On the Trajectory Planning for Energy Efficiency in Industrial Robotic Systems † †
Abstract
:1. Introduction
2. Dynamic and Electro-Mechanical Modeling
3. Minimum-Energy Trajectory Planning
4. Experimental Results
4.1. Linear Axis of a Cartesian Manipulator
4.2. 1-DOF System with Two Coupled Servomotors
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kucukvar, M.; Cansev, B.; Egilmez, G.; Onat, N.C.; Samadi, H. Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries. Appl. Energy 2016, 184, 889–904. [Google Scholar] [CrossRef] [Green Version]
- Carabin, G.; Wehrle, E.; Vidoni, R. A review on energy-saving optimization methods for robotic and automatic systems. Robotics 2017, 6, 39. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Liu, J.; Yang, F. Hybrid Structure Design of Lightweight Robotic Arms Based on Carbon Fiber Reinforced Plastic and Aluminum Alloy. IEEE Access 2019, 7, 64932–64945. [Google Scholar] [CrossRef]
- Carabin, G.; Palomba, I.; Wehrle, E.; Vidoni, R. Energy Expenditure Minimization for a Delta-2 Robot Through a Mixed Approach. In Multibody Dynamics 2019; Springer: Cham, Switzerland, 2019; pp. 383–390. [Google Scholar]
- Khalaf, P.; Richter, H. Trajectory optimization of robots with regenerative drive systems: Numerical and experimental results. IEEE Trans. Robot. 2019, 36, 501–516. [Google Scholar] [CrossRef]
- Scalera, L.; Boscariol, P.; Carabin, G.; Vidoni, R.; Gasparetto, A. Enhancing Energy Efficiency of a 4-DOF Parallel Robot Through Task-Related Analysis. Machines 2020, 8, 10. [Google Scholar] [CrossRef] [Green Version]
- Barreto, J.P.; Schöler, F.; Corves, B. The concept of natural motion for pick and place operations. In New Advances in Mechanisms, Mechanical Transmissions and Robotics; Springer: Cham, Switzerland, 2017; pp. 89–98. [Google Scholar]
- Scalera, L.; Carabin, G.; Vidoni, R.; Wongratanaphisan, T. Energy efficiency in a 4-DOF parallel robot featuring compliant elements. Int. J. Mech. Control. 2019, 20, 1–9. [Google Scholar]
- Scalera, L.; Palomba, I.; Wehrle, E.; Gasparetto, A.; Vidoni, R. Natural Motion for Energy Saving in Robotic and Mechatronic Systems. Appl. Sci. 2019, 9, 3516. [Google Scholar] [CrossRef] [Green Version]
- Paes, K.; Dewulf, W.; Vander Elst, K.; Kellens, K.; Slaets, P. Energy efficient trajectories for an industrial ABB robot. Procedia Cirp 2014, 15, 105–110. [Google Scholar] [CrossRef] [Green Version]
- Trigatti, G.; Boscariol, P.; Scalera, L.; Pillan, D.; Gasparetto, A. A look-ahead trajectory planning algorithm for spray painting robots with non-spherical wrists. In Mechanism Design for Robotics; Springer: Cham, Switzerland, 2018; pp. 235–242. [Google Scholar]
- Hansen, C.; Kotlarski, J.; Ortmaier, T. Experimental validation of advanced minimum energy robot trajectory optimization. In Proceedings of the 16th International Conference on Advanced Robotics (ICAR), Montevideo, Uruguay, 25–29 November 2013; pp. 1–8. [Google Scholar]
- Ho, P.M.; Uchiyama, N.; Sano, S.; Honda, Y.; Kato, A.; Yonezawa, T. Simple motion trajectory generation for energy saving of industrial machines. Sice J. Control. Meas. Syst. Integr. 2014, 7, 29–34. [Google Scholar] [CrossRef] [Green Version]
- Boscariol, P.; Carabin, G.; Gasparetto, A.; Lever, N.; Vidoni, R. Energy-efficient point-to-point trajectory generation for industrial robotic machines. In Proceedings of the ECCOMAS Thematic Conference on Multibody Dynamics, Barcelona, Spain, 29 June–2 July 2015; pp. 1425–1433. [Google Scholar]
- Richiedei, D.; Trevisani, A. Analytical computation of the energy-efficient optimal planning in rest-to-rest motion of constant inertia systems. Mechatronics 2016, 39, 147–159. [Google Scholar] [CrossRef]
- Carabin, G.; Vidoni, R.; Wehrle, E. Energy saving in mechatronic systems through optimal point-to-point trajectory generation via standard primitives. In Mechanisms and Machine Science; Springer: Cham, Switzerland, 2018; pp. 20–28. [Google Scholar]
- Boscariol, P.; Richiedei, D. Energy-efficient design of multipoint trajectories for Cartesian robots. Int. J. Adv. Manuf. Technol. 2019, 102, 1853–1870. [Google Scholar] [CrossRef]
- Boscariol, P.; Caracciolo, R.; Richiedei, D.; Trevisani, A. Energy Optimization of Functionally Redundant Robots through Motion Design. Appl. Sci. 2020, 10, 3022. [Google Scholar] [CrossRef]
- Scalera, L.; Carabin, G.; Vidoni, R.; Gasparetto, A. Minimum-Energy Trajectory Planning for Industrial Robotic Applications: Analytical Model and Experimental Results. In Mechanisms and Machine Science; Springer: Cham, Switzerland, 2020; pp. 334–342. [Google Scholar]
- Biagiotti, L.; Melchiorri, C. Trajectory Planning for Automatic Machines and Robots; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Boscariol, P.; Gasparetto, A.; Vidoni, R. Planning continuous-jerk trajectories for industrial manipulators. In Proceedings of the ASME 2012 11th Biennial Conf. on Engineering Systems Design and Analysis, Nantes, France, 2–4 July 2012; pp. 127–136. [Google Scholar]
- Gasparetto, A.; Lanzutti, A.; Vidoni, R.; Zanotto, V. Validation of minimum time-jerk algorithms for trajectory planning of industrial robots. J. Mech. Robot. 2011, 3. [Google Scholar] [CrossRef]
Parameter | Symbol | Value | Parameter | Symbol | Value |
---|---|---|---|---|---|
Servo-motor inertia | 1.17 · kg · m | Torque constant | 1.15 Nm/A | ||
Load mass | m | 95 kg | Back-emf constant | 0.726 V · s/rad | |
Reduction ratio | 0.250/(6 · 2) | Winding resistance | R | ||
Viscous friction coeff. | 0.161 Nm · s/rad | Max. motor speed | 3000 rpm | ||
Coulomb friction coeff. | 305.5 Nm | Max. motor torque | 11.4 Nm |
Trajectory | Test | Theoretical | Experimental | ||
---|---|---|---|---|---|
Trapezoidal | T | ||||
Cycloidal | T | ||||
Parameter | Symbol | Case (1) | Case (2) | |
---|---|---|---|---|
Load side inertia | 0 | kg· m | ||
Transmission ratio | 1 | - | ||
Viscous friction coeff. | Ns/m | |||
Coulomb friction coeff. | Nm | |||
Torque constant | Nm/A | |||
Back-emf constant | /rad | |||
Winding resistance | R | |||
Load torque | 10 | Nm | ||
Angular displacement (load side) | U | rad |
Test | Case (1) | Case (2) | ||
---|---|---|---|---|
T | ||||
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carabin, G.; Scalera, L. On the Trajectory Planning for Energy Efficiency in Industrial Robotic Systems †. Robotics 2020, 9, 89. https://doi.org/10.3390/robotics9040089
Carabin G, Scalera L. On the Trajectory Planning for Energy Efficiency in Industrial Robotic Systems †. Robotics. 2020; 9(4):89. https://doi.org/10.3390/robotics9040089
Chicago/Turabian StyleCarabin, Giovanni, and Lorenzo Scalera. 2020. "On the Trajectory Planning for Energy Efficiency in Industrial Robotic Systems †" Robotics 9, no. 4: 89. https://doi.org/10.3390/robotics9040089
APA StyleCarabin, G., & Scalera, L. (2020). On the Trajectory Planning for Energy Efficiency in Industrial Robotic Systems †. Robotics, 9(4), 89. https://doi.org/10.3390/robotics9040089