Planetary Geologic Mappers, Virtual, 23 July 2020; Volume 2357, p. 7041. [Google Scholar]
- Naß, A.; Massironi, M.; Rossi, A.P.; Pozzobon, R.; Brandt, C.; Nodjoumi, G.; Pondrelli, M.; Pantaloni, M.; Galluzzi, V.; Altieri, F.; et al. Streaming European Mapping Efforts: The Geologic Mapping of Planetary Bodies (GMAP). In Proceedings of the 2021 Annual Meeting of Planetary Geologic Mappers, Virtual, 14–15 June 2021; Volume 2610, p. 7034. [Google Scholar]
- Nass, A.; Massironi, M.; Rossi, A.P.; Penasa, L.; Pozzobon, R.; Brandt, C. Geologic MApping of Planetary Bodies (GMAP)—Current Status, Requirements, and Plans. In Proceedings of the 5th Planetary Data Workshop & Planetary Science Informatics & Analytics, Virtually, 28 June–2 July 2021; Volume 2549, p. 7089. [Google Scholar]
- Pondrelli, M.; Rossi, A.; Platz, T.; Ivanov, A.; Marinangeli, L.; Baliva, A. Geological, geomorphological, facies and allostratigraphic maps of the Eberswalde fan delta. Planet. Space Sci. 2011, 59, 1166–1178. [Google Scholar] [CrossRef]
- European Commission. INSPIRE—Infrastructure for Spatial Information in Europe. Available online: https://inspire.ec.europa.eu. (accessed on 16 September 2023).
- Nass, A.; Asch, K.; van Gasselt, S.; Rossi, A.P.; Besse, S.; Cecconi, B.; Frigeri, A.; Hare, T.; Hargitai, H.; Manaud, N. Facilitating reuse of planetary spatial research data—Conceptualizing an open map repository as part of a Planetary Research Data Infrastructure. Planet. Space Sci. 2021, 204, 105269. [Google Scholar] [CrossRef]
- Pryor, G.; Jones, S.; Whyte, A. (Eds.) Delivering Research Data Management Services: Fundamentals of Good Practice; Facet: London, UK, 2014. [Google Scholar]
- Tenopir, C.; Sandusky, R.; Allard, S.; Birch, B. Research data management services in academic research libraries and perceptions of librarians. Libr. Inf. Sci. Res. 2014, 36, 84–90. [Google Scholar] [CrossRef]
- Hodson, S.; Molloy, L. Current Best Practice for Research Data Management Policies; CODATA: Paris, France, 2015. [Google Scholar] [CrossRef]
- Cox, A.M.; Tam, W. A critical analysis of lifecycle models of the research process and research data management. Aslib J. Inf. Manag. 2018, 70, 142–157. [Google Scholar] [CrossRef]
- Joo, S.; Peters, C. User needs assessment for research data services in a research university. J. Librariansh. Inf. Sci. 2019, 52, 633–646. [Google Scholar] [CrossRef]
- Tang, R.; Hu, Z. Providing research data management (RDM) services in libraries: Preparedness, roles, challenges, and training for RDM practice. Data Inf. Manag. 2019, 3, 84–101. [Google Scholar] [CrossRef]
- Safdar, M.; Batool, S.; Mahmood, K. Relationship between self-efficacy and knowledge sharing: Systematic review. Glob. Knowl. Mem. Commun. 2020, 70, 254–271. [Google Scholar] [CrossRef]
- Hare, T.M.; Tanaka, K.L. Web-Based GIS Support for Selection of the Mars ’01 Lander Site. In Proceedings of the Second Mars Surveyor Landing Site Workshop, Buffalo, NY, USA, 22–23 June 1999; p. 53. [Google Scholar]
- Hare, T.M.; Tanaka, K.L. PIGWAD - New Functionality for Planetary GIS on the Web. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 13–17 March 2000; p. 1889. [Google Scholar]
- Hare, T.M.; Tanaka, K.L.; Skinner, J.A. Planetary GIS on the Web for the MER 2003 Landers. In Proceedings of the First Landing Site Workshop for the 2003 Mars Exploration Rovers, Mountain View, CA, USA, 24–25 January 2001; p. 33. [Google Scholar]
- Hare, T.M.; Tanaka, K.L. PIGWAD–OpenGIS and Image Technologies for Planetary Data Analsys. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 11–15 March 2002; p. 1365. [Google Scholar]
- Hare, T.M.; Tanaka, K.L. PIGWAD: Continuing to Offer GIS Services to the Planetary Community. In Proceedings of the Lunar and Planetary Science Conference, Houston, TX, USA, 17–21 March 2003; p. 1974. [Google Scholar]
- Hare, T.M.; Tanaka, K.L. Expansion in Geographic Information Services for PIGWAD. In Proceedings of the Lunar and Planetary Science Conference, League City, TX, USA, 15–19 March 2004; p. 1765. [Google Scholar]
- Australian Research Data Commons (ARDC). Research Data Management Framework for Institutions; Zenodo: Geneva, Switzerland, 2022. [Google Scholar] [CrossRef]
- Bhoi, N.K.; Patel, J.; Dutta, B. State of Research Data Management Practices in the Top-ranked Higher Education Institutions in India. Int. Inf. Libr. Rev. 2023, 55, 283–301. [Google Scholar] [CrossRef]
- Huang, Y.; Cox, A.M.; Sbaffi, L. Research data management policy and practice in Chinese university libraries. J. Assoc. Inf. Sci. Technol. 2021, 72, 493–506. [Google Scholar] [CrossRef]
- Wilkinson, M.D.; Dumontier, M.; Aalbersberg, I.J.; Appleton, G.; Axton, M.; Baak, A.; Blomberg, N.; Boiten, J.W.; da Silva Santos, L.B.; Bourne, P.E.; et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 2016, 3, 160018. [Google Scholar] [CrossRef]
- FAIR Data Maturity Model Working Group. FAIR Data Maturity Model—Specification and Guidelines; Technical Report; Research Data Alliance: Munchen Germany, 2020. [Google Scholar] [CrossRef]
- GoFAIR. FAIRification Process. 2023. Available online: https://www.go-fair.org/fair-principles/fairification-process (accessed on 17 February 2024).
- Jacobsen, A.; Kaliyaperumal, R.; da Silva Santos, L.O.B.; Mons, B.; Schultes, E.; Roos, M.; Thompson, M. A Generic Workflow for the Data FAIRification Process. Data Intell. 2020, 2, 56–65. [Google Scholar] [CrossRef]
- Welter, D.; Juty, N.; Rocca-Serra, P.; Xu, F.; Henderson, D.; Gu, W.; Strubel, J.; Giessmann, R.T.; Emam, I.; Gadiya, Y.; et al. FAIR in action—A flexible framework to guide FAIRification. Sci. Data 2023, 10, 291. [Google Scholar] [CrossRef]
- Scott, D.H. Geologic Map of the Maurolycus Quadrangle of the Moon, I-605 (LAC 113), 1 Sheet, Scale 1:1,000,000; Department of the Interior, United States Geological Survey: Reston, VA, USA, 1972. [Google Scholar]
- Luna, R.A.; Zubcoff, J.; Garrigós, I.; Gonz, H. FAIRification of Citizen Science Data. In Web Engineering; Di Noia, T., Ko, I.Y., Schedl, M., Ardito, C., Eds.; Springer: Cham, Switzerland, 2022; pp. 450–454. [Google Scholar]
- Schoening, T.; Durden, J.M.; Faber, C.; Felden, J.; Heger, K.; Hoving, H.J.T.; Kiko, R.; Köser, K.; Krämmer, C.; Kwasnitschka, T.; et al. Making marine image data FAIR. Sci. Data 2022, 9, 414. [Google Scholar] [CrossRef]
- Annane, A.; Kamel, M.; Trojahn, C.; Aussenac-Gilles, N.; Comparot, C.; Baehr, C. Towards the FAIRification of Meteorological Data: A Meteorological Semantic Model. In Metadata and Semantic Research, Proceedings of the 15th International Conference, Virtual, 29 November–3 December 2021; Garoufallou, E., Ovalle-Perandones, M.A., Vlachidis, A., Eds.; Springer: Cham, Switzerland, 2022; pp. 81–93. [Google Scholar]
- Mangione, D.; Candela, L.; Castelli, D. A taxonomy of tools and approaches for FAIRification. In Proceedings of the CEUR Workshop Proceedings, IRCDL 2022-18th Italian Research Conference on Digital Libraries, Padova, Italy, 24–25 February 2022. [Google Scholar]
- García-Arnay, Á. Geologic map of the Terra Cimmeria-Nepenthes Mensae transitional zone, Mars – 1:1.45Million. J. Maps 2023, 19, 1. [Google Scholar] [CrossRef]
- Mons, B.; Neylon, C.; Velterop, J.; Dumontier, M.; da Silva Santos, L.O.B.; Wilkinson, M.D. Cloudy, increasingly FAIR; revisiting the FAIR Data guiding principles for the European Open Science Cloud. Inf. Serv. Use 2017, 37, 49–56. [Google Scholar] [CrossRef]
- Viglas, S.D. Data Provenance and Trust. Data Sci. J. 2013, 12, GRDI58–GRDI64. [Google Scholar] [CrossRef]
- Anderson, R.B.; Bell, J.F., III. Geologic mapping and characterization of Gale Crater and implications for its potential as a Mars Science Laboratory landing site. Int. J. Mars Sci. Explor. 2010, 4, 76–128. [Google Scholar] [CrossRef]
- Loizeau, D.; Mangold, N.; Poulet, F.; Bibring, J.P.; Bishop, J.L.; Michalski, J.; Quantin, C. History of the clay-rich unit at Mawrth Vallis, Mars: High-resolution mapping of a candidate landing site. J. Geophys. Res. (Planets) 2015, 120, 1820–1846. [Google Scholar] [CrossRef]
- Buz, J.; Ehlmann, B.L.; Pan, L.; Grotzinger, J.P. Mineralogy and stratigraphy of the Gale crater rim, wall, and floor units. J. Geophys. Res. (Planets) 2017, 122, 1090–1118. [Google Scholar] [CrossRef]
- Krasilnikov, S.S.; Ivanov, M.A.; Head, J.W.; Krasilnikov, A.S. Geologic history of the south circumpolar region (SCR) of the Moon. Icarus 2023, 394, 115422. [Google Scholar] [CrossRef]
- Pajola, M.; Pozzobon, R.; Silvestro, S.; Salese, F.; Rossato, S.; Pompilio, L.; Munaretto, G.; Teodoro, L.; Kling, A.; Simioni, E.; et al. Geology, in-situ resource-identification and engineering analysis of the Vernal crater area (Arabia Terra): A suitable Mars human landing site candidate. Planet. Space Sci. 2022, 213, 105444. [Google Scholar] [CrossRef]
- Zhao, J.; Xiao, Z.; Huang, J.; Head, J.W.; Wang, J.; Shi, Y.; Wu, B.; Wang, L. Geological Characteristics and Targets of High Scientific Interest in the Zhurong Landing Region on Mars. Geophys. Res. Lett. 2021, 48, e94903. [Google Scholar] [CrossRef]
- Qian, Y.; Xiao, L.; Wang, Q.; Head, J.W.; Yang, R.; Kang, Y.; van der Bogert, C.H.; Hiesinger, H.; Lai, X.; Wang, G.; et al. China’s Chang’e-5 landing site: Geology, stratigraphy, and provenance of materials. Earth Planet. Sci. Lett. 2021, 561, 116855. [Google Scholar] [CrossRef]
- Roatsch, T.; Kersten, E.; Matz, K.D.; Preusker, F.; Scholten, F.; Elgner, S.; Jaumann, R.; Raymond, C.A.; Russell, C.T. High-resolution Vesta Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images. Planet. Space Sci. 2013, 85, 293–298. [Google Scholar] [CrossRef]
- Roatsch, T.; Kersten, E.; Matz, K.D.; Bland, M.T.; Becker, T.L.; Patterson, G.W.; Porco, C.C. Final Mimas and Enceladus atlases derived from Cassini-ISS images. Planet. Space Sci. 2018, 164, 13–18. [Google Scholar] [CrossRef]
- Buneman, P.; Khanna, S.; Wang-Chiew, T. Why and Where: A Characterization of Data Provenance. In Database Theory, Proceedings of the ICDT 2001, 8th International Conference London, UK, 4–6 January 2001; Van den Bussche, J., Vianu, V., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 316–330. [Google Scholar]
- Closa, G.; Masó, J.; Proß, B.; Pons, X. W3C PROV to describe provenance at the dataset, feature and attribute levels in a distributed environment. Comput. Environ. Urban Syst. 2017, 64, 103–117. [Google Scholar] [CrossRef]
- Lin, D.; Crabtree, J.; Dillo, I.; Downs, R.R.; Edmunds, R.; Giaretta, D.; Giusti, M.D.; L’Hours, H.; Hugo, W.; Jenkyns, R.; et al. The TRUST Principles for digital repositories. Sci. Data 2020, 7, 144. [Google Scholar] [CrossRef]
- NADM Steering Committee. North American Geologic Map Data Model (NADM) Conceptual Model; Technical Report US Geological Survey Open-File Report 2004-1334; US Geological Survey: Reston, VA, USA, 2004. [Google Scholar]
- Soller, D.R.; Berg, T.M. The U.S. National Geologic Map Database Project: Overview & Progress. In The Current Role of Geological Mapping in Geosciences, Proceedings of the NATO Advanced Research Workshop on Innovative Applications of GIS in Geological Cartography, Kazimierz Dolny, Poland, 24–26 November 2003; Ostaficzuk, S.R., Ed.; Springer: Dordrecht, The Netherlands, 2005; pp. 245–277. [Google Scholar] [CrossRef]
- van Gasselt, S.; Nass, A. Planetary mapping—The datamodel’s perspective and GIS framework. Planet. Space Sci. 2011, 59, 1231–1242. [Google Scholar] [CrossRef]
Principle | Indicator | Institutional Platform [29] | Conventional Journal Platform [45] (Internal Supplement) | Journal and Repository Platform [105] (External Supplement) | Archival Platform (External Supplement) |
---|---|---|---|---|---|
F1 | RDA-F1-01M | □ | □ | □ | |
F1 | RDA-F1-01D | ■ | □ | ■ | |
F1 | RDA-F1-02M | □ | □ | ■ | |
F1 | RDA-F1-02D | ■ | □ | ■ | |
F2 | RDA-F2-01M | □ | □ | ■ | |
F3 | RDA-F3-01M | □ | □ | ■ | ■ |
F4 | RDA-F4-01M | ■ | □ | ■ | |
A1 | RDA-A1-01M | □ | ■ | ||
A1 | RDA-A1-02M | ■ | □ | ■ | ■ |
A1 | RDA-A1-02D | ■ | ■ | ■ | ■ |
A1 | RDA-A1-03M | □ | □ | ■ | □ |
A1 | RDA-A1-03D | ■ | □ | ■ | □ |
A1 | RDA-A1-04M | ■ | □ | ■ | ■ |
A1 | RDA-A1-04D | ■ | ■ | ■ | ■ |
A1 | RDA-A1-05D | ■ | □ | ■ | ■ |
A1.1 | RDA-A1.1-01.M | ■ | □ | ■ | ■ |
A1.1 | RDA-A1.1-01.D | ■ | ■ | ■ | ■ |
A1.2 | RDA-A1.2-02.D | ■ | ■ | ■ | ■ |
A2 | RDA-A2-01M | ■ | □ | ■ | |
I1 | RDA-I1-01M | ■ | □ | ■ | |
I1 | RDA-I1-01D | ■ | □ | ■ | ■ |
I1 | RDA-I1-02M | ■ | □ | ■ | |
I1 | RDA-I1-02D | ■ | □ | ■ | ■ |
I2 | RDA-I2-01M | □ | ■ | ||
I2 | RDA-I2-01D | □ | ■ | ||
I3 | RDA-I3-01M | □ | □ | □ | |
I3 | RDA-I3-01D | □ | □ | □ | □ |
I3 | RDA-I3-02M | □ | □ | □ | □ |
I3 | RDA-I3-02D | □ | □ | □ | □ |
I3 | RDA-I3-03M | □ | □ | □ | □ |
I3 | RDA-I3-04M | □ | □ | □ | □ |
R1 | R1 RDA-R1-01M | □ | □ | ■ | |
R1.1 | RDA-R1.1-01M | □ | □ | ■ | □ |
R1.1 | RDA-R1.1-02M | □ | □ | ■ | □ |
R1.1 | RDA-R1.1-03M | □ | □ | ■ | □ |
R1.2 | RDA-R1.2-01M | □ | □ | ||
R1.2 | RDA-R1.2-02M | □ | □ | ||
R1.3 | RDA-R1.3-01M | □ | □ | ■ | |
R1.3 | RDA-R1.3-01D | ■ | ■ | ■ | |
R1.3 | RDA-R1.3-02M | ■ | □ | ■ | ■ |
R1.3 | RDA-R1.3-02D | ■ | □ | ■ | ■ |
ID | TASK | Project Phase | ||
---|---|---|---|---|
Conceptual Phase | Mapping Phase | Dissemination Phase | ||
1 | Provision of identification | □ | ■ | |
2 | Compliance with standards | ■ | ■ | ■ |
3 | Provision of cross-references | □ | ■ | ■ |
4 | Provision of access channels | □ | □ | ■ |
5 | Provision of transparent information | ■ | ||
6 | Provisions of license information | □ | ■ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Gasselt, S.; Naß, A. Cartographic Metadata for Improving Accessibility and Facilitating Knowledge Extraction and Validation in Planetary Mapping Based on Remote-Sensing Observations. ISPRS Int. J. Geo-Inf. 2024, 13, 69. https://doi.org/10.3390/ijgi13030069
van Gasselt S, Naß A. Cartographic Metadata for Improving Accessibility and Facilitating Knowledge Extraction and Validation in Planetary Mapping Based on Remote-Sensing Observations. ISPRS International Journal of Geo-Information. 2024; 13(3):69. https://doi.org/10.3390/ijgi13030069
Chicago/Turabian Stylevan Gasselt, Stephan, and Andrea Naß. 2024. "Cartographic Metadata for Improving Accessibility and Facilitating Knowledge Extraction and Validation in Planetary Mapping Based on Remote-Sensing Observations" ISPRS International Journal of Geo-Information 13, no. 3: 69. https://doi.org/10.3390/ijgi13030069
APA Stylevan Gasselt, S., & Naß, A. (2024). Cartographic Metadata for Improving Accessibility and Facilitating Knowledge Extraction and Validation in Planetary Mapping Based on Remote-Sensing Observations. ISPRS International Journal of Geo-Information, 13(3), 69. https://doi.org/10.3390/ijgi13030069