KMapper: A Field Geological Survey System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Analysis of Requirements
2.2. System Data Architecture
3. Implementation Results
3.1. Outcrop Survey Tool
3.2. Map Editing Tool
3.3. Info Tool
3.4. Data Management Tool
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lisle, R.J.; Brabham, P.; Barnes, J.W. Basic Geological Mapping, 5th ed.; John Wiley and Sons: Hoboken, NJ, USA, 2013; pp. 146–154. [Google Scholar]
- Angela, L.C.; Tom, W.A.; David, A.R.; Robert, A.S. Geological Field Techniques; Coe, A.L., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2010; pp. 53–101. [Google Scholar]
- Edmondo, G.P. Digital geologic field mapping using ArcPad. In Proceedings Digital Mapping Techniques’02-Workshop; Soller, D.R., Ed.; US Geological Survey: Salt Lake, Utah, USA, 2002; Volume 370, pp. 129–134. [Google Scholar]
- McCaffrey, K.J.W.; Jones, R.R.; Holdsworth, R.E.; Wilson, R.W.; Clegg, P.; Imber, J.; Holliman, N.; Trinks, I. Unlocking the spatial dimension: Digital technologies and the future of geoscience fieldwork. J. Geol. Soc. 2005, 162, 927–938. [Google Scholar] [CrossRef] [Green Version]
- Brown, K.D.; Sprinkel, D.A. Geologic field mapping using a rugged tablet computer. In Proceedings Digital Mapping Techniques’ 07 Workshop; Soller, D.R., Ed.; US Geological Survey: Columbia, SC, USA, 2008; pp. 53–58. [Google Scholar]
- Jordan, C.J.; Napier, B. Developing digital fieldwork technologies at the British Geological Survey. Geol. Soc. Lond. 2015, 436, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Struik, L.C.; Atrens, A.; Haynes, A. Hand-held computer as a field notebook and its integration with the Ontario Geological Survey’s ‘FIELDLOG’program. Geol. Surv. Can. Curr. Res. Part A 1991, 91, 279–284. [Google Scholar]
- Walker, J.D.; Black, R.A. Mapping the outcrop. Geotimes 2000, 45, 28–31. [Google Scholar]
- Brimhall, G.H.; Vanegas, A. Removing science workflow barriers to adoption of digital geological mapping by using the GeoMapper Universal Program and visual user interface. In Proceedings Digital Mapping Techniques’01-Workshop; Soller, D.R., Ed.; US Geological Survey: Denver, CO, USA, 2001; pp. 01–223. [Google Scholar]
- De Donatis, M.; Bruciatelli, L. MAP IT: The GIS software for field mapping with tablet pc. Comput. Geosci. 2006, 32, 673–680. [Google Scholar] [CrossRef]
- Weng, Y.H.; Sun, F.S.; Grigsby, J.D. GeoTools: An android phone application in geology. Comput. Geosci. 2012, 44, 24–30. [Google Scholar] [CrossRef]
- Lee, S.; Suh, J.; Park, H.D. Smart Compass-Clinometer: A smartphone application for easy and rapid geological site investigation. Comput. Geosci. 2013, 61, 32–42. [Google Scholar] [CrossRef]
- Vaughan, A.; Collins, N.; Krus, M.; Rourke, P. Recent development of an earth science app—FieldMove Clino. In Proceedings of the EGU General Assembly Conference Abstracts, Vienna, Austria, 27 April–2 May 2014; p. 14751. [Google Scholar]
- De Donatis, M.; Rossi, A.; Bartoccioni, L.; Cortellucci, D. Open source in field geology: A QGIS-mate Android compass. In Proceedings of the Congresso Congiunto SGI-SIMP “Geosciences for the Environment, Natural Hazards and Cultural Heritage”, Catania, Italy, 12–14 September 2018; p. 114. [Google Scholar]
- StatCounter Global Stats. Available online: https://gs.statcounter.com/os-market-share (accessed on 15 January 2021).
- Daly, D.C.; Fujino, L.C.; Smith, K.C. Through the looking glass—The 2017 ed.: Trends in solid-state circuits from ISSCC. IEEE Solid-State Circuits Mag. 2017, 9, 12–22. [Google Scholar] [CrossRef]
- Frank, R. Understanding Smart Sensors, 3rd ed.; Artech House: London, UK, 2013; pp. 1–15. [Google Scholar]
- Lane, N.D.; Miluzzo, E.; Lu, H.; Peebles, D.; Choudhury, T.; Campbell, A.T. A survey of mobile phone sensing. IEEE Commun. Mag. 2010, 48, 140–150. [Google Scholar] [CrossRef]
- Su, X.; Tong, H.; Ji, P. Activity recognition with smartphone sensors. Tsinghua Sci. Technol. 2014, 19, 235–249. [Google Scholar] [CrossRef]
- Wasserman, A.I. Software engineering issues for mobile application development. In Proceedings of the FSE/SDP Workshop on Future of Software Engineering Research—FoSER, Santa Fe, NM, USA, 7–8 November 2010. [Google Scholar]
- Pandey, M.; Litoriya, R.; Pandey, P. Mobile APP development based on agility function. Ingénierie des Systèmes d’Information 2018, 23, 19–44. [Google Scholar] [CrossRef]
- Joorabchi, M.E.; Mesbah, A.; Kruchten, P. Real challenges in mobile app development. In Proceedings of the 2013 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement, Baltimore, MD, USA, 10–11 October 2013; pp. 15–24. [Google Scholar]
- Punchoojit, L.; Hongwarittorrn, N. Usability Studies on Mobile User Interface Design Patterns: A Systematic Literature Review. Adv. Hum.-Comput. Interact. 2017, 1–22. [Google Scholar] [CrossRef]
- Hardy, R.; Rukzio, E. Touch & interact: Touch-based interaction of mobile phones with displays. In Proceedings of the 10th International Conference on Human Computer Interaction with Mobile Devices and Services, Amsterdam, the Netherlands, 2–5 September 2008; pp. 245–254. [Google Scholar]
- Banga, C.; Weinhold, J. Essential Mobile Interaction Design: Perfecting Interface Design in Mobile Apps; Pearson Education: London, UK, 2014; pp. 39–57. [Google Scholar]
- Huang, Q. Programming of Mobile GIS Applications. In The Geographic Information Science & Technology Body of Knowledge, 1st Quarter 2020 ed.; Wilson, J.P., Ed.; UCGIS: Washington, DC, USA, 2019. [Google Scholar] [CrossRef]
- Lee, S.; Suh, J. Choi, Y. Review of smartphone applications for geoscience: Current status, limitations, and future perspectives. Earth Sci. Inform. 2018, 11, 463–486. [Google Scholar] [CrossRef]
- Novakova, L.; Pavlis, T.L. Modern methods in structural geology of twenty-first century: Digital mapping and digital devices for the field geology. In Teaching Methodologies in Structural Geology and Tectonics; Mukherjee, S., Ed.; Springer Geology: Singapore, 2019; pp. 43–54. [Google Scholar]
- Novakova, L.; Pavlis, T.L. Assessment of the precision of smart phones and tablets for measurement of planar orientations: A case study. J. Struct. Geol 2017, 97, 93–103. [Google Scholar] [CrossRef] [Green Version]
Type | Sensors (Components) |
---|---|
Motion detection | Acceleration sensor, gyro sensor |
Environment sensing | Gravity sensor, geomagnetic sensor (compass) |
Positioning system | GPS, WiFi sensor, 4G |
Visual sensing | Camera image sensor |
Step | Uses |
---|---|
Preliminary survey | 1. Prepare offline maps (satellite maps, shaded relief maps, and others) 2. Literature survey |
Field survey | 1. Field survey - Identify geological type locality - Temporarily define rock units - Take photographs or sketch an outcrop - Measure geologic structures - Collect specimens (rocks and fossils) - Describe geological features with text and drawings 2. Use of GIS content - Check current location - Measure distance and area - Online geologic maps - Online and offline topographic maps 3. Map editing - Draw points, lines, and polygons - Modify geometry features |
Data review and management | 1. Review collected records - Refine rock units - Check records and their locations - Modify or add comments on a sketch 2. Backup and export data - Export survey records as a spreadsheet - Export location data as georeferenced geometry data |
Task | Sensors |
---|---|
Acquiring images | Camera image sensor |
Positioning | GPS, WiFi sensor, 4G |
Gravity measurement | Gravity sensor |
Geologic structures | Acceleration sensor, gyro sensor |
Bearing measurement | Geomagnetic sensor (compass) |
Title | Content |
---|---|
OS | Android 5.0 or above |
Hardare | Smartphone and pad (pen recommended) |
Tested devices | Smartphone (Samsung Galaxy Note 5, Note 10, and Note 20) Smartpad (Samsung Galaxy Tab Active 3 and S3) |
Current app version | Intra-institutional release |
Functional element | DB | Sensor | GIS | Graphics | |
---|---|---|---|---|---|
Preliminary survey | - Create, update, and delete a project | ○ | |||
- Input offline maps | ○ | ||||
- Input known rock units | ○ | ||||
Field survey | - Check current location | ○ | ○ | ||
- Input a new locality | ○ | ○ | |||
- Take photographs and input sketches | ○ | ○ | ○ | ||
- Measure geologic structures | ○ | ||||
- Input specimens | ○ | ○ | |||
- Input text memos | ○ | ○ | |||
- Draw geologic features | ○ | ○ | |||
- Check current location | ○ | ○ | |||
- Measure distance and area | ○ | ||||
- Online geologic maps | ○ | ||||
- Online and offline maps | ○ | ○ | |||
- Draw points, lines, and polygons | ○ | ||||
- Modify geometry features | ○ | ||||
Data review and management | - Modify rock units | ○ | |||
- Edit collected data | ○ | ||||
- Search collected records | ○ | ||||
- Export collected data | ○ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeon, Y.-K. KMapper: A Field Geological Survey System. ISPRS Int. J. Geo-Inf. 2021, 10, 405. https://doi.org/10.3390/ijgi10060405
Yeon Y-K. KMapper: A Field Geological Survey System. ISPRS International Journal of Geo-Information. 2021; 10(6):405. https://doi.org/10.3390/ijgi10060405
Chicago/Turabian StyleYeon, Young-Kwang. 2021. "KMapper: A Field Geological Survey System" ISPRS International Journal of Geo-Information 10, no. 6: 405. https://doi.org/10.3390/ijgi10060405
APA StyleYeon, Y.-K. (2021). KMapper: A Field Geological Survey System. ISPRS International Journal of Geo-Information, 10(6), 405. https://doi.org/10.3390/ijgi10060405