Archaeological Predictive Modeling Using Machine Learning and Statistical Methods for Japan and China
Abstract
:1. Introduction
2. Materials
2.1. Study Area and Archaeological Background
2.2. Archaeological Data
2.3. Geomorphological Predictive Factors
3. Methodology
3.1. Selection of Predictive Factors
3.2. Frequency Ratio (FR)
3.3. Hybrid Model of Attention Mechanism and Frequency Ratio (AM_FR)
3.3.1. Problem Formulation
3.3.2. Model Architecture
3.3.3. Implementation
3.4. MaxEnt
3.5. Model Evaluation
4. Results
4.1. Selected Predictive Factors
4.2. APM by FR
4.3. APM by the AM_FR Model
0.3356RDLSFR + 0.0424Plan_CurvatureFR + 0.0717Profile_CurvatureFR +
0.2813Cutting_depthFR + 0.0834Distance from major riversFR
0.1524RDLSFR + 0.0809Plan_CurvatureFR + 0.0916Profile_CurvatureFR +
0.0869Cutting_depthFR + 0.0833 Distance from major riversFR
4.4. APM by MaxEnt
4.5. Model Evaluation
4.6. Archaeological Predictive Maps and Statistics
5. Discussion
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kohler, T.A.; Parker, S.C. Predictive Models for Archaeological Resource Location. Adv. Archaeol. Method Theory 1986, 9, 397–452. [Google Scholar] [CrossRef]
- Vaughn, S.; Crawford, T. A predictive model of archaeological potential: An example from northwestern Belize. Appl. Geogr. 2009, 29, 542–555. [Google Scholar] [CrossRef]
- Nicu, I.C.; Mihu-Pintilie, A.; Williamson, J. GIS-Based and Statistical Approaches in Archaeological Predictive Modelling (NE Romania). Sustainability 2019, 11, 5969. [Google Scholar] [CrossRef] [Green Version]
- Yaworsky, P.M.; Vernon, K.B.; Spangler, J.D.; Brewer, S.C.; Codding, B.F. Advancing predictive modeling in archaeology: An evaluation of regression and machine learning methods on the Grand Staircase-Escalante National Monument. PLoS ONE 2020, 15, e0239424. [Google Scholar] [CrossRef] [PubMed]
- Wachtel, I.; Zidon, R.; Garti, S.; Shelach-Lavi, G. Predictive modeling for archaeological site locations: Comparing logistic regression and maximal entropy in north Israel and north-east China. J. Archaeol. Sci. 2018, 92, 28–36. [Google Scholar] [CrossRef]
- Willey, G. Prehistoric Settlement Patterns in the Viru Valley. Bur. Am. Ethnol. Bull. 1953, 155, 1–453. [Google Scholar]
- Hodder, I. Spatial Analysis in Archaeology; Cambridge University Press: Cambridge, NY, USA, 1976. [Google Scholar]
- Klesert, A. Intrasite Spatial Analysis in Archaeology. Am. Antiq. 1987, 52, 201–202. [Google Scholar] [CrossRef]
- Oguchi, T.; Saito, K. Relationship between distribution of landscape and natural/cultural environment in Poland based on GIS. Geogr. Res. Rep. Saitama Univ. 1999, 19, 41–59. [Google Scholar]
- Asada, H.; Matsumoto, J.; Lin, Z.; Oguchi, T. Relationship between Distribution of Residential Areas and Topographic Factors in the Sagarmatha Zone, Eastern Nepal. J. Geogr.-Chigaku Zasshi 2008, 117, 561–567. [Google Scholar] [CrossRef] [Green Version]
- Kondo, Y. An ecological niche modelling of Upper Palaeolithic stone tool groups in the Kanto-Koshinetsu region, eastern Japan. Quat. Res. Daiyonki-Kenkyu 2015, 54, 207–218. [Google Scholar] [CrossRef] [Green Version]
- Warren, R.E. Predictive Modelling in Archaeology: A Primer. In Interpreting Space: GIS and Archaeology; Allen, K.M.S., Green, S.W., Zubrow, E.B.W., Eds.; Taylor & Francis: London, UK, 1990; pp. 90–111. [Google Scholar]
- Kvamme, K.L. A Predictive Site Location Model on the High Plains: An Example with an Independent Test. Plains Anthr. 1992, 37, 19–40. [Google Scholar] [CrossRef]
- Stancic, Z.; Kvamme, K. Settlement pattern modelling through Boolean Overlays of social and environmental variables. In New Techniques for Old Times, Proceedings of the CAA Conference, 26th Annual Meeting, Barcelona, Spain, March 1998; (BAR International Series 757); British Archaeological Reports: Oxford, UK; pp. 231–237.
- Bauer, A.; Nicoll, K.; Park, L.; Matney, T. Archaeological site distribution by geomorphic setting in the southern lower Cuyahoga River Valley, northeastern Ohio: Initial observations from a GIS database. Geoarchaeology 2004, 19, 711–729. [Google Scholar] [CrossRef]
- Kondo, Y.; Sano, K.; Omori, T.; Abe-Ouchi, A.; Chan, W.L.; Kadowaki, S.; Naganuma, M.; O’ishi, R.; Oguchi, T.; Nishiaki, Y.; et al. Ecological Niche and Least-Cost Path Analyses to Estimate Optimal Migration Routes of Initial Upper Palaeolithic Populations to Eurasia. In The Middle and Upper Paleolithic Archeology of the Levant and Beyond; Nishiaki, Y., Akazawa, T., Eds.; Replacement of Neanderthals by Modern Humans Series; Springer: Singapore, 2018. [Google Scholar] [CrossRef]
- Verhagen, P.; Whitley, T.G. Integrating Archaeological Theory and Predictive Modeling: A Live Report from the Scene. J. Archaeol. Method Theory 2011, 19, 49–100. [Google Scholar] [CrossRef] [Green Version]
- Verhagen, P. Case Studies in Archaeological Predictive Modelling. Ph.D. Thesis, Leiden University Press, Archaeological Studies Leiden University, Leiden, The Netherlands, 2007. [Google Scholar]
- Ikeya, H. Debris flow and its countermeasures in Japan. Bull. Int. Assoc. Eng. Geol.-Bull. De L’Association Int. De Géologie De L’Ingénieur 1989, 40, 15–33. [Google Scholar] [CrossRef]
- Takagi, H. The Restoration of the Ancient Capitals of Nara and Kyoto and International Cultural Legitimacy in Meiji Japan. In The Meiji Restoration: Japan as a Global Nation; Cambridge University Press: Cambridge, NY, USA, 2020; pp. 249–265. [Google Scholar] [CrossRef]
- Kondo, Y. The Period of the Keyhole Tombs; Iwanami Publishing: Tokyo, Japan, 1983. [Google Scholar]
- Okada, H. Zempō-kōen fun. In Japanese Ancient History Dictionary; Daiwa Shobo Publishing: Tokyo, Japan, 2006. [Google Scholar]
- Yanagisawa, K. Zempō-kōen fun. In East Asian Archaeological Dictionary; Tokyodo Publishing: Tokyo, Japan, 2007. [Google Scholar]
- Ozawa, K. Classification of the Keyhole Shaped Tombs by Template Matching Method. IEEE Trans. Comput. 1978, 27, 462–467. [Google Scholar] [CrossRef]
- Hiroshi, T. Chiefly lineages in Kofun-period Japan: Political relations between centre and region. J. Antiq. 1990, 64, 923–931. [Google Scholar]
- Shiraishi, T. Study of the Kofun Tomb and Kofun Tomb Group; Hanawa Shobo Publishing: Tokyo, Japan, 2000. [Google Scholar]
- Wada, A. History of Japan 2, The era of Kofun; Shogakukan Library Publishing: Tokyo, Japan, 1992. [Google Scholar]
- Hirose, K. Zempō-Kōen Fun (前方後円墳) Nation; Kadokawa Shoten Publishing: Tokyo, Japan, 2003. [Google Scholar]
- Takashima, A. The meaning of the Kofun’s moat. Annu. Rep. Grad. Sch. Nara Univ. 2008, 13, 174–178. [Google Scholar]
- Amakasu, K. Technology history of the Zempō-kōen fun. Papers of the research meeting on the civil engineering history in Japan. J. Jpn. Soc. Civ. Eng. 1985, 5, 1–10. [Google Scholar] [CrossRef]
- Min, A.C.; Han, Q.F.; Jia, Z.K. China Climate Change Partnership Framework—Enhanced Strategies for Climate-Proofed and Environmentally Sound Agricultural Production in the Yellow River Basin (C-PESAP), Situation Analysis of Shaanxi Province; Northwest Agriculture and Forestry University: Yangling, China, 2008. [Google Scholar]
- Xu, W.M. Shaanxi Provincial Local History Office. Epitaph of Shaanxi Emperor’s Mausoleum; Sanqin Publishing: Xi’an, China, 2017. [Google Scholar]
- Anderson, J.G. Chinese cultures during ancient times. Geol. Rep. 1923, 5, 11–12. [Google Scholar]
- Wang, Z.Y. The historical geography and contemporary value of “One Belt One Road Initiative”. Eurasian Econ. 2016, 3, 52–64. [Google Scholar]
- Yuan, B.Q.; Liu, S.Y.; Lu, G.Y. An Integrated Geophysical and Archaeological Investigation of the Emperor Qin Shi Huang Mausoleum. J. Environ. Eng. Geophys. 2006, 11, 73–81. [Google Scholar] [CrossRef]
- Brandt, R.; Groenewoudt, B.J.; Kvamme, K.L. An experiment in archaeological site location: Modeling in the Netherlands using GIS techniques. World Archaeol. 1992, 24, 268–282. [Google Scholar] [CrossRef]
- De Reu, J.; Bourgeois, J.; De Smedt, P.; Zwertvaegher, A.; Antrop, M.; Bats, M.; De Maeyer, P.; Finke, P.; Van Meirvenne, M.; Verniers, J.; et al. Measuring the relative topographic position of archaeological sites in the landscape, a case study on the Bronze Age barrows in northwest Belgium. J. Archaeol. Sci. 2011, 38, 3435–3446. [Google Scholar] [CrossRef]
- ArcGIS Desktop. ESRI: How Focal Statistics Works. Available online: http://desktop.arcgis.com/en/arcmap/latest/tools/spatial-analyst-toolbox/how-focal-statistics-works.htm (accessed on 8 February 2020).
- Tang, G.A.; Li, F.Y.; Liu, X.J. Digital Elevation Model Tutorial, 3rd ed.; Science Press Publishing: Beijing, China, 2016. [Google Scholar]
- Wilson, J.P.; Gallant, J.C. Digital Terrain Analysis in Terrain Analysis: Principles and Applications; Wilson, J.P., Gallant, J.C., Eds.; John Wiley & Sons Inc.: New York, NY, USA, 2000; Volume 1, pp. 1–27. [Google Scholar]
- Dormann, C.F.; Elith, J.; Bacher, S.; Carré, G.C.G.; García Márquez, J.R.; Gruber, B.; Lafourcade, B.; Leitao, P.J.; Münkemüller, T.; McClean, C.J.; et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance: Open access. Ecography 2013, 36, 27–46. [Google Scholar] [CrossRef]
- Marquardt, D.W. You should standardize the predictor variables in your regression models. J. Am. Stat. Assoc. 1980, 75, 74–103. [Google Scholar] [CrossRef]
- Belsley, D.A.; Kuh, D.; Welsch, R.E. Regression Diagnostics; John Wiley & Sons Inc.: New York, NY, USA, 1980. [Google Scholar]
- Deeben, J.; Hallewas, D.; Kolen, J.; Wiemer, R. Beyond the crystal ball: Predictive modelling as a tool in archaeological heritage management and occupation history. In Archaeological Heritage Management in the Netherlands. Fifty Years State Service for Archaeological Investigations; Willems, W., Kars, H., D. Hallewas, D., Eds.; Van Gorcum: Assen, The Netherlands, 1997; pp. 76–118. [Google Scholar]
- Lee, S. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. Int. J. Remote Sens. 2005, 26, 1477–1491. [Google Scholar] [CrossRef]
- Choi, J.; Oh, H.-J.; Lee, H.-J.; Lee, C.; Lee, S. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression, and artificial neural network models using ASTER images and GIS. Eng. Geol. 2012, 124, 12–23. [Google Scholar] [CrossRef]
- Rasyid, A.R.; Bhandary, N.P.; Yatabe, R. Performance of frequency ratio and logistic regression model in creating GIS based landslides susceptibility map at Lompobattang Mountain, Indonesia. Geoenvironmental Disasters 2016, 3, 19. [Google Scholar] [CrossRef] [Green Version]
- Na, T.; Kawamura, Y.; Kang, S.S.; Utsuki, S. Hazard mapping of ground subsidence in east area of Sapporo using frequency ratio model and GIS. Geomat. Nat. Hazards Risk 2021, 12, 347–362. [Google Scholar] [CrossRef]
- Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A. Inception-v4, inception-resnet and the impact of residual connections on learning. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017; Volume 31. [Google Scholar]
- Li, S.; Song, W.; Fang, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J.A. Deep Learning for Hyperspectral Image Classification: An Overview. IEEE Trans. Geosci. Remote Sens. 2019, 57, 6690–6709. [Google Scholar] [CrossRef] [Green Version]
- Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.-Y. Traffic Flow Prediction with Big Data: A Deep Learning Approach. IEEE Trans. Intell. Transp. Syst. 2015, 16, 865–873. [Google Scholar] [CrossRef]
- Senior, A.W.; Evans, R.; Jumper, J.; Kirkpatrick, J.; Sifre, L.; Green, T.; Qin, C.; Žídek, A.; Nelson, A.W.R.; Bridgland, A.; et al. Improved protein structure prediction using potentials from deep learning. Nature 2020, 577, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention is all you need. arXiv 2017, arXiv:1706.03762. [Google Scholar]
- Devlin, J.; Chang, M.W.; Lee, K.; Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv 2018, arXiv:1810.04805. [Google Scholar]
- Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473. [Google Scholar]
- Zhang, L.; Wang, S.; Liu, B. Deep learning for sentiment analysis: A survey. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2018, 8, e1253. [Google Scholar] [CrossRef] [Green Version]
- David, H.; Harris, S.L.H. Digital Design and Computer Architecture, 2nd ed.; Morgan Kaufmann: San Francisco, CA, USA, 2012; p. 129. ISBN 978-0-12-394424-5. [Google Scholar]
- Grbovic, M.; Cheng, H.B. Real-time Personalization using Embeddings for Search Ranking at Airbnb. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining (KDD ’18); Association for Computing Machinery: New York, NY, USA, 2018; pp. 311–320. [Google Scholar] [CrossRef]
- Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arXiv 2015, arXiv:1508.04025. [Google Scholar]
- Kolda, T.G.; Bader, B.W. Tensor Decompositions and Applications. SIAM Review 2009, 455–500. [Google Scholar] [CrossRef]
- De Boer, P.T.; Kroese, D.P.; Mannor, S.; Rubinstein, R.Y. A tutorial on the Cross-Entropy Method. Ann. Oper. Res. 2005, 134, 19–67. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudik, M.; Ferrier, S.; Guisan, A.; Zimmermann, N.E. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Borda, M. Statistical and informational model of an ITS. In Fundamentals in Information Theory and Coding; Springer: Berlin/Heidelberg, Germany, 2011; pp. 7–52. [Google Scholar]
- Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recognit. 1997, 30, 1145–1159. [Google Scholar] [CrossRef] [Green Version]
- Fawcett, T. An introduction to ROC analysis. Pattern Recognit. Lett. 2006, 27, 861–874. [Google Scholar] [CrossRef]
- Kvamme, K.L. The fundamental principles and practice of predictive archaeological modeling. In Mathematics and Information Science in Archaeology: A Flexible Framework; Holos: Bonn, Germany, 1990. [Google Scholar]
- Shi, T.G.; Zheng, G.Q.; Wang, Z.Y.; Wang, L.L. Research progress of land suitability evaluation in China. Adv. Geogr. Sci. 2007, 2, 106–115. [Google Scholar]
- Hirose, K. A Consideration of Reconstructing our Image of the Kofun Period: Does the Period of Keyhole Tombs Predate the Ritsuryo State? Bull. Natl. Mus. Jpn. Hist. 2009, 150, 33–147. [Google Scholar]
- Barnes, G.L. Archaeology of East Asia: The Rise of Civilization in China, Korea and Japan; Oxbow Books: Oxford, UK, 2015; p. 49. ISBN 978-1785700705. [Google Scholar]
- Batten, B.L. To the Ends of Japan: Premodern Frontiers, Boundaries, and Interactions; University of Hawai’i Press: Honolulu, HI, USA, 2003. [Google Scholar]
- Charles, E. Nihongi: Chronicles of Japan from the Earliest Times to AD 697; Aston, W.G., Translator; Tuttle Publishing: Tokyo, Japan, 1972. [Google Scholar]
- Nakanishi, S. What is Emishi—Ancient East Asia and Northern Japan; Kadokawa Shoten Publishing: Tokyo, Japan, 1993. [Google Scholar]
- Hirose, K.; Wada, S. Kofun Period (Part 1), Japanese Archaeology Series; Aoki Shoten Publishing: Tokyo, Japan, 2011. [Google Scholar]
Factor | Japan | Shaanxi, China | ||
---|---|---|---|---|
r | p | r | p | |
Elevation | −0.512 * | 0.000 | −0.603 * | 0.000 |
Slope | −0.532 * | 0.000 | −0.480 * | 0.000 |
Roughness | −0.407 * | 0.000 | −0.408 * | 0.000 |
RDLS | −0.611 * | 0.000 | −0.478 * | 0.000 |
Plan curvature | 0.189 * | 0.000 | 0.144 * | 0.004 |
Profile curvature | −0.218 * | 0.000 | −0.167 * | 0.001 |
Cutting depth | −0.585 * | 0.000 | −0.453 * | 0.000 |
Aspect | 0.021 | 0.277 | −0.009 | 0.858 |
Distance from major rivers | −0.320 * | 0.000 | −0.239 * | 0.000 |
Elevation variation | 0.215 * | 0.000 | −0.129 * | 0.000 |
Factor | Japan | Shaanxi, China | ||
---|---|---|---|---|
VIF (1st/2nd) | TOL (1st/2nd) | VIF (1st/2nd) | TOL (1st/2nd) | |
Elevation | 1.736/1.663 | 0.576/0.601 | 3.316/2.683 | 0.302/0.372 |
Elevation Variation | 20.927/– | 0.048/– | 25.497/– | 0.039/– |
Slope | 19.403/8.019 | 0.052/0.125 | 18.980/9.489 | 0.053/0.105 |
Roughness | 5.295/5.163 | 0.189/0.194 | 5.906/5.722 | 0.169/0.175 |
RDLS | 6.980/5.633 | 0.143/0.178 | 10.972/8.520 | 0.091/0.117 |
Plan curvature | 1.510/1.484 | 0.662/0.674 | 1.830/1.606 | 0.546/0.623 |
Profile curvature | 1.547/1.487 | 0.646/0.672 | 2.525/2.052 | 0.396/0.487 |
Cutting depth | 6.604/5.222 | 0.151/0.191 | 8.512/7.981 | 0.123/0.125 |
Distance from major rivers | 1.315/1.298 | 0.761/0.770 | 1.726/1.656 | 0.580/0.604 |
Factor | Weight | |
---|---|---|
Japan | Shaanxi, China | |
Elevation | 0.0145 | 0.1223 |
Slope | 0.0714 | 0.2878 |
Roughness | 0.0997 | 0.0948 |
RDLS | 0.3356 | 0.1524 |
Plan curvature | 0.0424 | 0.0809 |
Profile curvature | 0.0717 | 0.0916 |
Cutting depth | 0.2813 | 0.0869 |
Distance from major rivers | 0.0834 | 0.0833 |
Total | 1.0000 | 1.0000 |
Factor | Contribution (%) | |
---|---|---|
Japan | Shaanxi, China | |
Elevation | 8.7 | 25.7 |
Slope | 3.0 | 23.8 |
Roughness | 33.7 | 16.2 |
RDLS | 24.3 | 18.5 |
Plan curvature | 1.2 | 3.7 |
Profile curvature | 2.3 | 1.2 |
Cutting depth | 16.5 | 2.7 |
Distance from major rivers | 10.3 | 8.2 |
Study Area | K-Fold | Training AUC | Test AUC | ||||
---|---|---|---|---|---|---|---|
AM_FR | Maxent | FR | AM_FR | Maxent | FR | ||
Japan | 1 | 0.903 | 0.875 | 0.841 | 0.909 | 0.876 | 0.868 |
2 | 0.896 | 0.874 | 0.845 | 0.895 | 0.873 | 0.835 | |
3 | 0.902 | 0.876 | 0.862 | 0.897 | 0.865 | 0.864 | |
4 | 0.898 | 0.876 | 0.854 | 0.901 | 0.874 | 0.856 | |
Mean | 0.900 | 0.876 | 0.851 | 0.901 | 0.872 | 0.856 | |
Shaanxi, China | 1 | 0.789 | 0.782 | 0.776 | 0.813 | 0.780 | 0.781 |
2 | 0.809 | 0.805 | 0.763 | 0.826 | 0.803 | 0.812 | |
3 | 0.767 | 0.795 | 0.754 | 0.814 | 0.783 | 0.798 | |
4 | 0.768 | 0.791 | 0.763 | 0.812 | 0.773 | 0.772 | |
Mean | 0.783 | 0.793 | 0.764 | 0.816 | 0.785 | 0.791 |
Model | Class | Japan | Shaanxi, China | ||||||
---|---|---|---|---|---|---|---|---|---|
Area (%) | Site | Site (%) | Kvamme’s Gain | Area (%) | Site | Site (%) | Kvamme’s Gain | ||
AM_FR | Very Low | 42.67% | 29 | 2.12% | −19.11 | 35.14% | 2 | 1.00% | −34.14 |
Low | 19.12% | 61 | 4.46% | −3.29 | 28.11% | 21 | 10.50% | −1.68 | |
Moderate | 11.20% | 170 | 12.44% | 0.10 | 13.16% | 23 | 11.50% | −0.14 | |
High | 18.09% | 542 | 39.65% | 0.54 | 15.91% | 55 | 27.50% | 0.42 | |
Very High | 8.92% | 565 | 41.33% | 0.78 | 7.68% | 99 | 49.50% | 0.84 | |
Maxent | Very Low | 70.07% | 82 | 6.00% | −10.68 | 72.10% | 23 | 11.50% | −5.27 |
Low | 11.89% | 138 | 10.10% | −0.18 | 15.66% | 19 | 9.50% | −0.65 | |
Moderate | 8.77% | 281 | 20.56% | 0.57 | 2.05% | 21 | 10.50% | 0.80 | |
High | 6.46% | 413 | 30.21% | 0.79 | 4.87% | 42 | 21.00% | 0.77 | |
Very High | 2.81% | 453 | 33.14% | 0.92 | 5.32% | 95 | 47.50% | 0.89 | |
FR | Very Low | 31.62% | 36 | 2.63% | −11.01 | 23.79% | 7 | 3.50% | −5.80 |
Low | 24.04% | 98 | 7.17% | −2.35 | 36.35% | 23 | 11.50% | −2.16 | |
Moderate | 10.77% | 117 | 8.56% | −0.26 | 15.54% | 35 | 17.50% | 0.11 | |
High | 19.37% | 433 | 31.68% | 0.39 | 17.06% | 48 | 24.00% | 0.29 | |
Very High | 14.20% | 683 | 49.96% | 0.72 | 7.25% | 87 | 43.50% | 0.83 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Shi, X.; Oguchi, T. Archaeological Predictive Modeling Using Machine Learning and Statistical Methods for Japan and China. ISPRS Int. J. Geo-Inf. 2023, 12, 238. https://doi.org/10.3390/ijgi12060238
Wang Y, Shi X, Oguchi T. Archaeological Predictive Modeling Using Machine Learning and Statistical Methods for Japan and China. ISPRS International Journal of Geo-Information. 2023; 12(6):238. https://doi.org/10.3390/ijgi12060238
Chicago/Turabian StyleWang, Yuan, Xiaodan Shi, and Takashi Oguchi. 2023. "Archaeological Predictive Modeling Using Machine Learning and Statistical Methods for Japan and China" ISPRS International Journal of Geo-Information 12, no. 6: 238. https://doi.org/10.3390/ijgi12060238