Next Article in Journal
Adaptive Kalman Filter Applied to Vision Based Head Gesture Tracking for Playing Video Games
Previous Article in Journal
Propulsion-Based Soft Robotic Actuation
Article Menu

Export Article

Open AccessArticle
Robotics 2017, 6(4), 35;

Human-Like Room Segmentation for Domestic Cleaning Robots

Computer Engineering Group, Faculty of Technology, Bielefeld University, D-33594 Bielefeld, Germany
Received: 20 October 2017 / Revised: 22 November 2017 / Accepted: 23 November 2017 / Published: 26 November 2017


Autonomous mobile robots have recently become a popular solution for automating cleaning tasks. In one application, the robot cleans a floor space by traversing and covering it completely. While fulfilling its task, such a robot may create a map of its surroundings. For domestic indoor environments, these maps often consist of rooms connected by passageways. Segmenting the map into these rooms has several uses, such as hierarchical planning of cleaning runs by the robot, or the definition of cleaning plans by the user. Especially in the latter application, the robot-generated room segmentation should match the human understanding of rooms. Here, we present a novel method that solves this problem for the graph of a topo-metric map: first, a classifier identifies those graph edges that cross a border between rooms. This classifier utilizes data from multiple robot sensors, such as obstacle measurements and camera images. Next, we attempt to segment the map at these room–border edges using graph clustering. By training the classifier on user-annotated data, this produces a human-like room segmentation. We optimize and test our method on numerous realistic maps generated by our cleaning-robot prototype and its simulated version. Overall, we find that our method produces more human-like room segmentations compared to mere graph clustering. However, unusual room borders that differ from the training data remain a challenge. View Full-Text
Keywords: room segmentation; domestic cleaning robots; machine learning; computer vision room segmentation; domestic cleaning robots; machine learning; computer vision

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).

Share & Cite This Article

MDPI and ACS Style

Fleer, D. Human-Like Room Segmentation for Domestic Cleaning Robots. Robotics 2017, 6, 35.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics



[Return to top]
Robotics EISSN 2218-6581 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top