Accuracy of Regional Centrality Using Social Network Analysis: Evidence from Commuter Flow in South Korea
Abstract
:1. Introduction
2. Literature Review
3. Research Methodology
3.1. Analysis Model
- : Number of connections that region i has with different regions
- : Degree centrality of region i
- g: The number of regions
- : The number of links between regions i and j (commuter volume)
- : Beta centrality of region i
- : Parameter for standardizing centrality
- : Weighted parameter based on distance from the actor
- : Adjacent matrix of relationship
3.2. Data Collection and Rearrangement
4. Results and Discussion
4.1. Difference in Commuting Ratio in Seoul
4.2. Difference in Centrality of Districts in Seoul Calculated Using Seoul’s O-D Matrix and Nationwide O-D Matrix
4.3. Regression Analysis to Calibrate the Difference in Centrality between Both Groups
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoover, E.M. Location Theory and the Shoe and Leather Industries; Harvard University Press: Cambridge, MA, USA, 1937. [Google Scholar]
- Hoover, E.M. Location of Economic Activity; McGraw-Hill Book Company, Inc.: New York, NY, USA, 1948. [Google Scholar]
- Porter, M. The Competitive Advantage of the Inner City. Harv. Bus. Rev. 1995, 73, 55–71. [Google Scholar] [CrossRef]
- Hughes, H.L. Metropolitan Structure and the Suburban Hierarchy. Am. Sociol. Rev. 1993, 58, 417. [Google Scholar] [CrossRef]
- Batten, D.F. Network Cities: Creative Urban Agglomerations for the 21st Century. Urban Stud. 1995, 32, 313–327. [Google Scholar] [CrossRef]
- Sassen, S. Hierarchies of Dominance among World Cities: A Network Approach. In Global Networks, Linked Cities; Sassens, S., Ed.; Routledge: New York, NY, USA, 2002; pp. 117–143. [Google Scholar]
- Rabino, G.A.; Occelli, S. Understanding spatial structure from network data: Theoretical considerations and applications. Cybergeo Eur. J. Geogr. 1997. [Google Scholar] [CrossRef]
- Moreno, J.L. The Sociometry Reader; Glencoe: New York, NY, USA, 1960. [Google Scholar]
- El-Adaway, I.H.; Abotaleb, I.; Vechan, E. Identifying the most critical transportation intersections using social network analysis. Transp. Plan. Technol. 2018, 41, 353–374. [Google Scholar] [CrossRef]
- Durland, M.M.; Fredericks, K.A. An introduction to social network analysis. New Dir. Eval. 2005, 107, 5–13. [Google Scholar] [CrossRef]
- El-Adaway, I.H.; Abotaleb, I.S.; Vechan, E. Social Network Analysis Approach for Improved Transportation Planning. J. Infrastruct. Syst. 2017, 23, 05016004. [Google Scholar] [CrossRef]
- Alderson, A.S.; Beckfield, J. Power and Position in the World City System. Am. J. Sociol. 2004, 109, 811–851. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J.P.; Mahutga, M.C.; Smith, D.A. Measuring Centrality and Power Recursively in the World City Network: A Reply to Neal. Urban Stud. 2013, 50, 1641–1647. [Google Scholar] [CrossRef] [Green Version]
- Green, N. Functional Polycentricity: A Formal Definition in Terms of Social Network Analysis. Urban Stud. 2007, 44, 2077–2103. [Google Scholar] [CrossRef]
- Irwin, M.D.; Hughes, H.L. Centrality and the Structure of Urban Interaction: Measures, Concepts, and Applications. Soc. Forces 1992, 71, 17–51. [Google Scholar] [CrossRef]
- Ha, S.K.; Kim, J.I. Spatial Job—Housing Mismatch Phenomena: The Case of Seoul Metropolitan Area. J. Korea Plann. Assoc. 1992, 27, 1051–1071. [Google Scholar]
- Jeon, M.J. Commuting Patterns in a Polycentric City: The Case of Seoul Metropolitan Area. J. Korea Plann. Assoc. 1995, 30, 2223–2236. [Google Scholar]
- Song, M.R. Study on Urban Spatial Structure and Commuting Traffic: Using Seoul as a Case. Ph.D. Thesis, Seoul National University, Seoul, Korea, 1997. [Google Scholar]
- Seo, J.G. A Study on the Relationship Between Urban Structural Changes and Commuting Patterns Changes: Focusing on Seoul Metropolitan Area’s Industrial Distribution and Commuting Patterns Changes. J. Korea Plann. Assoc. 1998, 33, 167–182. [Google Scholar]
- Yim, C.H.; Cho, M.H. An Analysis on Spatial Structure in Seoul Metropolitan Area. KPA Fall Conference Paper. J. Korea Plann. Assoc. 2001, 36, 183–195. [Google Scholar]
- Lee, H.Y.; Kim, H.J. Articles: The Analysis of the Structure of Commuting Network in Seoul Metropolitan Area. J. Korean Urban Geogr. Soc. 2006, 9, 91–111. [Google Scholar]
- Gastner, M.T.; Newman, M.E. The spatial structure of networks. Eur. Phys. J. B 2006, 49, 247–252. [Google Scholar] [CrossRef] [Green Version]
- Lee, B.S. Determinants of Commuting Distance for Seoul Residents. J. Korea Plann. Assoc. 1998, 33, 241–263. [Google Scholar]
- Shin, S.Y. Articles: Jobs-Housing Accessibility and Commuting: The Case of Seoul Metropolitan Area. J. Korea Plann. Assoc. 2003, 38, 73–87. [Google Scholar]
- Jeon, M.J.; Jeong, M.J. Articles: Analysis on Commuting Pattern Change and Its Determinants in Seoul Metropolitan Area. J. Korea Plann. Assoc. 2003, 38, 159–173. [Google Scholar]
- Van Nuffel, N. Determination of the Number of Significant Flows in Origin–Destination Specific Analysis: The Case of Commuting in Flanders. Reg. Stud. 2007, 41, 509–524. [Google Scholar] [CrossRef]
- Zagatti, G.A.; Gonzalez, M.; Avner, P.; Lozano-Gracia, N.; Brooks, C.J.; Albert, M.; Gray, J.; Antos, S.E.; Burci, P.; zu Erbach-Schoenberg, E.; et al. A trip to work: Estimation of origin and destination of commuting patterns in the main metropolitan regions of Haiti using CDR. Dev. Eng. 2018, 3, 133–165. [Google Scholar] [CrossRef]
- Lenormand, M.; Huet, S.; Gargiulo, F.; Deffuant, G. A Universal Model of Commuting Networks. PLoS ONE 2012, 7, e45985. [Google Scholar] [CrossRef]
- Patuelli, R.; Reggiani, A.; Gorman, S.P.; Nijkamp, P.; Bade, F.-J. Network Analysis of Commuting Flows: A Comparative Static Approach to German Data. Netw. Spat. Econ. 2007, 7, 315–331. [Google Scholar] [CrossRef] [Green Version]
- Reggiani, A.; Bucci, P.; Russo, G. Accessibility and Impedance Forms: Empirical Applications to the German Commuting Network. Int. Reg. Sci. Rev. 2011, 34, 230–252. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Antipova, A.; Porta, S. Street centrality and land use intensity in Baton Rouge, Louisiana. J. Transp. Geogr. 2011, 19, 285–293. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.Y. Trip and Transportation Structure of Seoul Metropolitan Area. J. Korean Reg. Sci. Assoc. 1994, 10, 105–121. [Google Scholar]
- Fleming, D.K.; Hayuth, Y. Spatial characteristics of transportation hubs: Centrality and intermediacy. J. Transp. Geogr. 1994, 2, 3–18. [Google Scholar] [CrossRef]
- Wang, J.; Mo, H.; Wang, F.; Jin, F. Exploring the network structure and nodal centrality of China’s air transport network: A complex network approach. J. Transp. Geogr. 2011, 19, 712–721. [Google Scholar] [CrossRef]
- Ter Wal, A.L.J.; Boschma, R.A. Applying social network analysis in economic geography: Framing some key analytic issues. Ann. Reg. Sci. 2009, 43, 739–756. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.R. A Study on the Change of Spatial Structure in the Seoul Metropolitan Area Between 1995 and 2010. Geogr. J. Korea 2014, 48, 57–68. [Google Scholar]
- Lee, S.Y.; Ha, C.H. Analysis of Population Movement and Regional Structural Change in Jeju. Natl. Land Plan. 2014, 49, 41–533. [Google Scholar]
- Park, S.H.; Joh, C.H.; Lee, W.D. A Study for Seoul Traffic Network Based on the Metropolitan Household Travel Survey. Geogr. J. Korea 2012, 46, 189–200. [Google Scholar]
- Joo, M.J.; Kim, S.Y. A Study on the Urban Spatial Structure Using Households Trip Survey: Focusing on the Case of Seongnam-si. Natl. Land Res. 2014, 80, 35–48. [Google Scholar] [CrossRef]
- Lee, J.S. The Establishment of Spatial Structure and Its Change in the Capital Region by Using Interaction Analysis: 1995–2005. J. Korean Urban Geogr. Soc. 2008, 11, 91–100. [Google Scholar]
- Nystuen, J.D.; Dacey, M.F. A Graph Theory Interpretation of Nodal Regions. Proc. Pap. Reg. Sci. Assoc. 1961, 7, 29–42. [Google Scholar] [CrossRef] [Green Version]
- Borgatti, S.P.; Everett, M.G. A Graph-theoretic Perspective on Centrality. Soc. Netw. 2006, 28, 466–484. [Google Scholar] [CrossRef]
- Bonacich, P. Power and Centrality: A Family of Measures. Am. J. Sociol. 1987, 92, 1170–1182. [Google Scholar] [CrossRef]
- Borgatti, S.P. Centrality and network flow. Soc. Netw. 2005, 27, 55–71. [Google Scholar] [CrossRef]
- Carrington, P.J.; Scott, J.; Wasserman, S. (Eds.) Models and Methods in Social Network Analysis; Cambridge University Press: Cambridge, UK, 2005; Volume 28. [Google Scholar]
- Friedkin, N.E. Theoretical Foundations for Centrality Measures. Am. J. Sociol. 1991, 96, 1478–1504. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Son, D.-W. Social Network Analysis; Kyungmoonsa: Seoul, Korea, 2002. [Google Scholar]
- Zuzańska-Żyśko, E. Role of Advanced Producer Services Shaping Globalization Processes in a Post-Industrial Region: The Case of the Górnośląsko-Zagłębiowska Metropolis. Sustainability 2020, 13, 211. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks conceptual clarification. Soc. Netw. 1978, 1.3, 215–239. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.S.; Chang, S.Y.; Kim, S.R. Measure of Regional Centrality Using Network Analysis: Focused on the Competitive Relocation Among Regions. J. Korea Plann. Assoc. 2018, 53, 87–93. [Google Scholar] [CrossRef]
- Koschützki, D.; Lehmann, K.A.; Peeters, L.; Richter, S.; Tenfelde-Podehl, D.; Zlotowski, O. Centrality Indices. In Network Analysis; Brandes, U., Erlebach, T., Eds.; Springer: Cham, Switzerland, 2005; pp. 1–61. [Google Scholar]
- Chang, S.Y. Research on the Centrality and Related Variables of the Korean Si-Gun-Gu. Ph.D. Dissertation, Kongju National University, Yesangun, Korea, 2018. [Google Scholar]
- Kim, H.C.; Ahn, K.H. The Relation of Population, Jobs, Social Capitals and Centrality in Seoul Metropolitan Area, Using Social Network Theory. Natl. Land Plan. 2012, 47, 105–122. [Google Scholar]
- Kim, H.J. A Study on Commuting Patterns Using Social Network Analysis in the Seoul Metropolitan Area. J. Geogr. Educ. 2008, 52, 25–43. [Google Scholar]
- Veneri, P. Urban Polycentricity and the Costs of Commuting: Evidence from Italian Metropolitan Areas. Growth Chang. 2010, 41, 403–429. [Google Scholar] [CrossRef]
- Dadashpoor, H.; Jalili, H. Exploring the Dynamics of Spatial Structure Using an Interaction Pattern (The Case of Mashhad Metropolitan Region, Iran). Iran Univ. Sci. Technol. 2019, 29, 99–111. [Google Scholar]
Destination | 1 | 2 | … | 229 | Population | |
---|---|---|---|---|---|---|
Origin | Jongno | Jung | … | Seoquipo | ||
1 | Jongno | 35,362 | 6486 | … | 0 | 140,595 |
2 | Jung | 3193 | 32,666 | … | 0 | 114,967 |
… | … | … | … | … | … | … |
229 | Seoquipo | 0 | 0 | … | 80,757 | 145,367 |
District | Nationwide Commuter (A) | Commuter within Seoul Region (B) | (B)/ (A) × 100 | Seoul Dataset | Nationwide Dataset | Rank Difference (D)–(F) | (E)/(C) × 100 | |||
---|---|---|---|---|---|---|---|---|---|---|
Degree Centrality (C) | Rank (D) | Degree Centrality (E) | Rank (F) | Score | Rank | |||||
Jongno | 179,884 | 138,668 | 77.1 | 408 | 3 | 541 | 3 | 0 | 132.7 | 12 |
Jung | 211,047 | 160,060 | 75.8 | 527 | 1 | 698 | 2 | −1 | 132.3 | 13 |
Youngsan | 129,455 | 104,306 | 80.6 | 220 | 9 | 295 | 10 | −1 | 133.6 | 11 |
Seongdong | 149,058 | 127,910 | 85.8 | 236 | 7 | 294 | 11 | −4 | 124.8 | 22 |
Gwangjin | 157,142 | 135,613 | 86.3 | 199 | 14 | 256 | 14 | 0 | 128.4 | 18 |
Dongdaemun | 170,131 | 147,685 | 86.8 | 228 | 8 | 286 | 12 | −4 | 125.6 | 21 |
Jungnang | 160,179 | 139,828 | 87.3 | 162 | 23 | 214 | 23 | 0 | 132.2 | 14 |
Seongbuk | 168,846 | 152,817 | 90.5 | 214 | 10 | 251 | 18 | −8 | 117.0 | 25 |
Gangbuk | 121,233 | 109,968 | 90.7 | 171 | 19 | 204 | 24 | −5 | 119.2 | 24 |
Dobong | 123,031 | 107,553 | 87.4 | 156 | 24 | 201 | 25 | −1 | 129.0 | 16 |
Nowon | 197,601 | 170,308 | 86.2 | 187 | 17 | 244 | 19 | −2 | 130.8 | 15 |
Eunpyeong | 171,274 | 146,247 | 85.4 | 171 | 20 | 218 | 22 | −2 | 127.6 | 19 |
Seodaemun | 133,715 | 113,526 | 84.9 | 204 | 13 | 254 | 15 | −2 | 124.3 | 23 |
Mapo | 214,373 | 172,378 | 80.4 | 272 | 6 | 366 | 6 | 0 | 134.5 | 10 |
Yangcheon | 176,903 | 146,352 | 82.7 | 170 | 21 | 236 | 20 | 1 | 138.4 | 9 |
Gangseo | 243,830 | 195,763 | 80.3 | 182 | 18 | 274 | 13 | 5 | 151.1 | 6 |
Guro | 213,463 | 156,605 | 73.4 | 208 | 12 | 336 | 7 | 5 | 161.8 | 2 |
Geumcheon | 152,979 | 105,548 | 69.0 | 166 | 22 | 306 | 9 | 13 | 184.9 | 1 |
Yeongdeungpo | 269,874 | 203,294 | 75.3 | 337 | 4 | 493 | 4 | 0 | 146.1 | 8 |
Dongjak | 157,128 | 133,158 | 84.7 | 196 | 16 | 252 | 16 | 0 | 128.7 | 17 |
Gwanak | 199,526 | 173,848 | 87.1 | 199 | 15 | 252 | 17 | −2 | 126.8 | 20 |
Seocho | 279,561 | 203,731 | 72.9 | 315 | 5 | 477 | 5 | 0 | 151.4 | 5 |
Gangnam | 488,006 | 349,957 | 71.7 | 488 | 2 | 743 | 1 | 1 | 152.3 | 4 |
Songpa | 297,706 | 237,762 | 79.9 | 210 | 11 | 316 | 8 | 3 | 150.4 | 7 |
Gangdong | 186,395 | 154,347 | 82.8 | 149 | 25 | 230 | 21 | 4 | 154.2 | 3 |
SS | DF | MS | F-Value | p-Value | R2 | |
---|---|---|---|---|---|---|
Regression | 517,516.165 | 2 | 258,758.082 | 1110.924 | 0.000 | 0.990 |
Error | 5124.275 | 22 | 232.922 | |||
Total | 522,640.440 | 24 |
Non-Stand Coef | Stand Coef | t | p-Value | ||
---|---|---|---|---|---|
B | SE | ||||
(Constant) | 515.302 | 55.579 | 9.272 | 0.000 | |
CS | 1.229 | 0.037 | 0.843 | 0.000 | |
S/N | −5.863 | 0.614 | −0.241 | 0.000 |
ID | District | Centrality Score | Rank | Rank Difference | |||||
---|---|---|---|---|---|---|---|---|---|
Seoul Dataset | Nationwide Data | Calibration | Seoul Dataset (A) | Nationwide Dataset (B) | Calibration (C) | (A)–(B) | (B)–(C) | ||
1 | Jongno | 407.6 | 541.0 | 564.3 | 3 | 3 | 3 | 0 | 0 |
2 | Jung | 527.3 | 697.7 | 718.7 | 1 | 2 | 1 | −1 | 1 |
3 | Youngsan | 220.5 | 294.6 | 313.9 | 9 | 10 | 9 | −1 | 1 |
4 | Seongdong | 235.7 | 294.2 | 301.9 | 7 | 11 | 11 | −4 | 0 |
5 | Gwangjin | 199.3 | 255.9 | 254.2 | 14 | 14 | 16 | 0 | −2 |
6 | Dongdaemun | 228.1 | 286.5 | 286.6 | 8 | 12 | 12 | −4 | 0 |
7 | Jungnang | 161.9 | 214.0 | 202.5 | 23 | 23 | 23 | 0 | 0 |
8 | Seongbuk | 214.3 | 250.9 | 248.1 | 10 | 18 | 18 | −8 | 0 |
9 | Gangbuk | 171.3 | 204.1 | 194.0 | 19 | 24 | 25 | −5 | −1 |
10 | Dobong | 156.2 | 201.4 | 194.7 | 24 | 25 | 24 | −1 | 1 |
11 | Nowon | 186.5 | 243.9 | 239.2 | 17 | 19 | 20 | −2 | −1 |
12 | Eunpyeong | 170.9 | 218.1 | 224.8 | 20 | 22 | 21 | −2 | 1 |
13 | Seodaemun | 203.9 | 253.5 | 268.2 | 13 | 15 | 13 | −2 | 2 |
14 | Mapo | 272.0 | 365.8 | 378.1 | 6 | 6 | 6 | 0 | 0 |
15 | Yangcheon | 170.4 | 235.8 | 239.6 | 21 | 20 | 19 | 1 | 1 |
16 | Gangseo | 181.6 | 274.4 | 267.8 | 18 | 13 | 14 | 5 | −1 |
17 | Guro | 207.6 | 335.7 | 340.2 | 12 | 7 | 7 | 5 | 0 |
18 | Geumcheon | 165.5 | 306.2 | 314.2 | 22 | 9 | 8 | 13 | 1 |
19 | Yeongdeungpo | 337.2 | 492.7 | 488.1 | 4 | 4 | 4 | 0 | 0 |
20 | Dongjak | 196.0 | 252.3 | 259.3 | 16 | 16 | 15 | 0 | 1 |
21 | Gwanak | 198.7 | 251.9 | 248.7 | 15 | 17 | 17 | −2 | 0 |
22 | Seocho | 315.4 | 477.4 | 475.6 | 5 | 5 | 5 | 0 | 0 |
23 | Gangnam | 488.0 | 743.2 | 694.6 | 2 | 1 | 2 | 1 | −1 |
24 | Songpa | 209.9 | 315.8 | 305.0 | 11 | 8 | 10 | 3 | −2 |
25 | Gangdong | 149.2 | 230.0 | 213.1 | 25 | 21 | 22 | 4 | −1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Seo, D. Accuracy of Regional Centrality Using Social Network Analysis: Evidence from Commuter Flow in South Korea. ISPRS Int. J. Geo-Inf. 2021, 10, 642. https://doi.org/10.3390/ijgi10100642
Lee J, Seo D. Accuracy of Regional Centrality Using Social Network Analysis: Evidence from Commuter Flow in South Korea. ISPRS International Journal of Geo-Information. 2021; 10(10):642. https://doi.org/10.3390/ijgi10100642
Chicago/Turabian StyleLee, Jongsang, and Ducksu Seo. 2021. "Accuracy of Regional Centrality Using Social Network Analysis: Evidence from Commuter Flow in South Korea" ISPRS International Journal of Geo-Information 10, no. 10: 642. https://doi.org/10.3390/ijgi10100642
APA StyleLee, J., & Seo, D. (2021). Accuracy of Regional Centrality Using Social Network Analysis: Evidence from Commuter Flow in South Korea. ISPRS International Journal of Geo-Information, 10(10), 642. https://doi.org/10.3390/ijgi10100642