A Web GIS Platform to Modeling, Simulate and Analyze Flood Events: The RiverCure Portal
Abstract
:1. Introduction
2. RCP Overview and Technologies
2.1. Overview
2.2. Supported Technologies
2.3. Embedded Hydrodynamic Tools
3. RCP Main Concepts
4. RiverCure Approach and Using the RCP
4.1. The Águeda 2016 Flood: A Running Example
4.2. Define Context and Geometries (T1)
4.3. Associate Sensors to Context (T2)
4.4. Generate Mesh (T3)
4.5. Create Simulation Event (T4)
4.6. Run Simulation Event (T5)
4.7. Analyse Simulation Event (T6)
5. Related Work
5.1. Global-Level Initiatives
5.2. Transnational-Level Initiatives
5.3. National and Regional-Level Initiatives
5.4. Other Related Work
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Centre for Research on the Epidemiology of Disasters. Natural Disasters 2018. CRED Technical Report. 2018. Available online: https://www.cred.be/sites/default/files/CREDNaturalDisaster2018.pdf (accessed on 1 June 2023).
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Hall, J.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Boháč, M.; Bonacci, O.; Borga, P.; Burlando, A.; Castellarin, G.B.; Chirico, P.; et al. A European Flood Database: Facilitating comprehensive flood research beyond administrative boundaries. Proc. Int. Assoc. Hydrol. Sci. 2015, 370, 89–95. [Google Scholar] [CrossRef] [Green Version]
- Hamidifar, H.; Nones, M. Global to regional overview of floods fatality: The 1951–2020 period. Nat. Hazards Earth Syst. Sci. 2021, 1–22. [Google Scholar]
- Saya, S.; Hasan, T.M.; Mimura, S.; Okada, T.; Roth, M.; Kohler, S.; Rector, I.; Morgan, G.; Griekspoor, A.; Missal, R.; et al. Build Back Better: In Recovery, Rehabilitation and Reconstruction, UNISDR. 2017. Available online: https://www.unisdr.org/files/53213_bbb.pdf (accessed on 1 June 2023).
- Directive 2007/60/EC of the European Parliament and of the Council of October 23rd 2007 on the Assessment and Management of Flood Risks. 2007. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32007L0060 (accessed on 19 February 2022).
- Dixon, S.J.; Sear, D.A.; Odoni, N.A.; Sykes, T.; Lane, S.N. The effects of river restoration on catchment scale flood risk and flood hydrology. Earth Surf. Process. Landf. 2016, 41, 997–1008. [Google Scholar] [CrossRef]
- Lane, S.N. Natural flood management. WIREs Water 2017, 4, e1211. [Google Scholar] [CrossRef] [Green Version]
- White, G.F. Human Adjustment to Floods: A Geographical Approach to the Flood Problem in the United States. Ph.D. Thesis, University of Chicago, Chicago, IL, USA, 1942. [Google Scholar]
- Lebel, L.; Sinh, B.T.; Garden, P.; Seng, S.; Tuan, L.A.; Truc, D.V. The promise of flood protection: Dikes and dams, drains and diversions. In Contested Waterscapes in the Mekong Region, 1st ed.; Molle, F., Ed.; Routledge: London, UK, 2009; pp. 305–328. [Google Scholar]
- Van den Hoek, R.E.; Brugnach, M.; Hoekstra, A.Y. Shifting to ecological engineering in flood management: Introducing new uncertainties in the development of a Building with Nature pilot project. Environ. Sci. Policy 2012, 22, 85–99. [Google Scholar] [CrossRef]
- Twigg, J. The Human Factor in Early Warnings: Risk Perception and Appropriate Communications. In Early Warning Systems for Natural Disaster Reduction; Zschau, J., Küppers, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 19–26. [Google Scholar]
- Arrighi, C.; Pregnolato, M.; Dawson, R.J.; Castelli, F. Preparedness against mobility disruption by floods. Sci. Total Environ. 2019, 654, 1010–1022. [Google Scholar] [CrossRef]
- Dawson, R.J.; Peppe, R.; Wang, M. An agent based model for risk-based flood incident management. Nat. Hazards 2011, 59, 167–189. [Google Scholar] [CrossRef]
- Pursiainen, C.; Franke, P. Early Warning and Civil Protection. When Does It Work and Why Does It Fail; Nordregio: Stockholm, Sweden, 2008. [Google Scholar]
- Alfieri, L.; Salamon, P.; Pappenberger, F.; Wetterhall, F.; Thielen, J. Operational early warning systems for water-related hazards in Europe. Environ. Sci. Policy 2012, 21, 35–49. [Google Scholar] [CrossRef]
- Cools, J.; Innocenti, D.; O’Brien, S. Lessons from flood early warning systems. Environ. Sci. Policy 2016, 58, 117–122. [Google Scholar] [CrossRef]
- Alexander, W.J.R. Early Warning Systems for the Detection and Response to Severe Floods. In Early Warning Systems for Natural Disaster Reduction; Zschau, J., Küppers, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 311–316. [Google Scholar]
- Vehvilanen, B.; Huttunen, M.; Huttunen, I. Hydrological forecasting and real time monitoring in Finland: The watershed simulation and forecasting system (WSFS). In Proceedings of the International Conference on Innovation Advances and Implementation of Flood Forecasting Technology, Conference Papers, Tromso, Norway, 17–19 October 2005. [Google Scholar]
- Ivanov, V.Y.; Xu, D.; Dwelle, M.C.; Sargsyan, K.; Wright, D.B.; Katopodes, N.; Kim, J.; Tran, V.N.; Warnock, A.; Fatichi, S.; et al. Breaking down the computational barriers to real-time urban flood forecasting. Geophys. Res. Lett. 2021, 48, e2021GL093585. [Google Scholar] [CrossRef]
- Dube, E.; Wedawatta, G.; Ginige, K. Building-Back-Better in Post-Disaster Recovery: Lessons Learnt from Cyclone Idai-Induced Floods in Zimbabwe. Int. J. Disaster Risk Sci. 2021, 12, 700–712. [Google Scholar] [CrossRef]
- OGC WaterML 2.0: Part 1—Timeseries. Available online: https://www.ogc.org/standards/waterml (accessed on 19 February 2022).
- OGC SensorThings API. Available online: https://www.ogc.org/standards/sensorthings (accessed on 19 February 2022).
- Alfieri, L.; Burek, P.; Dutra, E.; Krzeminski, B.; Muraro, D.; Thielen, J.; Pappenberger, F. GloFAS—Global ensemble streamflow forecasting and flood early warning. Hydrol. Earth Syst. Sci. 2013, 17, 1161–1175. [Google Scholar] [CrossRef] [Green Version]
- Ajmar, A.; Boccardo, P.; Disabato, F.; Tonolo, F.G. Rapid Mapping: Geomatics role and research opportunities. Rend. Fis. Acc. Lincei 2015, 26, 63–73. [Google Scholar] [CrossRef] [Green Version]
- Achawakorn, K.; Raksa, K.; Kongkalai, N. Flash flood warning system using SCADA system: Laboratory level. In Proceedings of the 2014 International Electrical Engineering Congress (iEECON), Chonburi, Thailand, 19–21 March 2014. [Google Scholar]
- Wu, H.; Adler, R.F.; Hong, Y.; Tian, Y.; Policelli, F. Evaluation of global flood detection using satellite-based rainfall and a hydrologic model. J. Hydrometeorol. 2012, 13, 1268–1284. [Google Scholar] [CrossRef] [Green Version]
- Krajewski, W.F.; Ceynar, D.; Demir, I.; Goska, R.; Kruger, A.; Langel, C.; Mantilla, R.; Niemeier, J.; Quintero, F.; Seo, B.-C.; et al. Real-time flood forecasting and information system for the state of Iowa. Bull. Am. Meteorol. Soc. 2017, 98, 539–554. [Google Scholar] [CrossRef]
- Cheong, T.S. Development of Decision support system for flooD Disaster risk management. Trop. Cyclone Res. Rev. 2012, 1, 198–206. [Google Scholar]
- Mirfenderesk, H.; Carroll, D.; Chong, E.; Jafari, A.; Hossain, N.; van Doorn, R.; Vis, S. New generation flood forecasting and decision support system for emergency management. Aust. J. Emerg. Manag. 2016, 31, 31–37. [Google Scholar]
- Bartos, M.; Kerkez, B. Pipedream: An interactive digital twin model for natural and urban drainage systems. Environ. Model. Softw. 2021, 144, 105120. [Google Scholar] [CrossRef]
- Conde, D.A.; Canelas, R.B.; Ferreira, R.M. A unified object-oriented framework for CPU + GPU explicit hyperbolic solvers. Adv. Eng. Softw. 2020, 148, 102802. [Google Scholar] [CrossRef]
- Conde, D.; Telhado, M.; Viana Baptista, M.; Ferreira, R. Severity and exposure associated with tsunami actions in urban water-fronts: The case of Lisbon, Portugal. Nat. Hazards 2015, 79, 2125–2144. [Google Scholar] [CrossRef]
- Django. Available online: https://www.djangoproject.com/ (accessed on 10 December 2021).
- Rubio, D. Beginning Django: Web Application Development and Deployment with Python; Apress: New York, NY, USA, 2017. [Google Scholar]
- GeoDjango Tutorial. Available online: https://docs.djangoproject.com/en/3.0/ref/contrib/gis/tutorial/ (accessed on 10 December 2021).
- GeoDjango. Available online: https://docs.djangoproject.com/en/3.0/ref/contrib/gis/ (accessed on 4 December 2021).
- GeoDjango Database API. Available online: https://docs.djangoproject.com/en/3.0/ref/contrib/gis/db-api/ (accessed on 10 December 2021).
- GDAL. Available online: https://gdal.org/ (accessed on 10 December 2021).
- PROJ. Available online: https://proj.org/ (accessed on 10 December 2021).
- Hirpa, F.A.; Salamon, P.; Alfieri, L.; Pozo, J.T.D.; Zsoter, E.; Pappenberger, F. The effect of reference climatology on global flood forecasting. J. Hydrometeorol. 2016, 17, 1131–1145. [Google Scholar] [CrossRef] [Green Version]
- Molteni, F.; Buizza, R.; Palmer, T.N.; Petroliagis, T. The ECMWF ensemble prediction system: Methodology and validation. Q. J. R. Meteorol. Soc. 1996, 122, 73–119. [Google Scholar] [CrossRef]
- Bartholmes, J.; Thielen, J.; Kalas, M. Forecasting medium-range flood hazard on European scale. Georisk 2008, 2, 181–186. [Google Scholar] [CrossRef]
- Policelli, F.; Slayback, D.; Brakenridge, B.; Nigro, J.; Hubbard, A.; Zaitchik, B.; Carroll, M.; Jung, H. The NASA global flood mapping system. In Remote Sensing of Hydrological Extremes; Springer: Cham, Switzerland, 2017; pp. 47–63. [Google Scholar]
- Hirabayashi, Y.; Mahendran, R.; Koirala, S.; Konoshima, L.; Yamazaki, D.; Watanabe, S.; Kim, H.; Kanae, S. Global flood risk under climate change. Nat. Clim. Chang. 2013, 3, 816–821. [Google Scholar] [CrossRef]
- Winsemius, H.C.; Van Beek, L.P.H.; Jongman, B.; Ward, P.J.; Bouwman, A. A framework for global river flood risk assessments. Hydrol. Earth Syst. Sci. 2013, 17, 1871–1892. [Google Scholar] [CrossRef] [Green Version]
- Smith, P.J.; Pappenberger, F.; Wetterhall, F.; Del Pozo, J.T.; Krzeminski, B.; Salamon, P.; Muraro, D.; Kalas, M.; Baugh, C. On the operational implemen-tation of the European Flood Awareness System (EFAS). In Flood Forecasting; Adams, T.E., Pagano, T.C., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 313–348. [Google Scholar]
- Thiemig, V.; Bisselink, B.; Pappenberger, F.; Thielen, J. A pan-African flood forecasting system. Hydrol. Earth Syst. Sci. 2014, 11, 5559–5597. [Google Scholar]
- Cloke, H.L.; Pappenberger, F. Ensemble flood forecasting: A review. J. Hydrol. 2009, 375, 613–626. [Google Scholar] [CrossRef]
- Pappenberger, F.; Cloke, H.L.; Parker, D.J.; Wetterhall, F.; Richardson, D.S.; Thielen, J. The monetary benefit of early flood warnings in Europe. Environ. Sci. Policy 2015, 51, 278–291. [Google Scholar] [CrossRef]
- Demir, I.; Yildirim, E.; Sermet, Y.; Sit, M.A. FLOODSS: Iowa flood information system as a generalised flood cyberinfrastructure. Int. J. River Basin Manag. 2018, 16, 393–400. [Google Scholar] [CrossRef]
- Quintero, F.; Krajewski, W.F.; Seo, B.C.; Mantilla, R. Improvement and evaluation of the Iowa Flood Center Hillslope Link Model (HLM) by calibration-free approach. J. Hydrol. 2020, 584, 124686. [Google Scholar] [CrossRef]
- Borsányi, P.; Hamududu, B.; Navaratnam, S.; Langsholt, E. Improvement of the National Flood Early Warning System in Norway–Flood Level Warnings and Uncertainties. In Informatics and the Environment: Data and Model Integration in a Heterogeneous Hydro World, Proceedings of the International Conference on Hydroinformatics, New York, NY, USA, 17–21 August 2014; CUNY Academic Works: New York, NY, USA, 2014. [Google Scholar]
- Saramago, M. Redes de Monitorização Hidrometeorológicas. Recur. Hídricos 2017, 38, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Ziliani, M.G.; Ghostine, R.; Ait-El-Fquih, B.; McCabe, M.F.; Hoteit, I. Enhanced flood forecasting through ensemble data assimilation and joint state-parameter estimation. J. Hydrol. 2019, 577, 123924. [Google Scholar] [CrossRef]
- Werner, M.; Schellekens, J.; Gijsbers, P.; van Dijk, M.; van den Akker, O.; Heynert, K. The Delft-FEWS flow forecasting system. Environ. Model. Softw. 2013, 40, 65–77. [Google Scholar] [CrossRef] [Green Version]
- SaferPlaces. Available online: https://saferplaces.co/ (accessed on 18 November 2021).
- Mohanty, M.P.; Karmakar, S. Hydrodynamic Flood Modelling of Large Regions Under Data-Poor Situations: A Case Study of Jagatsinghpur District, Odisha. Int. J. Bus. Anal. 2021, 8, 16. [Google Scholar] [CrossRef]
- Mazzoleni, M.; Verlaan, M.; Alfonso, L.; Monego, M.; Norbiato, D.; Ferri, M.; Solomatine, D.P. Can assimilation of crowdsourced streamflow observations in hydrological modelling improve flood prediction? Hydrol. Earth Syst. Sci. 2015, 12, 11371–11419. [Google Scholar]
- Le Coz, J.; Patalano, A.; Collins, D.; Federico Guillen, N.; Marcelo Garcia, C.; Smart, G.M.; Bind, J.; Chiaverini, A.; Le Boursicaud, R.; Dramais, G.; et al. Crowdsourced data for flood hydrology: Feedback from recent citizen science projects in Argentina, France and New Zealand. J. Hydrol. 2016, 541, 766–777. [Google Scholar] [CrossRef] [Green Version]
- Sy, B.; Frischknecht, C.; Dao, H.; Consuegra, D.; Giuliani, G. Flood hazard assessment and the role of citizen science. J. Flood Risk Manag. 2019, 12, e12519. [Google Scholar] [CrossRef]
- Hall, J.W.; Manning, L.J.; Hankin, R.K.S. Bayesian calibration of a flood inundation model using spatial data. Water Resour. Res. 2011, 47, W05529. [Google Scholar] [CrossRef] [Green Version]
- Wapler, K.; de Coning, E.; Buzzi, M. Nowcasting. In Earth Systems and Environmental Sciences; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Arthur, R.; Boulton, C.A.; Shotton, H.; Williams, H.T.P. Social sensing of floods in the UK. PLoS ONE 2018, 13, e0189327. [Google Scholar] [CrossRef]
- Ricardo, A.M.; Silva, A.R.; Estima, J.; Ferreira, R.M.; Marques, J.; Gamito, I.; Serra, A. Águeda 2016 Flood. HydroShare, 2022. Available online: http://www.hydroshare.org/resource/937927473a3a4e66a07a2e2fdd9d581e (accessed on 1 June 2023).
- Ricardo, A.M.; Ferreira, R.M.L.; Rodrigues da Silva, A.; Estima, J.; Marques, J.; Gamito, I.; Serra, A. Flood simulation with the RiverCure approach: The open dataset of the Águeda 2016 flood event. Earth Syst. Sci. Data Discuss. 2023. preprint. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues da Silva, A.; Estima, J.; Marques, J.; Gamito, I.; Serra, A.; Moura, L.; Ricardo, A.M.; Mendes, L.; Ferreira, R.M.L. A Web GIS Platform to Modeling, Simulate and Analyze Flood Events: The RiverCure Portal. ISPRS Int. J. Geo-Inf. 2023, 12, 268. https://doi.org/10.3390/ijgi12070268
Rodrigues da Silva A, Estima J, Marques J, Gamito I, Serra A, Moura L, Ricardo AM, Mendes L, Ferreira RML. A Web GIS Platform to Modeling, Simulate and Analyze Flood Events: The RiverCure Portal. ISPRS International Journal of Geo-Information. 2023; 12(7):268. https://doi.org/10.3390/ijgi12070268
Chicago/Turabian StyleRodrigues da Silva, Alberto, Jacinto Estima, Jorge Marques, Ivo Gamito, Alexandre Serra, Leonardo Moura, Ana Margarida Ricardo, Luís Mendes, and Rui M. L. Ferreira. 2023. "A Web GIS Platform to Modeling, Simulate and Analyze Flood Events: The RiverCure Portal" ISPRS International Journal of Geo-Information 12, no. 7: 268. https://doi.org/10.3390/ijgi12070268